
International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 6 (2018) pp. 3610-3618

© Research India Publications. http://www.ripublication.com

3610

A Data Management Technique of Hybrid Memory Systems for Energy

Aware Flight Control Computing

Doosan Cho

Department of Electrical and Electronic Engineering,
Sunchon National University, Sunchon 540-742, South Korea.

Abstract:

Future flight control devices will be designed with more

application-specific features than traditional designs. For an

instance, devices mounted on shoes can provide various

information by analyzing life pattern, and wrist watch devices

are becoming not only information providing but also health

care. These various drone/mobile devices are loaded with an

optimum memory system for their ability to perform such

computations. Battery capacity is determined by required

capacity of memory system, which consumes a large portion

of power. The size of a memory system and battery affects

such device size, and then it directly links to success of the

product in its market. Therefore, the optimization process

mainly focuses on power consumption and performance at the

design step.

The size of a memory system is usually occupied upto 60% on

a chip space and its power consumption is proportional to the

size. Especially, as the microfabrication process deepens,

leakage current increases exponentially in system on a chip.

This is called the power wall instead of the traditional

memory wall. We are focused on a hybrid memory system

using nonvolatile and scratchpad memory components to

solve the power wall problem. Non-volatile memories have a

small size (high density) and a relatively low power

consumption, as well as consuming nearly zero leakage in a

chip. Therefore, it is considered as a substitute for the

traditional memory subsystem to the next generation high

performance devices. In this paper, we propose a data

management technique that can efficiently utilize the hybrid

memory consisting of non-volatile memory and the scratch

pad memory components. The proposed scheme overcomes

the nonvolatile memory write endurance constraint and

relatively slow write speed by using scratch pads and takes

full advantage of nonvolatile low power and performance

advantages. Using this study, it is possible to construct a

memory subsystem optimized for a low power perspective for

future high performance devices. Therefore, the proposed

technique improves performance and energy consumption of

the hybrid memory architecture.

Keywords: cache; memory subsystem; energy consumption;

drone; flight control computer

INTRODUCTION

DRAM is the main memory device in which real processes

perform tasks. In the past decades, the memory capacity has

been expanded over 30 years at a rate of about 100 times per

10 years. Along with Moore's Law, which represents an

increase in processor speed, it was the pillar that sustained IT

technology development. However, 4 to 5 years ago, DRAM

manufacturing technology was expected to be very difficult to

develop in nano-level micro-processing under 30nm. When a

capacitor of DRAM is going to store data, the capacitor needs

to have 20 femto farads capacitance as the minimum.

However, the capacitor cannot have upto 20 femto farads

under 30nm technology, due to the capacitor’s volume. There

are several solutions to solve this capacitance problem by

using high cost materials like white gold. If it chooses the

white gold, the price competitiveness of DRAM is worser

because it leads to the highest cost as a mobile devices’

component. As a solution to this deepening microfabrication

process, many companies have chosen nonvolatile memory

technology, since nonvolatile memory provides higher

density, lower power consumption, zero leakage power, and

the same performance compared with DRAM.

Few years ago, researchers expected that the next-generation

memory technologies such as non-volatile memory would

replace traditional DRAMs to solve a limitation of deepening

microfabrication process. However, the expectation of

fabrication technology is not true, because it already

commercialize at 14nm level product and commercialization

of 10nm or less technology will be expected. Therefore, it

seems that 'complementary' rather than 'replacement' will be

commercialized as a type of hybrid memories. That is, they

are developed in the form of complementary hybrid

memories, but nonvolatile memories.

Few leading industries are already accelerating the

development of the next generation memory technologies that

can enhance the performance of traditional memories such as

DRAM and NAND flash and compensate for their

shortcomings. It is not an approach of developing a new

product to create a market but a complementary approach to

meet market demands. If it succeeds in commercialization, it

will quickly become a new engine for growth market. The

next-generation memory technology is focused on

complementing performance rather than replacing DRAM,

SRAM, and NAND flash, which are already well-positioned

in the market. Major candidates of the next generation

memory technologies are 3D X-Point, ReRAM (Resistive

Memory), P-RAM (Phase Change Memory) and STT-MRAM

(Spin Injection Magnetization Memory). In this work, we call

them NVM (Non-Volatile Memories). Each memory

technology has different advantages and disadvantages.

Because STT-MRAM is faster than DRAM, it can be used as

an on-chip memory or the last-level cache, but due to its large

cell size, it is not an alternative solution of DRAM. PCM and

ReRAM have a higher degree of density than DRAM, but

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 6 (2018) pp. 3610-3618

© Research India Publications. http://www.ripublication.com

3611

slow access speed. Thus, it is not easy to replace DRAM with

the single technology. 3D X-Point memory technology was

recently announced by Intel and Micron. It is known that the

speed can be increased up to 1000 times as compared with the

NAND flash. It is expected to replace SSD in the near future.

In this work, we focuses on a hybrid cache memory

subsystem, which compensates for the drawbacks of NVM

and DRAM, and helps them to share their advantages. As

mentioned above, NVM is a memory technology that enables

to fully utilize deepen microfabrication with zero leakage

power, high density, low power consumption and non-

volatility. However, current implementations of this

promising alternative memory suffer from an important issue

that its cells require relatively large energy and access latency

when performing a write operation. It limits the ability to meet

the requirements for the memory access latency in high

performance systems. That is, SRAM cell is much more

efficient for performing write operations with improved power

consumption, performance and endurance compared to NVM

cells, even though the cell size is four times lager. In order to

compensate for the drawbacks of NVM with write operations,

a hybrid memory system has been proposed with a scratchpad

memory (SPM) component. By partitioning write intensive

data onto SPM, it can provide a high performance memory

system with keeping NVM advantages, since SPM performs a

write operation at high speed and low energy consumption. In

this paper, we explore a novel hybrid cache architecture

consisting of SPM and traditional cache in NVM main

memories, and its management method.

Figure 1. Hybrid cache architecture

Several previous works [1], [2], [3-12] confirm that NVM

main memory can achieve significant energy savings with

comparable performance to that of DRAM. Some research

using NVMs to build cache hierarchies also show that NVM

has advantages over SRAM when there is a certain

management scheme. In order to obtain the advantage of these

two types of RAMs, some works compose a set of caches that

are configured with a small number of SRAM lines and many

NVM (STT-RAM) lines in a hybrid manner. Usually, SPM is

responsible to handle the frequently recorded data blocks that

constitute a major part of the write operations in an

application while NVM hides the read access latency by

increasing the capacity of this hybrid cache. In this work,

main memory consists of NVM and its address space

controlled by traditional cache. A shown in Figure 1, the

software controlled SPM is used as part of the main memory

address space. And, it is a part of a software controlled data

cache. The design of this hybrid cache memory subsystem is

popular with low power mobile system such as IBM CELL

architecture, NVIDIA GPUs, ARM Cortex-M and Cortex-R,

etc. The detailed structure and its operation procedure is

beyond the scope of this paper.

To the best of our knowledge, there is no existing work about

a hybrid scratchpad memory cache with a NVM main memory

(which called NVMM). With this hybrid scratchpad memory

architecture, we can achieve many benefits, such as high

density, non-volatility, and ultralow leakage power, promised

by NVMs. To that end, we propose an efficient cache

management technique for the hybrid memory subsystem that

identifies write-intensive data blocks and rearranges the

location of such data blocks for placing to SPM. Other data

can be categorized as less-write or read-intensive data, they

should be placed in NVM with the hardware cache.

A number of similar studies have been proposed to alleviate

negative effects of the hybrid cache. On architecture design

point of view, various Non-Volatile Memories (NVMs) have

also been proposed to be used in hybrid cache. Mangalagiri

[13] proposed PCM based a hybrid cache architecture. Dong

[14] evaluated 3D MRAM architecture as an on chip cache.

Joo [15] presented energy/endurance aware PCM based a

cache design. In these works, they all considered NVM as a

cache for adding current microarchitectures, and naturally

they imply that it is technically feasible to integrate NVMs

with SRAM into an onchip memory.

In system management point of view, there are a number of

similar studies to minimize the drawback of NVM which

caused by write operations. Reducing the number of write

operations to NVM (like STT-RAM) can lower the negative

effect. Thus, a data allocation technique is essential to reduce

the number of write operations on such NVMs. Studies [16]

show that hybrid caches with proper data rearrangement

policies consumes less power than traditional cache. However,

the cache rearrangement policies leads too much overhead

since the policies did not make full use of many known

characteristics of data access pattern in embedded

applications. That is, their works focus on reducing power

consumption with an objective function. As a result, it yields

negative side effect in cache hit ratio. Our approach differs

from the existing works in that ours improve energy

consumption by reducing the write operations on NVM

without increasing any cache misses. Because this work

optimize placement of write intensive variables by

partitioning them from NVM, there is no side effect.

Specifically, data access information can be captured by

profiling, and based on such information write-intensive data

can be identified along with a function call graph. The

negative effect of a hybrid cache can be reduced by placing

such write-intensive data onto SPM. In experimental result,

the proposed technique can achieve 6% performance

improvement and 5% energy saving.

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 6 (2018) pp. 3610-3618

© Research India Publications. http://www.ripublication.com

3612

The rest of this paper is organized as follows. Section 2

introduces a background knowledge of the live variable

analysis. It is the major component of the proposed data

management technique for this hybrid cache memory

subsystem. Section 3 presents a detailed optimization process

to determine the variables placement. The experimental

results are presented in Section 4, and finally, the conclusion

is presented in Section 5.

BACKGROUND

Our technique is based on data flow analysis (DFA) which is

one of compiler program analysis techniques. DFA is a

technique for analyzing live range of each variable along with

various execution paths. The definition of various terms

related to LVA (Live Variable Analysis) are summarized as

follows.

Definitions

• The variable v is said to live at some point p of the

program, which means that the variable v is used at

least once during the program's execution after the

position of p.

• A variable v is dead at some point p in the program

means that the variable v is not used at the point p.

• If a basic block is called B (where the basic block is a

straight line code with no branches), the set of

variables defined in the basic block is denoted as

DEF (B). We denote DEF (B) as the set of variables

in which the variable values are computed and stored

in basic block B. If it is not necessary to mention

basic blocks in this work, DEF will be used. This is

the same for USE, IN, and OUT defined below.

• If a basic block is called B, then only those variables

that are not defined and used in B are called USE (B).

• If a basic block is called B, the set of living variables

at the entry of B is called IN (B).

• If a basic block is called B, the set of living variables

at the end of B (exit) is called OUT (B). The

relationship between IN and OUT is described in the

next section.

• LVA finds OUT (B) for every basic block B of a

target program. In conclusion, LVA aims to find out

information about a set of variables that must exist

for all basic blocks.

Live Variable Analysis

The algorithm that performs traditional LVA follows the DFA

(Data Flow Analysis) framework. Here is how the

components of the framework are defined in LVA.

• Flow values: I (B) is defined as IN (B) and O (B) is

OUT (B) as defined in the previous subsection. That

is a set of variables.

• Meet operator: A basic block in one of its

predecessors in a basic block, that is, a variable that

lives only in one node, must also live in its basic

block. Since it means a union operation between sets,

meet operator is a union operation. Let P be the

successor basic block of basic block B. IN(P) and

IN(Q) must be alive at the exit of B. Therefore, IN(P)

U IN(Q) ⊂ OUT(B). Conversely, variables

contained in OUT(B), that is, the variables that must

be alive at the exit of B. They must live at the

entrance of the basic block after B is executed. It is

because the variables have to live in every path from

definition to use. Therefore, all variables of OUT(B)

are included in either IN(P) or IN(Q), so OUT(B) ⊂

IN(P) U IN(Q). That is, OUT(B) = IN(P) U IN(Q).

Flow functions: it is a function that returns IN(B) by insertion

of OUT(B) because it is backward DFA format. Bf :

OUT(B) – DEF(B) U USE(B) = IN(B).

• Flow equations: it shows the relationship between

flow values.

OUT(B) = U INBofsuccessorseach ___ (S)

OUT(B) – DEF(B) U USE(B) = IN(B)

The LVA algorithm using the DFA framework is shown in

Algorithm 1.

Algorithm 1: live range analysis

Procedure Live_Range_Analysis

For each basic block BB do

IN(BB) = USE(BB)

End

While changes to any IN(BB) occur do

For each basic block BB in reverse Depth-First-

Search order do

OUT(BB) = U_all_successors_of_BB_IN(S)

IN(BB) = USE(BB) U { OUT(BB) – DEF(BB) }

End

End

End of procedure

Let's consider the principle of operation by looking at

Algorithm 1 and Figure 2. Figure 2 shows how the flow

equation is applied. It shows the process of collecting the INs

at the bottom and making the OUT, inserting the OUT into the

flow function, and then computing the IN again. A bold arrow

indicates the direction in which the information flows. If there

is a loop in the input code, the procedure is as follows. From

the bottom up, compute IN and OUT by visiting basic block

in reverse order of Depth-first Search (DFS). It is a repetition

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 6 (2018) pp. 3610-3618

© Research India Publications. http://www.ripublication.com

3613

of the process of computing OUT by IN of successors and

inserting OUT into flow function to make IN again. If there is

no loop in the input program, the algorithm ends with a single

scan (one complete run of ‘for’ loop shown in Algorithm 1).

Without loops, all basic blocks are affected only by their own

successors, so the computation in the reverse order of DFS

will be in order. However, if there is a loop, the basic block

that comes first in the DFS order affects OUT value of the

basic block that comes later. In this case, you will need to visit

the basic block again to apply the effect of the updated OUT.

For this reason, a while loop is needed in Algorithm 1, and

then it has been designed of an iterative algorithm.

Figure 2. Flow equation

THE PROPOSED TECHNIQUE

Figure 3. A motivation example

As shown in Figure 3, we use an example to describe a key

idea in the data partitioning and assignment techniques

proposed in this paper. It shows a requirement of the proposed

technique that can take advantage of NVM and avoid the

drawbacks of NVM in a hybrid cache architecture. Essentially,

it calculates the minimum memory access cost and the

corresponding optimal data allocation in the two caches are

determined.

All data corresponding to the currently running process

resides in the nonvolatile main memory, and now we need to

determine whether a copy of this data will be created in the

SPM or just copied from the HC (Hardware Controlled) cache

memory to allow the read/write accesses. At making the

decision, data that is frequently used and which is frequently

updated should reside in the SPM. When such data placed on

traditional cache, if a cache miss occurs in write operations,

the write cost is too high. Let see an example based on the

function call graph shown in Figure 3. In this graph, the

functions Func_{A, B, C, D} carry out the calculation on the

variables {A, B, C, D}. According to the program's function

call flow, the optimal decision can be provided by those

questions when/where/what. The question ‘when’ means the

time of transfer of data, and ‘where’ means a placement either

a SPM or a HC cache. The last question is what kind of data

should be copied to SPM. They are key factors in determining

the performance of a hybrid memory system. As shown in

Figure 3, all data in the NVMM is basically managed by the

traditional cache, through an efficient data selection

mechanism, the selected data must be copied to the SPM. A

dynamic method is used for SPM to obtain an optimal result,

which described later in this section. When CPU executes

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 6 (2018) pp. 3610-3618

© Research India Publications. http://www.ripublication.com

3614

read/write operations, the execution cost is determined by the

following parameters.

Table I. cost parameters

NVMM_write : the write cost of NVMM

NVMM_read : the read cost of NVMM

Cache_write : the write cost of traditional cache (with

LRU policy)

Cache_read : the read cost of traditional cache (with LRU

policy)

SPM_write : the write cost of SPM

SPM_read : the read cost of NVMM

MOVE_SPM_TO_NVMM : the cost of data transfer from

SPM to NVMM (6.213ns)

MOVE_NVMM_TO_SPM : the cost of data transfer from

NVMM to SPM (1.898ns)

MOVE_CACHE_TO_NVMM : the cost of data transfer

from CACHE to NVMM (6.213ns)

MOVE_NVMM_TO_CACHE : the cost of data transfer

from NVMM to CACHE (1.898ns)

Table II. Configuration of 45nm 16KB NVMM and SPM [17]

 Non-volatile

RAM (based on

STT-RAM)

Traditional cache SPM

Area(mm) 0.018 0.1488 0.093

Read latency (ns) 0.813 (hit)1.085,(miss)

5.941

1.085

Write latency (ns) 5.128 (hit)1.085,(miss)

7.026

1.085

Read energy (pJ) 6.516 32.9424 20.589

Write energy (pJ) 22.65 23.2016 14.501

Leakage (mW) 0.606 12.6656 7.916

Our technique analyses a target program building a function

call graph. The function call graph consists of functions

attached with its live data generated from LVA analyzer.

According to a function call graph, each node includes a

certain set of live data, and they are candidates of selection

procedures for HC cache and SPM placement. The proposed

technique analyzes the candidates read/write access frequency

according to their function call graph. Using such read/write

information of the candidates, our data placing procedures are

able to perform minimizing the cost function defined in

Definition 1.

Definition 1: Minimize(Cost) = 
)(_ FunctionsGraphCall


)(var Siablesi

NVMM_write(i) + NVMM_read(i) +

Cache_write(i) + Cache_read(i) + SPM_write(i) +

SPM_read(i) + MOVE_SPM_TO_NVMM(i) +

MOVE_NVMM_TO_SPM(i) +

MOVE_CACHE_TO_NVMM(i) +

MOVE_NVMM_TO_CACHE(i)

Table 1 shows the parameters needed to calculate the data

access cost for the hybrid memory system described in Figure

3. The terms, MOVE_NVMM_TO_SPM,

MOVE_CACHE_TO_NVMM, and

MOVE_NVMM_TO_CACHE, and MOVE_

SPM_TO_NVMM respectively mean that the cost of data

transfer from NVMM to SPM, the cost of data transfer from

CACHE to NVMM, the cost of data transfer from NVMM to

CACHE, the cost of data transfer from SPM to NVMM. Table

2 shows actual read/write latency and power consumption

figures for the 16-KB NVMM and SPM memory systems in

45nm technology. In this paper, we propose a new method to

improve performance and energy of the hybrid memory

system by using SPM to place write intensive data, to separate

the data from the NVMM, and to manage the other data by

HC cache. The proposed technique is possible to optimize a

key metric as either energy or performance. In our study, the

choice is easy to perform by reflecting parameters in Table 2.

Our technique first constructs a function call graph of a target

program to be analyzed, and then calculate the live range of

each piece of data used along each node (function) of the

graph. Live range is calculated by compiler static analysis

described in Algorithm 1, and the number of read/write of

each variable is summarized by profiling.

The objective function for optimizing the hybrid memory

system is the same as minimizing the function shown in

Definition 1. It determined an optimal data placement with

minimizing read/write cost and its movement of each variable

according to a function call graph. The final placement is

calculated by using an exhaustive search to obtain the optimal

result. For an example of a function call graph in Figure 3, it

is necessary that the placement of the variables A, B, C, D be

placed for each program execution step on the function call

graph. The object of this study is optimizing the hybrid

memory that uses NVMM as main memory and SPM as a part

of cache, so it is necessary to calculate a solution that selects

only data to be loaded on SPM in each execution step. In this

case, the search algorithm that calculates the minimum cost

based on the objective function is a depth-based exhaustive

search algorithm shown in Algorithm 2 and illustrated in

Figure 4.

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 6 (2018) pp. 3610-3618

© Research India Publications. http://www.ripublication.com

3615

Algorithm 2: Solution Search

Input : Data Set base_S, a graph K of all combinations

with elements of base_S

Output : Data placement opt_S

Exaustive Search

all elements K stored into a stack G

K.push(v) // vertex v

while K is not empty

v = K.pop()

if v is not labeled as visited

label v as visited

compute cost with v when it is stored in SPM

for all edges from v to w in K.adjacentEdges(v)

do

K.push(w)

 Opt_S = MIN(cost)

End

Figure 4. Exhaustive search with backtracking

For example, in the function call graph in Figure 3, let see the

number of read/write of each ABCD variable, and the cost

calculation as follows.

Table III. static/dynamic analysis results on the function call

graph in Figure 3

Func_A() : D (read 1, write1)

Func_B() : A (read 1, write 1), B (read 1, write 1), C (read 1,

write 1)

Func_C() : A (read 1, write 0), B (read 1, write 0), C (read 1,

write 0), D (read 1, write 1)

Func_D() : C (read 1, write 0), D (read 1, write 1)

Live Range Analysis Result:

D : A() – D()

C : B() – D()

B : B() – C()

A : B() – C()

In the case of NVMM-CACHE, all data places on a traditional

cache and NVMM.

Cost= NVMM_write(A,B,C,D) + NVMM_read(A,B,C,D) +

Cache_write(A,B,C,D) + Cache_read(A,B,C,D) +

MOVE_CACHE_TO_NVMM(A,B,C,D) +

MOVE_NVMM_TO_CACHE(A,B,C,D)

The access patterns of variables in the function call graph are

the same as A (): D, B (): A B C, C(): AB CD, D(): CD.

Assuming a cache that can hold two variables, the data

placement of the cache will be D A, B C, A B, C D, C D. It

results to a cache hit once for the final CD access, and all

previous accesses will be missed. Applying the actual

parameters to the cost function in Definition 1, it is as follows:

(with performance parameters with LRU policy).

Cost = Cost_A(0.813*2 + 5.128*1 + 2*1.085 + 2*1.085 +

2*6.213 + 2*1.898)

+ Cost_B(0.813*2 + 5.128*1 + 2*1.085 + 2*1.085

+ 2*6.213 + 2*1.898)

+ Cost_C(0.813*2 + 5.128*1 + 3*1.085 + 2*1.085

+ 2*6.213 + 2*1.898)

+ Cost_D(0.813*2 + 5.128*2 + 3*1.085 + 3*1.085

+ 2*6.213 + 2*1.898)

The access cost of each variable is computed by the access

type and access frequency of each variable analyzed along the

function call graph. The access type and frequency for each

variable are shown in Table III.

A: read 2 write 1, B: read 2 write 1, C: read 3 write 1, D: read

3 write 3 (only hit ‘CD’ last once).

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 6 (2018) pp. 3610-3618

© Research India Publications. http://www.ripublication.com

3616

The cost for each variable is calculated to A: 25.146, B:

25.146, C: 26.231, and D: 31.359. So in the example in Figure

3, the total cost of the memory system results to 107.882 ns.

Assuming that all variables are placed in the NVMM-SPM

(performance optimization with SPM only), the total cost is

calculated to 44.184 ns. The reason why the performance of

HC cache only system provides more than twice is mainly due

to high miss rate with data streaming application. However,

simply increasing the size of the cache does not necessarily to

improve performance result 107.882ns. Since the cache hit

ratio is already over 95% in case of non-streaming application.

Thus, there is a technique required to effectively utilize small

SPM space to provide an optimum performance with data

streaming application.

Cost= Cost_A (1.085 *2 + 1.085 *1 + 0.813 + 5.128)

+ Cost_B (1.085 *2 + 1.085 *1 + 0.813 + 5.128)

+ Cost_C (1.085 *3 + 1.085 *1 + 0.813 + 5.128)

+ Cost_D (1.085 *3 + 1.085 *3 + 0.813 + 5.128)

In this case, when a cache miss occurs, it is positive for the

overall system performance to place such data as D which

yields a large write overhead in the NVM, thus firstly placing

into SPM. If variable ‘C’ has frequent read, even if a miss

occurs with ‘C’, NVM provides low cost reload to the cache.

Thus, it is preferable on the viewpoint of overall performance

to place it into a hardware controlled cache. Using the

exhaustive search technique, the optimal data placement is

determined by the traditional cache {A C}, SPM {B D}. As a

result, cache misses are eliminated, and an optimum

performance (44.184 ns) is obtained.

The solution search algorithm finds the minimum cost by

calculating the number of all cases to place each variable in

SPM space and HC cache. First, it builds a search tree, and

stores at each node the maximum performance (or energy)

gain and the minimum gain on the objective function for this

problem instance. The search scheme repeatedly (1) selects an

unprocessed case of combinations with variables’ placement,

(2) processes the placement and then creates its other

combinations as candidates of solution, and (3) propagates

new max and min values through the tree and uses these

values to select the next node. It performs this sequence of

three stages until the search tree contains no more

unprocessed placement combinations. The detailed execution

of the three major steps is following.

The first step is to find the node to process next. The search

algorithm selects a leaf placement by descending the search

tree, starting at the root and taking the child at unobserved

candidate solutions. Our implementation orders the child from

left to right so that their values are non-decreasing with a

priority queue.

The second step is to process and expand the node. For each

of these unobserved nodes, maximum and minimum

performance (or energy) gain on its objective function is

obtained, and the best unobserved placement is chosen to

branch on. The node is created and then processed and

expanded in the same way. At each step, the set of nodes

contributing to the maximum performance gain is stored to a

solution set.

The third step is to propagate the new gain and prune the tree.

Starting at the nodes just created and working up the tree to

the root, the value of the maximum gain and the minimum

gain are updated for each node.

As this stage assigns and reassigns gain, it checks to see if any

node has one child whose maximum gain does not exceed the

minimum gain of the other child. In such a case the solution of

maximum can be no better than that of the minimum, so the

node branch of maximum and all its descendants are removed

from the tree. Finally, this search procedure generates a data

placement to minimize the objective function as an optimal

solution.

EXPERIMENTAL RESULTS

The proposed technique is implemented using LLVM [18], an

open source compiler infrastructure. The LLVM-based

compiler compiles some benchmark codes to generate an

executable file and evaluates the optimized code using GEM5

simulator. In this experiment, the optimized code is called

OPG (Optimized Group), and the original code will be

referred to as ORG (Original Group). The OPG code is

compiled by the LLVM compiler to improve the negative

impact of write operations by providing data load code and

write-driven data best fit in SPM / cache and optimizing

variable placement. Benchmark programs and input files were

mainly selected from the LLVM test suites used in some

industry codes [19]. By using profiling, we were able to

obtain the characteristics of a benchmark program, such as the

frequency of accesses to a benchmark program. For the

experiment evaluation, we used simulator setup with cache

management strategy of [21]. The simulator targets one-level

data cache on a single core processor. Cache parameters and

memory parameters are taken from the modified CACTI [22].

The results of write-intensive variables’ partitioning are

illustrated in Figure 5. It shows the comparison of traditional

data placement techniques using STT-RAM. The latency can

be observed to be reduced or increased by a slight difference.

Figure 6 illustrates energy consumption. The ORG default

result is normalized to 1 and the resulting value of the OPG is

shown as reduced from the baseline.

The proposed technique could reduce write accesses to

NVMM. As a result, total latency can be improved by 6%.

Therefore, it is promising that the proposed technique can

improve the efficiency of the hybrid cache memory

subsystems. Figure 6 shows that the overall energy saving

result corresponding to the reduction of cache misses. As

shown in the Figure, the proposed technique can achieve 5%

energy saving by effective data rearrangement for the hybrid

cache architecture.

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 6 (2018) pp. 3610-3618

© Research India Publications. http://www.ripublication.com

3617

Figure 5. Result of total latency of write accesses

Figure 6. Result of the energy consumption

CONCLUSIONS

In this study, we introduce a technique that uses a compiler-

based approach to improve energy consumption by

rearranging variables in main memory space for SPM based

the hybrid cache. To that end, we present a data flow based

live range analysis technique, and search technique uses the

static/dynamic analysis to minimize the cost to efficiently

utilize a hybrid cache architecture. Specifically, traversing

function call graph, rearrangement of local variables (stack

data) is performed for each function, in order to maximize the

benefits of the hybrid cache structure. The variables’

placement are determined by the variables’ live range and

read/write frequency. In order to compensate for the

drawbacks of NVM with write operations, a hybrid memory

system has been proposed with a scratchpad memory (SPM)

component. By partitioning write intensive data onto SPM, it

can provide a high performance memory system with keeping

NVM advantages, since SPM performs a write operation at

high speed and low energy consumption. The experiment

shows that the proposed technique is able to improve energy

consumption 5% and execution time 6% in average.

ACKNOWLEDGMENTS

This research was supported by Unmanned Vehicles

Advanced Core Technology Research and Development

Program through the National Research Foundation of

Korea(NRF), Unmanned Vehicle Advanced Research

Center(UVARC) funded by the Ministry of Science, ICT and

Future Planning, the Republic of Korea

(2016M1B3A1A03937725).

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 6 (2018) pp. 3610-3618

© Research India Publications. http://www.ripublication.com

3618

REFERENCES AND NOTES

[1] P. Zhou, B. Zhao, J. Yang, and Y. Zhang, “A durable

and energy efficient main memory using phase change

memory technology,” in Proc. 36th Annu. Int. Symp.

Comput. Arch., 2009, pp. 14–23.

[2] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger,

“Architecting phase change memory as a scalable

DRAM alternative,” in Proc. 36th Annu. Int. Symp.

Comput. Arch., 2009, pp. 2–13.

[3] L. Shi, C. J. Xue, J. Hu, W.-C. Tseng, and E. H.-M.

Sha, “Write activity reduction on flash main memory

via smart victim cache,” in Proc. 20th Symp. Great

Lakes Symp. VLSI, 2010, pp. 91–94.

[4] W.-C. Tseng, C. J. Xue, Q. Zhuge, J. Hu, and E. H.-M.

Sha, “Optimal scheduling to minimize non-volatile

memory access time with hardware cache,” in Proc.

18th IEEE/IFIP VLSI Syst. Chip Conf., Sep. 2010, pp.

131–136.

[5] J. Hu, C. J. Xue, W.-C. Tseng, Q. Zhuge, and E. H.-M.

Sha, “Minimizing write activities to non-volatile

memory via scheduling and recomputation,” in Proc.

8th IEEE Symp. Appl. Specific Process., Jun. 2010, pp.

7–12.

[6] J. Hu, C. J. Xue, W.-C. Tseng, Y. He, M. Qiu, and E.

H.-M. Sha, “Reducing write activities on non-volatile

memories in embedded cmps via data migration and

recomputation,” in Proc. Design Autom. Conf., 2010,

pp. 350–355.

[7] J. Hu, C. J. Xue, Q. Zhuge, W.-C. Tseng, and E. H.-M.

Sha, “Toward energy efficient hybrid on-chip scratch

pad memory with nonvolatile memory,” in Proc.

Design Autom. Test Eur. Conf., 2011, pp. 136–141.

[8] J. Hu, W.-C. Tseng, C. Xue, Q. Zhuge, Y. Zhao, and

E.-M. Sha, “Write activity minimization for nonvolatile

main memory via scheduling and recomputation,”

IEEE Trans. Comput.-Aided Design Integr. Circuits

Syst., vol. 30, no. 4, pp. 584–592, Apr. 2011.

[9] C. J. Xue, Y. Zhang, Y. Chen, G. Sun, J. J. Yang, and

H. Li, “Emerging non-volatile memories: Opportunities

and challenges,” in Proc. 9th Int. Conf. Hardw./Softw.

Codesign Syst. Synth., Oct. 2011, pp. 325–334.

[10] T. Liu, Y. Zhao, C. J. Xue, and M. Li, “Power-aware

variable partitioning for DSPs with hybrid PRAM and

DRAM main memory,” in Proc. Design Autom. Conf.,

2011, pp. 405–410.

[11] J. Li, L. Shi, C. J. Xue, C. Yang, and Y. Xu,

“Exploiting set-level write non-uniformity for energy-

efficient NVM-based hybrid cache,” in Proc.

ESTImedia, 2011, pp. 19–28.

[12] Y. Huang, T. Liu, and C. J. Xue, “Register allocation

for write activity minimization on non-volatile main

memory,” in Proc. 16th Asia South Pacific Design

Autom. Conf., 2011, pp. 129–134.

[13] P. Mangalagiri, K. Sarpatwari, A. Yanamandra, V.

Narayanan, Y. Xie, M. J. Irwin, and O. A. Karim, “A

low-power phase change memory based hybrid cache

architecture,” in Proc. 20th Symp. Great Lakes Symp.

VLSI, 2008, pp. 395–398.

[14] X. Dong, X. Wu, G. Sun, Y. Xie, H. Li, and Y. Chen,

“Circuit and microarchitecture evaluation of 3D

stacking magnetic RAM (MRAM) as a universal

memory replacement,” in Proc. 45th Annu. Design

Autom. Conf., 2008, pp. 554–559.

[15] Y. Joo, D. Niu, X. Dong, G. Sun, N. Chang, and Y.

Xie, “Energyand endurance-aware design of phase

change memory caches,” in Proc. Design Autom. Test

Eur. Conf., 2010, pp. 136–141.

[16] X. Wu, J. Li, L. Zhang, E. Speight, R. Rajamony, and

Y. Xie, “Hybrid cache architecture with disparate

memory technologies,” in Proc. 36th Annu. Int. Symp.

Comput. Arch., 2009, pp. 34–45.

[17] Peng Wang, Guangyu Sun, Tao Wang, Yuan Xie, Jason

Cong, “Designing scratchpad memory architecture with

emerging sttram memory technologies”, IEEE

International Symposium on Circuits and Systems
(ISCAS), 2013.

[18] Lattner, C., Adve, V., “LLVM: A compilation

framework for lifelong program analysis &

transformation”, In Proceedings of the International

Symposium on Code Generation and Optimization,

2004, 75-86.

[19] Guthaus, M., Ringenberg, J., Ernst, D., Austin, T.,

Mudge, T., Brown, R., “Mibench: A free, commercially

representative embedded benchmark suite”, IEEE

International Workshop on Workload Characterization,

2001, 3-14

[20] Luk, C.-K., Cohn, R., Muth, R., Patil, H., Klauser, A.,

Lowney, G., Wallace, S., Reddi, V.J., Hazelwood. K.,

“Pin: building customized program analysis tools with

dynamic instrumentation”, In Proceedings of the ACM

SIGPLAN conference on Programming language

design and implementation, 2005, 190-200.

[21] Li, J., Xue, C., Xu, Y., “Stt-ram based energy-

efficiency hybrid cache for cmps”, IEEE/IFIP 19th

International Conference on VLSI and System-on-

Chip, 2011, 31-36.

[22] Muralimanohar, N., Balasubramonian, R., Jouppi, N.,

“Optimizing nuca organizations and wiring alternatives

for large caches with cacti 6.0”, In Proceedings of the

40th Annual IEEE/ACM International Symposium on

Microarchitecture, MICRO 40, 2007, 3-14.

