
International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 6 (2018) pp. 3631-3637

© Research India Publications. http://www.ripublication.com

3631

Genetic Key Guided Neural Deep Learning based Encryption for Online

Wireless Communication (GKNDLE)

Arindam Sarkar

Department of Computer Science & Electronics, Ramakrishna Mission Vidyamandira,
Belur Math-711202, West Bengal, India.

Abstract

In this paper, a neural deep learning guided genetic secret key

based technique for encryption (GKNDLE) has been proposed

for online transmission of data/information through wireless

communication. In this approach both the communicating

networks receive an indistinguishable input vector, produce

an output bit and are trained based on the output bit.

Synchronized weight vectors become the chromosome of the

1st generation Genetic Algorithm based secret key used to

encrypt the plain text. Intermediate encrypted stream goes

through another triangular cipher process. A secret key is also

fabricated in the process of encryption as cascaded manner.

This intermediate cipher text is again encrypted to form the

final cipher text through chaining and cascaded xoring of

identical weight vector with the identical length intermediate

cipher text block. If size of the last block of intermediate

cipher text is less than the size of the key then this block is

kept unchanged. Receiver will use identical weight vector for

performing deciphering process for getting the triangular

encrypted cipher text and secret key for decoding. Finally GA

secret key helps to generate ultimate plain text. A session key

based transmission has also been proposed using 161-bit key

format of 14 different segments [7,8]. Parametric tests are

done and results are compared in terms of Chi-Square test,

response time in transmission with some existing classical

techniques, which shows comparable results for the proposed

system.

Keywords: Deep Learning, weight vector, input vector, sub

key, session key, chaining, wrapping technique.

INTRODUCTION

These days a variety of techniques are available to defend

data and information from eavesdroppers [2-9, 11, 20, 21,

22]. Every algorithm has its own advantages and

disadvantages. For Example in DES, AES algorithms [1] the

cipher block length is inflexible. RBCMPCC [14] allow only

one cipher block encoding. In RPSP algorithm [15] any

intermediate blocks during its cycle taken as the encrypted

block and this number of iterations acts as secret key.

The organization of this paper is as follows. Section II of the

paper deals with the proposed synchronization and key

generation technique and also random block length based

cryptographic techniques. Session key based encryption

technique has been discussed in section III. Example of this

technique is given in section IV. Complexity of the algorithm

is presented in section V. Results are presented in section VI.

Analysis regarding various aspects of the technique has been

presented in section VII. Conclusions are drawn in section

VIII and that of references at end.

THE TECHNIQUE

In proposed technique Genetic key is used to encrypt the

plain text. Then this intermediate GA encrypted stream goes

through another round of triangular encryption process.

Secret key is padded with the last block of intermediate

triangular encrypted text. This intermediate and padded

cipher text is again encrypted to form the final cipher text

using chaining of cascaded xoring of intermediate cipher text

with the identical neural secret key. Using the same weight

vector receiver performs the reverse technique. Section II.A

deals with key generation technique and that of section II.B

and II.C describes the encryption and decryption techniques

respectively.

A. Neural synchronization scheme & secret key

At the beginning of the transmission, a neural network based

secret key generation is performed between receiver and

sender. The same may be done through the private channel

also or it may be done in some other time, which is

absolutely free from encryption. Figure 1 shows the tree

based generation process using random number of nodes

(neurons) and the corresponding algorithm is given in two-

sub section II.A.1 and II.A.2.

Figure 1. A tree parity machine with K=3 and N=4

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 6 (2018) pp. 3631-3637

© Research India Publications. http://www.ripublication.com

3632

.A.1. Neural Synchronization Algorithm

Input: - Random weights, input vectors for both neural

networks

Output: - Secret key through synchronization of input and

output neurons as vectors.

Method: - Each party (A and B) uses its own (same) tree

parity machine. Neural network parameters: K, N,

L values will be identical for both parties and

synchronization of the tree parity machines is

achieved.

Parameters:

K - The number of hidden neurons.

N - The number of input neurons connected to each hidden

neuron, total (K*N) input neurons.

L - The weight value {-L..+L}

Step 1. Initialize random weight values.

Step 2. Repeat step 3 to 6 until the full synchronization is

achieved, using hebbian-learning rules (eq. 3).

Step 3. Generate random input vector X. Inputs are generated

by a third party (say the server) or one of the communicating

parties (fig. 2)

Figure 2. Neural network for sender and receiver

Step 4. Compute the values of the hidden neurons














 



N

j
ijiji xw

1

sgn  










1

0

1

sgn x
if
if
if

.0

,0

,0







x
x
x

 (1)

Step 5. Compute the value of the output neuron

 
 
















K

i

N

j
ijij xw

1 1

sgn

(2)

Step 6. Compare the output values of both tree parity

machines by exchanging between the networks

Outputs are not same: Go to step 3 if Output (A) ≠ Output (B)

else if Output (A) = Output (B) then one of the suitable

learning rule is applied to the weights. Update the weights

only if the final output values of the neural machines are

equivalent. In this paper we have used deep hebbian-learning

rule for synchronization (eq. 3). When synchronization is

finally occurred, the synaptic weights are same for both the

networks. In each step there may be three possibilities:

   BA
iiii xwwi 

 (3)

1. Output (A) ≠ Output (B): None of the parties updates its

weights.

2. Output (A) = Output (B) = Output (E): All the three

parties update weights in their tree parity machines.

3. Output (A) = Output (B) ≠ Output (E): Parties A and B

update their tree parity machines, but the attacker cannot do

that. Because of this circumstance his learning is slower than

the synchronization of parties A and B. The synchronization

of two parties is faster than learning of an attacker.

Complexity: O(N) computational steps are needed to

generate a key of length N. The average synchronization time

up to N=1000 asymptotically one expects an increase like O

(log N).

A.2. Final Key generation using Genetic Algorithm

The technique considers the synchronized weight vector from

the in the form of blocks of bits with dissimilar size like

8/16/32/64/128/256 becomes the 1st chromosome of the 1st

generation.

Steps of Random numbers generation (eq. 4) using genetic
functions, i.e., crossover and mutation respectively.

 Assumption about the generation of random numbers: -

Chromosomes representation in Binary, Population Size is

10 (could be varied), Hence 5 generations are required to

generate 50chromosomes if the number of block of characters

is 50.The sequence of random numbers (chromosome) is

generated via the following iterative equation.

ma XX cnn mod)*(
1 
 (4)

Where, Xn denotes the randomly selected 8 bits synchronized

weight vector which becomes first chromosome of the first

generation, m -modulus (m > 0), a - multiplier (0 <= a <

m),c -increment (0 <= c < m).

After crating the 1st generation of the chromosomes, next

generation chromosomes are generated using the GA

operators CROSSOVER followed by MUTATION.

In case of even generation crossover is taken place from top to

bottom in a sequential way by pairing up chromosomes like

(1,2) (3,4) (5,6).In case of odd generation crossover is take

place from bottom to top in a sequential way by pairing up

chromosomes like (50,49) (48,47) (46,45)

Consider 284, 7000, 9024, 4025, 1235, 2564, 654, 6526,

3652, 124, as first generation chromosomes.

2nd generation chromosomes are obtained by Pairing up like

(284, 7000), (9024, 4025), (1235, 2564), (654, 6526),

(3652, 124)

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 6 (2018) pp. 3631-3637

© Research India Publications. http://www.ripublication.com

3633

Here, crossover and mutation will be perform let at 4th locus

of the gene of chromosome.

Consider binary representation of chromosomes as

 284= 0000100011100 7000= 1101101011000

The output stream on crossover is 0000101011000

1101100011100. The output generated on mutation is

0001101011000=856 1100100011100=6428 (Mutation

of 4th bit). Up to 5th generation same technique is use to

generate 50 chromosomes (Each generation 10 populations)

and get the final set of numbers.

Encryption

1. Once all the numbers are generated then let this array of

numbers be called GENETIC_ARRAY and select the

LAST digit of each number from GENETIC _ARRAY

and a new collection of numbers is generated and let this

collection is called CODED_ARRAY.

2. Use this numbers from CODED _ARRAY sequentially for

substituting on a one-to-one basis for the characters of the

plain text.

3. Use ASCII values of the plain text characters and ADD the

numbers of CODED_ARRAY from the ASCII values. For

example the message “ARINDAM” the CIPHER TEXT

will be calculated according to following method. LET

GENETIC _ARRAY = {2365, 1211, 8526, 1258, 7639,

4584,3982}

Table I: Genetic Algorithm Based Encryption

Character ASCII

Value

GENETIC_ARRAY

Number Taken

sequentially

Addition Result

A 65 5 65+5 70(F)

R 82 1 82+1 83(S)

I 73 6 73+6 79(O)

N 78 8 78+8 86(V)

D 68 9 68+9 77(M)

A 65 4 65+4 69(E)

M 77 2 77+2 79(O)

The intermediate cipher text is “FSOVMEO” from table I.

Now this intermediate encrypted stream is consider as an

input source block to the next level of encryption procedure.

B.Ttraingularization

During encryption, consider a block S = s0
0 s0

1 s0
2 s0

3 s0
4 s0

5

… s0
n-2 s0

n-1 of size n bits, where s0
i = 0 or 1 for 0 <= i <= (n-

1). Now, starting from MSB (s0
0) and the next-to-MSB (s0

1),

bits are pair-wise XORed, so that the 1st intermediate sub-

stream S1 = s1
0 s1

1 s1
2 s1

3 s1
4 s1

5 … s1
n-2 is generated

consisting of (n-1) bits, where s1
j = s0

j  s0
j+1 for 0 <= j <= n-

2,  stands for the exclusive OR operation. This 1st

intermediate sub-stream S1 is also then pair-wise XORed to

generate S2 = s2
0 s2

1 s2
2 s2

3 s2
4 s2

5 … s2
n-3, which is the 2nd

intermediate sub-stream of length (n-2). The method iterates

(n-1) times to produce Sn-1 = sn-1
0, which is a single bit only.

So, the size of the 1st midway sub-stream is one bit fewer

than the source sub-stream; the size of each of the

intermediate sub-streams starting from the 2nd one is one bit

less than that of the sub- stream wherefrom it was generated;

and finally the size of the final sub-stream in the process is

one bit less than the final intermediate sub-stream. Figure 3

shows the process.

Table II: Options for choosing Target Block from Triangle

Option

Serial No.

Target Block Method of Formation

001

s0
0 s1

0 s2
0 s3

0 s4
0 s5

0 …

sn-2
0 sn-1

0

Taking all the MSBs

starting from the source

block till the last block

generated

010

sn-1
0 sn-2

0 sn-3
0 sn-4

0 sn-5
0

… s1
0 s0

0

Taking all the MSBs

starting from the last

block generated till the

source block

011

s0
n-1 s1

n-2 s2
n-3 s3

n-4 s4
n-5

… sn-2
1 sn-1

0

Taking all the LSBs

starting from the source

block till the last block

generated

100

sn-1
0 sn-2

1 sn-3
2 sn-4

3 sn-5
4

… s1
n-2 s0

n-1

Taking all the LSBs

starting from the last

block generated till the

source block

Option Serial No. 010 Option Serial No. 100
Option Serial No. 001 Option Serial No. 011

Figure 3. Diagrammatic Representation of Options for

choosing Target Block from Triangle

Table II is for options for choosing target block from triangle.

Now size of each encrypted block under consideration and

options chosen for this particular block merged together. In

this way a intermediate key is formed and padded with the

encrypted block. Then the neural secret key is use to xored

with the same length first intermediate cipher text block to

produce the first final cipher block (neural secret key XOR

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 6 (2018) pp. 3631-3637

© Research India Publications. http://www.ripublication.com

3634

with same length cipher text). This newly generated block

again xored with the immediate next block and so on. This

chaining of cascaded xoring mechanism is performed until all

the blocks get exhausted. If the last block size of intermediate

cipher text is less than the require xoring block size (i.e.

weight vector size) then this block is kept unchanged

C. Decryption Technique

During decryption, the encrypted message is converted into

the corresponding stream of bits and then this stream is

decomposed into a finite set of blocks, each consisting of a

finite set of bits using same rule of encryption. It is to be

noted that the receiver will take identical weight vectors and

same neural key generation algorithm is use to generate the

neural key. Then cascaded xoring operation is performed

using identical neural secret key with the cipher text. The

technique of performing xoring is same that was in encryption

process. Finally from the outcomes intermediate encrypted

block (E) and key block is extracted and now key is use to

decipher the E to get the intermediate source stream. To ease

the explanation of decryption technique, let us consider, e0
i-1 =

si-1
n-i for 1 <= i <= n, so that the encrypted block becomes E =

e0
0 e0

1 e0
2 e0

3 e0
4 … e0

n-2 e0
n-1. Now, following the same

approach as mentioned in section 3.2.1, a triangle is to be

formed. After the formation of the triangle, for the purpose of

decryption, the block en-1
0 en-2

0 en-3
0 en-4

0 en-5
0 … e1

0 e0
0, i.e.,

the block constructed by taking all the MSBs of the blocks

starting from the finally generated single-bit block En-1 to E,

are to be taken together and it is to be considered as the

decrypted block. Figure 4 show the triangle generated and

hence the decrypted block obtained. Here the intermediate

blocks are referred to as E1, E2, …, En-2 and the final block

generated as En-1.

Option Serial No. 010 Option Serial No. 100

Option Serial No. 001 Option Serial No. 011

Figure 4. Generation of Source Block from Target

Finally, table III Genetic Algorithm based decryption

procedure is use to get original plain text.

Table III: Genetic Algorithm Based Decryption

Result

(R)

For loop I =0 to 255 Do (I – R) &

Compare With CODED _ARRAY &

Choose I

Character

70 65 A

83 82 R

79 73 I

86 78 N

77 68 D

69 65 A

79 77 M

SESSION KEY GENERATION

To ensure secured encryption of the proposed technique with

varying size of blocks, a 161 bit key format consisting of 14

different segment has been proposed here [7,8]. The section of

rank the R, there can exist a utmost of N=218-R blocks, each

of unique size of S=218-R, R starting from 1 and moving till

14.Full input is divided into blocks of various sizes based on

the session key.

Figure 5. 161 bit key format

 Segment with R=1 formed with the first maximum

131072 blocks, each of size 131072 bits

 Segment with R=2 formed with the first maximum

65536 blocks, each of size 65536 bits

 Segment with R=3,4,5,----,14 formed with the next

maximum 32768, 16384,8192,----,16 blocks, each of

size 32768, 16384,8192,-------,16 bits respectively.

With such a structure, the key space becomes 147 bits

long and a stream of the maximum size 2.6 GB can be
encrypted using the proposed technique. The key structure is

represented in Figure 5.This session key may be used during

each session as a random manner to enhance the security of

wireless communication.

EXAMPLE

In this section, we consider Genetic Algorithm based

encrypted stream as a source stream. Section IV.A shows how

the GA based encrypted text is further encrypted and section

IV.B describes the process of decryption.

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 6 (2018) pp. 3631-3637

© Research India Publications. http://www.ripublication.com

3635

E
n

cr
y

p
ti

o
n

 &
 d

ec
ry

p
ti

o
n
 t

im
e

Source size

A The Process of Encryption:

1 0 0 1 0 1 0 1

1 0 1 1 1 1 1

1 1 0 0 0 0

0 1 0 0 0

1 1 0 0

0 1 0

1 1

0

Figure 6. Formation of Triangle for S = 10010101

Figure 6 shows the triangle formation of 1st 8 bits source

block.

Table IV: Different Target Blocks for S = 10010101

 Source Block

S

Target Block

Corresponding to

Serial No.

Target Block

T

 001 T1 =11101010

10010101 010 T2 =01010111

 011 T3 =11000010

 100 T4 =01000011

Table IV shows that different target (decrypted) block for a

particular source block depending on different option serial no

(001,010,011,100). For different 8/16/32/64/128 bit blocks

different option serial no can be chosen.

B The Process of Decryption:

For target blocks T1 = 11101010 and T4 = 01000011, the

same approach is to be followed to generate the

corresponding source blocks. But blocks T2 = 01010111 and

T3 = 11000010 require different techniques. Figure 7 show

the generations of source block from target blocks T2.

0 1 0 1 0 1 1 1

1 1 1 1 1 0 0

0 0 0 0 1 0

0 0 0 1 1

0 0 1 0

0 1 1

1 0

1

Figure7. Source Block S = 10010101 from Target Block T2

= 01010111

After stuffing the key with the above midway cipher text and

xoring with the neural secret key, final encrypted cipher text is

generated. At the destination point, receiver’s secret neural

key is use to xoring the cipher text to get back the key and

intermediate cipher text. Now, by that secret key, the receiver

gets the information on different block lengths.In this way all

the source blocks of bits are regenerated and combining those

blocks in the same sequence and performing GA based

decryption the source stream of bits are obtained to get the

source message or the plaintext.

RESULTS

In this section the results of implementation of the proposed

technique has been presented in terms of encryption

decryption time, Chi-Square test, source file size vs.

encryption time along with source file size vs. encrypted file

size. The results are also compared with existing RSA

technique.

Table V: ENCRYPTION / DECRYPTION TIME VS. FILE SIZE

 Encryption Time (s) Decryption Time (s)

Source

Size

(bytes)

Proposed

ANNGKE

RPSP Encrypted

Size (bytes)

Proposed

ANNGKE

RPSP

18432 5. 76 7.85 18432 5.92 7.81

23044 8. 51 10.32 23040 7.73 9.92

35425 14. 23 15.21 35425 13. 87 14.93

36242 14. 98 15.34 36242 14. 91 15.24

59398 23. 40 25.49 59398 22. 98 24.95

Table V shows encryption and decryption time with respect to

the source and encrypted size respectively. It is also observed

the alternation of the size on encryption.

In figure 8 stream size is represented along X axis and

encryption / decryption time is represented along Y-axis. This

graph is not linear, because of different time requirement for

finding appropriate random number for different block size.

The decryption time is approximately linear, since there is no

random number generation during decryption.

Figure 8. Source size vs. encryption time & decryption time

5.76

8.51

14.23
14.98

23.4

5.92
7.73

13.87 14.91

22.98

0

5

10

15

20

25

18432 23044 35425 36242 59398

Encryption

Decryption

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 6 (2018) pp. 3631-3637

© Research India Publications. http://www.ripublication.com

3636

Table VI shows Chi-Square value for different source stream

size after applying different encryption algorithms. It is seen

that the Chi-Square value of ANNGKE is better compared to

the algorithm RBCMPCC and comparable to the Chi-Square

value of the RSA algorithm.

Table VI: Source size vs. Chi-Square value

Figure 9 shows graphical representation of table VI.

Figure 9. Source size vs. Chi-Square value

COMPLEXITY OF THE TECHNIQUE

The proposed technique has a complexity of O(L), which can

be computed using following three steps.

Step 1:To generate a key of length N needs O(N)

Computational steps. The average synchronization time is

almost independent of the size N of the networks, at least up

to N=1000.Asymptotically one expects an increase like O

(log N).

Step 2: Complexity of the encryption technique is O(L).

Step2.1:Genetic Algorithm based encryption

technique of the source block S = s0 s1 s2 s3 s4… sL-1,

takes O (L) amount of time.

 Step 2.2:Triangular encryption process takes O(L).

 Step 2.3: Neural weight encryption technique is

 carried out which generates the complexity as O (L).

Step 3: Complexity of the decryption technique is O(L).

Step 3.1: Neural weight decryption technique. So time

complexity is O(L).

Step 3.2: Triangular decryption process takes O(L).

Step3.3:In Genetic Algorithm based decryption

technique, complexity to convert T into the

corresponding stream of bits S = s0 s1 s2 s3 s4…sL-1,

which is the source block is O(L) as this step also

takes constant amount of time for merging s0 s1 s2 s3

s4…sL-1. So, overall time complexity of the entire

technique is O(L).

ANALYSIS OF RESULT

From experimental results it is clear that the proposed

technique may achieve optimal performances. Encryption

time and decryption time varies almost linearly with respect

to the block size For the proposed algorithm Chi-Square

value is very high compared to some existing algorithms. In

the RBCMCPCC [14] a user input key (minimum length of

eight byte) and a set of arbitrarily generated session keys are

used to encrypt a source block. But this key generation

technique is not sustainable against attack. Because

RBCMCPCC key potency thoroughly depend upon

strengthness of user input key. A user input key has to

transmit over the public channel all the way to the receiver

for performing the decryption procedure. So there is a

likelihood of attack at the time of key exchange. To defeat

this insecure secret key generation technique a neural

network based secret key generation technique has been

proposed. The security issue of RBCMCPCC and RPSP [15]

algorithm can be improved by using neural secret sub key

generation technique. In this case, the two partners A and B

do not have to share a common secret but use their

indistinguishable weights as a secret key needed for

encryption. The fundamental conception of neural network

based key exchange protocol [10,12,13,16,17,18,19] focuses

mostly on two key attributes of neural networks. Firstly, two

nodes coupled over a public channel will synchronize even

though each individual network exhibits disorganized

behavior. Secondly, an outside network, even if identical to

the two communicating networks, will find it exceptionally

difficult to synchronize with those parties, those parties are

communicating over a public network. An attacker E who

knows all the particulars of the algorithm and records through

this channel finds it thorny to synchronize with the parties,

and hence to calculate the common secret key.

Synchronization by mutual learning (A and B) is much

quicker than learning by listening (E) [17]. For usual

cryptographic systems, we can improve the safety of the

protocol by increasing of the key length. In the case of neural

cryptography, we improve it by increasing the synaptic depth

L of the neural networks. For a brute force attack using K

hidden neurons, K*N input neurons and boundary of weights

L, gives (2L+1)KN possibilities. For example, the

configuration K = 3,L = 3 and N = 100 gives us 3*10253 key

possibilities, making the attack unfeasible with today’s

computer power. E could start from all of the (2L+1)3N

initial weight vectors and calculate the ones which are

consistent with the input/output sequence. It has been shown,

that all of these initial states move towards the same final

weight vector, the key is unique. This is not true for simple

perceptron the most unbeaten cryptanalysis has two

supplementary ingredients first; a group of attacker is used.

Second, E makes extra training steps when A and B are quiet.

So increasing synaptic depth L of the neural networks we can

make our neural network safe.

Stream

Size

(bytes)

Chi-

Square

value

(TDES)

Chi-Square

value

(Proposed

ANNGKE)

Chi-Square

value

(RBCM

CPCC)

Chi-

Square

value

(RSA)

1500 1228.5803 2627.7534 2464.0324 5623.14

2500 2948.2285 5719.8522 5642.5835 22638.99

3000 3679.0432 6739.73621 6714.6741 12800.355

3250 4228.2119 7009.2813 6994.6189 15097.77

3500 4242.9165 11624.2315 10570.4671 15284.728

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 6 (2018) pp. 3631-3637

© Research India Publications. http://www.ripublication.com

3637

CONCLUSIONS

This paper presents a novel approach for generation of secret

key proposed algorithm using neural cryptography. This

technique enhances the security features of the RBCMCCC

and RPSP algorithm by increasing of the synaptic depth L of

the neural networks. In this case, the two partners A and B do

not have to exchange a common secret key over a public

channel but use their indistinguishable weights as a secret

key needed for encryption or decryption. So likelihood of

attack proposed technique is much lesser than the simple

RBCMCCC algorithm.

REFERENCES

[1] Kahate, A. (2010). Cryptography and Network Security,

2nd edition, Tata McGraw Hill.

[2] Diffie, W., & Hellman, M. (1976). New directions in

cryptography, IEEE Trans. Inform. Theory, 22(6),

pp.644-654.

[3] Zhang, R., Shen, J., Wei, F., Li, X., & Sangaiah, A. K.

(2017). Medical image classification based on multi-

scale non-negative sparse coding. Artificial Intelligence

in Medicine.

[4] Anurag Roy and Asoke Nath, “DNA Encryption

Algorithms: Scope and Challenges in Symmetric Key

Cryptography”, IJIRAE 2016.

[5] Kalsi, S., Kaur, H. & Chang, V. J Med Syst (2018) 42:

17. https://doi.org/10.1007/s10916-017-0851-z, Springer

US, ISSN: 0148-5598.

[6] Liao, X., Yin, J., Guo, S., Li, X., & Sangaiah, A. K.

(2017). Medical JPEG image steganography based on

preserving interblock dependencies. Computers &

Electrical Engineering.

[7] Anusudha, K., Venkateswaran, N. & Valarmathi, J.

Multimed Tools Appl (2017) 76 (2), pp 2911–2932,

https://doi.org/10.1007/s11042-015-3213-1, Springer

US, Print ISSN 1380-7501, Online ISSN 1573-7721

[8] Al-Haj, A., Mohammad, A. & Amer(2017) A. J Digit

Imaging 30(1) , pp 26–38https://doi.org/10.1007

/s10278-016-9901-1

[9] Chen, C., Xiang, H., Qiu, T., Wang, C., Zhou, Yang.,

Chang, V. A rear-end collision prediction scheme based

on deep learning in the Internet of Vehicles, Journal of

Parallel and Distributed Computing, 2017.

[10] Sarkar, A., & Mandal, J. K. (2014). Cryptanalysis of Key

Exchange method in Wireless Communication (CKE).

International Journal of Network Security (IJNS), 17(4),

484-493, ISSN 1816 – 3548 [Online]; 1816 – 353X

[Print].

[11] Sarkar, A., & Mandal, J. K. (2014). Computational

Science guided Soft Computing based Cryptographic

Technique using Ant Colony Intelligence for Wireless

Communication (ACICT). International Journal of
Computational Science and Applications (IJCSA), 4(5),

61-73, DOI: 10.5121/ijcsa.2014.4505, ISSN 2200 –

0011.

[12] Sarkar, A., & Mandal, J. K. (2014). Soft Computing

based Cryptographic Technique using Kohonen's Self-

Organizing Map Synchronization for Wireless

communication (KSOMSCT). International Journal in
Foundations of Computer Science & Technology
(IJFCST), 4(5), 85-100, DOI: 10.5121/ijfcst.2014.4508,
ISSN 1839 – 7662.

[13] Sarkar, A., & Mandal, J. K. (2013). Computational

Intelligence based Triple Layer Perceptron Model

Coordinated PSO guided Metamorphosed based

Application in Cryptographic Technique for Secured

Communication (TLPPSO). In Proceedings of the First
International Conference on Computational Intelligence:
Modeling, Techniques and Applications (CIMTA-2013),
Vol.10, pp. 433-442, DOI:

10.1016/j.protcy.2013.12.380, ISSN: 2212-0173,

September 27-28 2013, Department of Computer

Science & Engineering, University of Kalyani, Kalyani,

India, Procedia Technology, Elsevier.

[14] Jayanta Kumar Pal, J. K. Mandal “A Random Block

Length Based Cryptosystem through Multiple Cascaded

Permutation Combinations and Chaining of

Blocks”Fourth International Conference on Industrial

and Information Systems, ICIIS 2009, 28 –

31December2009, SriLanka.

[15] J. K. Mandal, et al, “A 256-bit Recursive Pair Parity

Encoder for Encryption”, Advances in Modeling, D;

Computer Science & Statistics (AMSE), vol. 9, No. 1,

pp. 1-14, France, 2004.

[16] T. Godhavari, N. R. Alainelu and R. Soundararajan

“Cryptography Using Neural Network ” IEEE Indicon

2005 Conference, Chennai, India, 11-13 Dec.

2005.ggggjgggggggggggg

[17] Wolfgang Kinzel and ldo Kanter, "Interacting neural

networks and cryptography", Advances in Solid State

Physics, Ed. by B. Kramer (Springer, Berlin. 2002),

Vol. 42, p. 383 arXiv- cond-mat/0203011.

[18] Wolfgang Kinzel and ldo Kanter, "Neural cryptography"

proceedings of the 9th international conference on Neural

Information processing(ICONIP 02).h

[19] Dong Hu "A new service based computing security

model with neural cryptography"IEEE07/2009.J

[20] Jha P. K., Mandal, J. K., “Encryption Through Cascaded

Recursive Key Rotation of a Session Key

withTransposition and Addition of Blocks

(CRKRTAB)”Proceedings of National conference on

Recent Trends in Information Systems 2006, organized

by IEEE Kolkata section, Jadavpur University, Kolkata

held on July 14-15th, 2006. pp 69-72.

[21] Jha P. K., Nayak, A.K., “An Encryption Technique

through Bitwise Operation of Blocks (BOB)” accepted

tothe 97th Indian Science Congress, to be held in Kerala,

Jan 2010, India.

[22] Saurabh Dutta, Ph. D. Thesis “An Approach Towards

Development of Efficient encryption Techniques” The

University of North Bengal, India, 2004.

