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Abstract:  

Future flight control devices will be designed with more 

application-specific features than traditional designs. For an 

instance, devices mounted on shoes can provide various 

information by analyzing life pattern, and wrist watch devices 

are becoming not only information providing but also health 

care. These various drone/mobile devices are loaded with an 

optimum memory system for their ability to perform such 

computations. Battery capacity is determined by required 

capacity of memory system, which consumes a large portion 

of power. The size of a memory system and battery affects 

such device size, and then it directly links to success of the 

product in its market. Therefore, the optimization process 

mainly focuses on power consumption and performance at the 

design step.  

The size of a memory system is usually occupied upto 60% on 

a chip space and its power consumption is proportional to the 

size. Especially, as the microfabrication process deepens, 

leakage current increases exponentially in system on a chip. 

This is called the power wall instead of the traditional 

memory wall. We are focused on a hybrid memory system 

using nonvolatile and scratchpad memory components to 

solve the power wall problem. Non-volatile memories have a 

small size (high density) and a relatively low power 

consumption, as well as consuming nearly zero leakage in a 

chip. Therefore, it is considered as a substitute for the 

traditional memory subsystem to the next generation high 

performance devices. In this paper, we propose a data 

management technique that can efficiently utilize the hybrid 

memory consisting of non-volatile memory and the scratch 

pad memory components. The proposed scheme overcomes 

the nonvolatile memory write endurance constraint and 

relatively slow write speed by using scratch pads and takes 

full advantage of nonvolatile low power and performance 

advantages. Using this study, it is possible to construct a 

memory subsystem optimized for a low power perspective for 

future high performance devices. Therefore, the proposed 

technique improves performance and energy consumption of 

the hybrid memory architecture. 

Keywords: cache; memory subsystem; energy consumption; 

drone; flight control computer 

 

INTRODUCTION 

DRAM is the main memory device in which real processes 

perform tasks. In the past decades, the memory capacity has 

been expanded over 30 years at a rate of about 100 times per 

10 years. Along with Moore's Law, which represents an 

increase in processor speed, it was the pillar that sustained IT 

technology development. However, 4 to 5 years ago, DRAM 

manufacturing technology was expected to be very difficult to 

develop in nano-level micro-processing under 30nm. When a 

capacitor of DRAM is going to store data, the capacitor needs 

to have 20 femto farads capacitance as the minimum. 

However, the capacitor cannot have upto 20 femto farads 

under 30nm technology, due to the capacitor’s volume. There 

are several solutions to solve this capacitance problem by 

using high cost materials like white gold. If it chooses the 

white gold, the price competitiveness of DRAM is worser 

because it leads to the highest cost as a mobile devices’ 

component. As a solution to this deepening microfabrication 

process, many companies have chosen nonvolatile memory 

technology, since nonvolatile memory provides higher 

density, lower power consumption, zero leakage power, and 

the same performance compared with DRAM.  

Few years ago, researchers expected that the next-generation 

memory technologies such as non-volatile memory would 

replace traditional DRAMs to solve a limitation of deepening 

microfabrication process. However, the expectation of 

fabrication technology is not true, because it already 

commercialize at 14nm level product and commercialization 

of 10nm or less technology will be expected. Therefore, it 

seems that 'complementary' rather than 'replacement' will be 

commercialized as a type of hybrid memories. That is, they 

are developed in the form of complementary hybrid 

memories, but nonvolatile memories. 

Few leading industries are already accelerating the 

development of the next generation memory technologies that 

can enhance the performance of traditional memories such as 

DRAM and NAND flash and compensate for their 

shortcomings. It is not an approach of developing a new 

product to create a market but a complementary approach to 

meet market demands. If it succeeds in commercialization, it 

will quickly become a new engine for growth market. The 

next-generation memory technology is focused on 

complementing performance rather than replacing DRAM, 

SRAM, and NAND flash, which are already well-positioned 

in the market. Major candidates of the next generation 

memory technologies are 3D X-Point, ReRAM (Resistive 

Memory), P-RAM (Phase Change Memory) and STT-MRAM 

(Spin Injection Magnetization Memory). In this work, we call 

them NVM (Non-Volatile Memories). Each memory 

technology has different advantages and disadvantages. 

Because STT-MRAM is faster than DRAM, it can be used as 

an on-chip memory or the last-level cache, but due to its large 

cell size, it is not an alternative solution of DRAM. PCM and 

ReRAM have a higher degree of density than DRAM, but 
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slow access speed. Thus, it is not easy to replace DRAM with 

the single technology. 3D X-Point memory technology was 

recently announced by Intel and Micron. It is known that the 

speed can be increased up to 1000 times as compared with the 

NAND flash. It is expected to replace SSD in the near future. 

In this work, we focuses on a hybrid cache memory 

subsystem, which compensates for the drawbacks of NVM 

and DRAM, and helps them to share their advantages. As 

mentioned above, NVM is a memory technology that enables 

to fully utilize deepen microfabrication with zero leakage 

power, high density, low power consumption and non-

volatility. However, current implementations of this 

promising alternative memory suffer from an important issue 

that its cells require relatively large energy and access latency 

when performing a write operation. It limits the ability to meet 

the requirements for the memory access latency in high 

performance systems. That is, SRAM cell is much more 

efficient for performing write operations with improved power 

consumption, performance and endurance compared to NVM 

cells, even though the cell size is four times lager. In order to 

compensate for the drawbacks of NVM with write operations, 

a hybrid memory system has been proposed with a scratchpad 

memory (SPM) component. By partitioning write intensive 

data onto SPM, it can provide a high performance memory 

system with keeping NVM advantages, since SPM performs a 

write operation at high speed and low energy consumption. In 

this paper, we explore a novel hybrid cache architecture 

consisting of SPM and traditional cache in NVM main 

memories, and its management method.  

 

Figure 1. Hybrid cache architecture 

 

Several previous works [1], [2], [3-12] confirm that NVM 

main memory can achieve significant energy savings with 

comparable performance to that of DRAM. Some research 

using NVMs to build cache hierarchies also show that NVM 

has advantages over SRAM when there is a certain 

management scheme. In order to obtain the advantage of these 

two types of RAMs, some works compose a set of caches that 

are configured with a small number of SRAM lines and many 

NVM (STT-RAM) lines in a hybrid manner. Usually, SPM is 

responsible to handle the frequently recorded data blocks that 

constitute a major part of the write operations in an 

application while NVM hides the read access latency by 

increasing the capacity of this hybrid cache. In this work, 

main memory consists of NVM and its address space 

controlled by traditional cache. A shown in Figure 1, the 

software controlled SPM is used as part of the main memory 

address space. And, it is a part of a software controlled data 

cache. The design of this hybrid cache memory subsystem is 

popular with low power mobile system such as IBM CELL 

architecture, NVIDIA GPUs, ARM Cortex-M and Cortex-R, 

etc. The detailed structure and its operation procedure is 

beyond the scope of this paper. 

To the best of our knowledge, there is no existing work about 

a hybrid scratchpad memory cache with a NVM main memory 

(which called NVMM). With this hybrid scratchpad memory 

architecture, we can achieve many benefits, such as high 

density, non-volatility, and ultralow leakage power, promised 

by NVMs. To that end, we propose an efficient cache 

management technique for the hybrid memory subsystem that 

identifies write-intensive data blocks and rearranges the 

location of such data blocks for placing to SPM. Other data 

can be categorized as less-write or read-intensive data, they 

should be placed in NVM with the hardware cache.  

A number of similar studies have been proposed to alleviate 

negative effects of the hybrid cache. On architecture design 

point of view, various Non-Volatile Memories (NVMs) have 

also been proposed to be used in hybrid cache. Mangalagiri 

[13] proposed PCM based a hybrid cache architecture. Dong 

[14] evaluated 3D MRAM architecture as an on chip cache. 

Joo [15] presented energy/endurance aware PCM based a 

cache design. In these works, they all considered NVM as a 

cache for adding current microarchitectures, and naturally 

they imply that it is technically feasible to integrate NVMs 

with SRAM into an onchip memory.  

In system management point of view, there are a number of 

similar studies to minimize the drawback of NVM which 

caused by write operations. Reducing the number of write 

operations to NVM (like STT-RAM) can lower the negative 

effect. Thus, a data allocation technique is essential to reduce 

the number of write operations on such NVMs. Studies [16] 

show that hybrid caches with proper data rearrangement 

policies consumes less power than traditional cache. However, 

the cache rearrangement policies leads too much overhead 

since the policies did not make full use of many known 

characteristics of data access pattern in embedded 

applications. That is, their works focus on reducing power 

consumption with an objective function. As a result, it yields 

negative side effect in cache hit ratio. Our approach differs 

from the existing works in that ours improve energy 

consumption by reducing the write operations on NVM 

without increasing any cache misses. Because this work 

optimize placement of write intensive variables by 

partitioning them from NVM, there is no side effect. 

Specifically, data access information can be captured by 

profiling, and based on such information write-intensive data 

can be identified along with a function call graph. The 

negative effect of a hybrid cache can be reduced by placing 

such write-intensive data onto SPM. In experimental result, 

the proposed technique can achieve 6% performance 

improvement and 5% energy saving.  
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The rest of this paper is organized as follows. Section 2 

introduces a background knowledge of the live variable 

analysis. It is the major component of the proposed data 

management technique for this hybrid cache memory 

subsystem. Section 3 presents a detailed optimization process 

to determine the variables placement. The experimental 

results are presented in Section 4, and finally, the conclusion 

is presented in Section 5. 

 

BACKGROUND 

Our technique is based on data flow analysis (DFA) which is 

one of compiler program analysis techniques. DFA is a 

technique for analyzing live range of each variable along with 

various execution paths. The definition of various terms 

related to LVA (Live Variable Analysis) are summarized as 

follows.  

 

Definitions 

• The variable v is said to live at some point p of the 

program, which means that the variable v is used at 

least once during the program's execution after the 

position of p. 

• A variable v is dead at some point p in the program 

means that the variable v is not used at the point p. 

• If a basic block is called B (where the basic block is a 

straight line code with no branches), the set of 

variables defined in the basic block is denoted as 

DEF (B). We denote DEF (B) as the set of variables 

in which the variable values are computed and stored 

in basic block B. If it is not necessary to mention 

basic blocks in this work, DEF will be used. This is 

the same for USE, IN, and OUT defined below. 

• If a basic block is called B, then only those variables 

that are not defined and used in B are called USE (B). 

• If a basic block is called B, the set of living variables 

at the entry of B is called IN (B). 

• If a basic block is called B, the set of living variables 

at the end of B (exit) is called OUT (B). The 

relationship between IN and OUT is described in the 

next section. 

• LVA finds OUT (B) for every basic block B of a 

target program. In conclusion, LVA aims to find out 

information about a set of variables that must exist 

for all basic blocks. 

 

Live Variable Analysis 

The algorithm that performs traditional LVA follows the DFA 

(Data Flow Analysis) framework. Here is how the 

components of the framework are defined in LVA. 

• Flow values: I (B) is defined as IN (B) and O (B) is 

OUT (B) as defined in the previous subsection. That 

is a set of variables. 

• Meet operator: A basic block in one of its 

predecessors in a basic block, that is, a variable that 

lives only in one node, must also live in its basic 

block. Since it means a union operation between sets, 

meet operator is a union operation. Let P be the 

successor basic block of basic block B. IN(P) and 

IN(Q) must be alive at the exit of B. Therefore, IN(P) 

U IN(Q) ⊂ OUT(B). Conversely, variables 

contained in OUT(B), that is, the variables that must 

be alive at the exit of B. They must live at the 

entrance of the basic block after B is executed. It is 

because the variables have to live in every path from 

definition to use. Therefore, all variables of OUT(B) 

are included in either IN(P) or IN(Q), so OUT(B) ⊂ 

IN(P) U IN(Q). That is, OUT(B) = IN(P) U IN(Q). 

Flow functions: it is a function that returns IN(B) by insertion 

of OUT(B) because it is backward DFA format. Bf : 

OUT(B) – DEF(B) U USE(B) = IN(B). 

• Flow equations: it shows the relationship between 

flow values. 

OUT(B) = U INBofsuccessorseach ___ (S) 

OUT(B) – DEF(B) U USE(B) = IN(B) 

The LVA algorithm using the DFA framework is shown in 

Algorithm 1. 

 

Algorithm 1: live range analysis 

Procedure Live_Range_Analysis 

For each basic block BB do 

IN(BB) = USE(BB) 

End 

While changes to any IN(BB) occur do 

For each basic block BB in reverse Depth-First-

Search order do 

OUT(BB) = U_all_successors_of_BB_IN(S) 

IN(BB) = USE(BB) U { OUT(BB) – DEF(BB) } 

End 

End 

End of procedure 

Let's consider the principle of operation by looking at 

Algorithm 1 and Figure 2. Figure 2 shows how the flow 

equation is applied. It shows the process of collecting the INs 

at the bottom and making the OUT, inserting the OUT into the 

flow function, and then computing the IN again. A bold arrow 

indicates the direction in which the information flows. If there 

is a loop in the input code, the procedure is as follows. From 

the bottom up, compute IN and OUT by visiting basic block 

in reverse order of Depth-first Search (DFS). It is a repetition 
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of the process of computing OUT by IN of successors and 

inserting OUT into flow function to make IN again. If there is 

no loop in the input program, the algorithm ends with a single 

scan (one complete run of ‘for’ loop shown in Algorithm 1). 

Without loops, all basic blocks are affected only by their own 

successors, so the computation in the reverse order of DFS 

will be in order. However, if there is a loop, the basic block 

that comes first in the DFS order affects OUT value of the 

basic block that comes later. In this case, you will need to visit 

the basic block again to apply the effect of the updated OUT. 

For this reason, a while loop is needed in Algorithm 1, and 

then it has been designed of an iterative algorithm.  

 

 

 

Figure 2. Flow equation 

 

THE PROPOSED TECHNIQUE 

 

Figure 3. A motivation example 

 

As shown in Figure 3, we use an example to describe a key 

idea in the data partitioning and assignment techniques 

proposed in this paper. It shows a requirement of the proposed 

technique that can take advantage of NVM and avoid the 

drawbacks of NVM in a hybrid cache architecture. Essentially, 

it calculates the minimum memory access cost and the 

corresponding optimal data allocation in the two caches are 

determined. 

All data corresponding to the currently running process 

resides in the nonvolatile main memory, and now we need to 

determine whether a copy of this data will be created in the 

SPM or just copied from the HC (Hardware Controlled) cache 

memory to allow the read/write accesses. At making the 

decision, data that is frequently used and which is frequently 

updated should reside in the SPM. When such data placed on 

traditional cache, if a cache miss occurs in write operations, 

the write cost is too high. Let see an example based on the 

function call graph shown in Figure 3. In this graph, the 

functions Func_{A, B, C, D} carry out the calculation on the 

variables {A, B, C, D}. According to the program's function 

call flow, the optimal decision can be provided by those 

questions when/where/what. The question ‘when’ means the 

time of transfer of data, and ‘where’ means a placement either 

a SPM or a HC cache. The last question is what kind of data 

should be copied to SPM. They are key factors in determining 

the performance of a hybrid memory system. As shown in 

Figure 3, all data in the NVMM is basically managed by the 

traditional cache, through an efficient data selection 

mechanism, the selected data must be copied to the SPM. A 

dynamic method is used for SPM to obtain an optimal result, 

which described later in this section. When CPU executes 



International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 6 (2018) pp. 3610-3618 

© Research India Publications.  http://www.ripublication.com 

3614 

read/write operations, the execution cost is determined by the 

following parameters. 

 

Table I. cost parameters 

 

NVMM_write : the write cost of NVMM 

NVMM_read : the read cost of NVMM 

Cache_write : the write cost of traditional cache (with 

LRU policy) 

Cache_read : the read cost of traditional cache (with LRU 

policy) 

SPM_write : the write cost of SPM 

SPM_read : the read cost of NVMM 

MOVE_SPM_TO_NVMM : the cost of data transfer from 

SPM to NVMM (6.213ns) 

MOVE_NVMM_TO_SPM : the cost of data transfer from 

NVMM to SPM (1.898ns) 

MOVE_CACHE_TO_NVMM : the cost of data transfer 

from CACHE to NVMM (6.213ns) 

MOVE_NVMM_TO_CACHE : the cost of data transfer 

from NVMM to CACHE (1.898ns) 

 

 

Table II. Configuration of 45nm 16KB NVMM and SPM [17] 

 Non-volatile 

RAM (based on 

STT-RAM) 

Traditional cache SPM 

Area(mm) 0.018 0.1488 0.093 

Read latency (ns) 0.813 (hit)1.085,(miss)

5.941 

1.085 

Write latency (ns) 5.128 (hit)1.085,(miss)

7.026 

1.085 

Read energy (pJ) 6.516 32.9424 20.589 

Write energy (pJ) 22.65 23.2016 14.501 

Leakage (mW) 0.606 12.6656 7.916 

 

Our technique analyses a target program building a function 

call graph. The function call graph consists of functions 

attached with its live data generated from LVA analyzer. 

According to a function call graph, each node includes a 

certain set of live data, and they are candidates of selection 

procedures for HC cache and SPM placement. The proposed 

technique analyzes the candidates read/write access frequency 

according to their function call graph. Using such read/write 

information of the candidates, our data placing procedures are 

able to perform minimizing the cost function defined in 

Definition 1. 

 

Definition 1: Minimize(Cost) = 
)(_ FunctionsGraphCall

 


 )(var Siablesi

NVMM_write(i) + NVMM_read(i) + 

Cache_write(i) + Cache_read(i) + SPM_write(i) + 

SPM_read(i) + MOVE_SPM_TO_NVMM(i) + 

MOVE_NVMM_TO_SPM(i) + 

MOVE_CACHE_TO_NVMM(i) +  

MOVE_NVMM_TO_CACHE(i) 

 

Table 1 shows the parameters needed to calculate the data 

access cost for the hybrid memory system described in Figure 

3. The terms, MOVE_NVMM_TO_SPM, 

MOVE_CACHE_TO_NVMM, and 

MOVE_NVMM_TO_CACHE, and MOVE_ 

SPM_TO_NVMM respectively mean that the cost of data 

transfer from NVMM to SPM, the cost of data transfer from 

CACHE to NVMM, the cost of data transfer from NVMM to 

CACHE, the cost of data transfer from SPM to NVMM. Table 

2 shows actual read/write latency and power consumption 

figures for the 16-KB NVMM and SPM memory systems in 

45nm technology. In this paper, we propose a new method to 

improve performance and energy of the hybrid memory 

system by using SPM to place write intensive data, to separate 

the data from the NVMM, and to manage the other data by 

HC cache. The proposed technique is possible to optimize a 

key metric as either energy or performance. In our study, the 

choice is easy to perform by reflecting parameters in Table 2. 

Our technique first constructs a function call graph of a target 

program to be analyzed, and then calculate the live range of 

each piece of data used along each node (function) of the 

graph. Live range is calculated by compiler static analysis 

described in Algorithm 1, and the number of read/write of 

each variable is summarized by profiling. 

The objective function for optimizing the hybrid memory 

system is the same as minimizing the function shown in 

Definition 1. It determined an optimal data placement with 

minimizing read/write cost and its movement of each variable 

according to a function call graph. The final placement is 

calculated by using an exhaustive search to obtain the optimal 

result. For an example of a function call graph in Figure 3, it 

is necessary that the placement of the variables A, B, C, D be 

placed for each program execution step on the function call 

graph. The object of this study is optimizing the hybrid 

memory that uses NVMM as main memory and SPM as a part 

of cache, so it is necessary to calculate a solution that selects 

only data to be loaded on SPM in each execution step. In this 

case, the search algorithm that calculates the minimum cost 

based on the objective function is a depth-based exhaustive 

search algorithm shown in Algorithm 2 and illustrated in 

Figure 4. 
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Algorithm 2: Solution Search 

Input : Data Set base_S, a graph K of all combinations 

with elements of base_S 

Output : Data placement opt_S 

 

Exaustive Search 

all elements K stored into a stack G 

K.push(v) // vertex v 

while K is not empty 

v = K.pop() 

if v is not labeled as visited 

label v as visited 

compute cost with v when it is stored in SPM 

for all edges from v to w in K.adjacentEdges(v) 

do  

K.push(w) 

     Opt_S = MIN(cost) 

End  

 

 

Figure 4. Exhaustive search with backtracking 

 

For example, in the function call graph in Figure 3, let see the 

number of read/write of each ABCD variable, and the cost 

calculation as follows. 

Table III. static/dynamic analysis results on the function call 

graph in Figure 3 

 

Func_A() : D ( read 1, write1) 

Func_B() : A (read 1, write 1), B (read 1, write 1), C (read 1, 

write 1) 

Func_C() : A (read 1, write 0), B (read 1, write 0), C (read 1, 

write 0), D (read 1, write 1) 

Func_D() : C (read 1, write 0), D (read 1, write 1) 

 

Live Range Analysis Result: 

D : A() – D() 

C : B() – D() 

B : B() – C() 

A : B() – C() 

 

 

In the case of NVMM-CACHE, all data places on a traditional 

cache and NVMM. 

Cost= NVMM_write(A,B,C,D) + NVMM_read(A,B,C,D) + 

Cache_write(A,B,C,D) + Cache_read(A,B,C,D) + 

MOVE_CACHE_TO_NVMM(A,B,C,D) +  

MOVE_NVMM_TO_CACHE(A,B,C,D) 

The access patterns of variables in the function call graph are 

the same as A (): D, B (): A B C, C(): AB CD, D(): CD. 

Assuming a cache that can hold two variables, the data 

placement of the cache will be D A, B C, A B, C D, C D. It 

results to a cache hit once for the final CD access, and all 

previous accesses will be missed. Applying the actual 

parameters to the cost function in Definition 1, it is as follows: 

(with performance parameters with LRU policy). 

 

Cost = Cost_A(0.813*2 + 5.128*1 + 2*1.085 + 2*1.085 + 

2*6.213 + 2*1.898) 

+ Cost_B(0.813*2 + 5.128*1 + 2*1.085 + 2*1.085 

+ 2*6.213 + 2*1.898) 

+ Cost_C(0.813*2 + 5.128*1 + 3*1.085 + 2*1.085 

+ 2*6.213 + 2*1.898) 

+ Cost_D(0.813*2 + 5.128*2 + 3*1.085 + 3*1.085 

+ 2*6.213 + 2*1.898) 

 

The access cost of each variable is computed by the access 

type and access frequency of each variable analyzed along the 

function call graph. The access type and frequency for each 

variable are shown in Table III.  

A: read 2 write 1, B: read 2 write 1, C: read 3 write 1, D: read 

3 write 3 (only hit ‘CD’ last once). 
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The cost for each variable is calculated to A: 25.146, B: 

25.146, C: 26.231, and D: 31.359. So in the example in Figure 

3, the total cost of the memory system results to 107.882 ns. 

 

Assuming that all variables are placed in the NVMM-SPM 

(performance optimization with SPM only), the total cost is 

calculated to 44.184 ns. The reason why the performance of 

HC cache only system provides more than twice is mainly due 

to high miss rate with data streaming application. However, 

simply increasing the size of the cache does not necessarily to 

improve performance result 107.882ns. Since the cache hit 

ratio is already over 95% in case of non-streaming application. 

Thus, there is a technique required to effectively utilize small 

SPM space to provide an optimum performance with data 

streaming application. 

 

Cost= Cost_A (1.085 *2 + 1.085 *1 + 0.813 + 5.128) 

+  Cost_B (1.085 *2 + 1.085 *1 + 0.813 + 5.128) 

+ Cost_C (1.085 *3 + 1.085 *1 + 0.813 + 5.128) 

+ Cost_D (1.085 *3 + 1.085 *3 + 0.813 + 5.128) 

 

In this case, when a cache miss occurs, it is positive for the 

overall system performance to place such data as D which 

yields a large write overhead in the NVM, thus firstly placing 

into SPM. If variable ‘C’ has frequent read, even if a miss 

occurs with ‘C’, NVM provides low cost reload to the cache. 

Thus, it is preferable on the viewpoint of overall performance 

to place it into a hardware controlled cache. Using the 

exhaustive search technique, the optimal data placement is 

determined by the traditional cache {A C}, SPM {B D}. As a 

result, cache misses are eliminated, and an optimum 

performance (44.184 ns) is obtained. 

The solution search algorithm finds the minimum cost by 

calculating the number of all cases to place each variable in 

SPM space and HC cache. First, it builds a search tree, and 

stores at each node the maximum performance (or energy) 

gain and the minimum gain on the objective function for this 

problem instance. The search scheme repeatedly (1) selects an 

unprocessed case of combinations with variables’ placement, 

(2) processes the placement and then creates its other 

combinations as candidates of solution, and (3) propagates 

new max and min values through the tree and uses these 

values to select the next node. It performs this sequence of 

three stages until the search tree contains no more 

unprocessed placement combinations. The detailed execution 

of the three major steps is following. 

The first step is to find the node to process next. The search 

algorithm selects a leaf placement by descending the search 

tree, starting at the root and taking the child at unobserved 

candidate solutions. Our implementation orders the child from 

left to right so that their values are non-decreasing with a 

priority queue. 

The second step is to process and expand the node. For each 

of these unobserved nodes, maximum and minimum 

performance (or energy) gain on its objective function is 

obtained, and the best unobserved placement is chosen to 

branch on. The node is created and then processed and 

expanded in the same way. At each step, the set of nodes 

contributing to the maximum performance gain is stored to a 

solution set. 

The third step is to propagate the new gain and prune the tree. 

Starting at the nodes just created and working up the tree to 

the root, the value of the maximum gain and the minimum 

gain are updated for each node. 

As this stage assigns and reassigns gain, it checks to see if any 

node has one child whose maximum gain does not exceed the 

minimum gain of the other child. In such a case the solution of 

maximum can be no better than that of the minimum, so the 

node branch of maximum and all its descendants are removed 

from the tree. Finally, this search procedure generates a data 

placement to minimize the objective function as an optimal 

solution.  

 

EXPERIMENTAL RESULTS 

The proposed technique is implemented using LLVM [18], an 

open source compiler infrastructure. The LLVM-based 

compiler compiles some benchmark codes to generate an 

executable file and evaluates the optimized code using GEM5 

simulator. In this experiment, the optimized code is called 

OPG (Optimized Group), and the original code will be 

referred to as ORG (Original Group). The OPG code is 

compiled by the LLVM compiler to improve the negative 

impact of write operations by providing data load code and 

write-driven data best fit in SPM / cache and optimizing 

variable placement. Benchmark programs and input files were 

mainly selected from the LLVM test suites used in some 

industry codes [19]. By using profiling, we were able to 

obtain the characteristics of a benchmark program, such as the 

frequency of accesses to a benchmark program. For the 

experiment evaluation, we used simulator setup with cache 

management strategy of [21]. The simulator targets one-level 

data cache on a single core processor. Cache parameters and 

memory parameters are taken from the modified CACTI [22]. 

The results of write-intensive variables’ partitioning are 

illustrated in Figure 5. It shows the comparison of traditional 

data placement techniques using STT-RAM. The latency can 

be observed to be reduced or increased by a slight difference. 

Figure 6 illustrates energy consumption. The ORG default 

result is normalized to 1 and the resulting value of the OPG is 

shown as reduced from the baseline. 

The proposed technique could reduce write accesses to 

NVMM. As a result, total latency can be improved by 6%. 

Therefore, it is promising that the proposed technique can 

improve the efficiency of the hybrid cache memory 

subsystems. Figure 6 shows that the overall energy saving 

result corresponding to the reduction of cache misses. As 

shown in the Figure, the proposed technique can achieve 5% 

energy saving by effective data rearrangement for the hybrid 

cache architecture.  
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Figure 5. Result of total latency of write accesses  

 

 

Figure 6. Result of the energy consumption 

 

CONCLUSIONS  

In this study, we introduce a technique that uses a compiler-

based approach to improve energy consumption by 

rearranging variables in main memory space for SPM based 

the hybrid cache. To that end, we present a data flow based 

live range analysis technique, and search technique uses the 

static/dynamic analysis to minimize the cost to efficiently 

utilize a hybrid cache architecture. Specifically, traversing 

function call graph, rearrangement of local variables (stack 

data) is performed for each function, in order to maximize the 

benefits of the hybrid cache structure. The variables’ 

placement are determined by the variables’ live range and 

read/write frequency. In order to compensate for the 

drawbacks of NVM with write operations, a hybrid memory 

system has been proposed with a scratchpad memory (SPM) 

component. By partitioning write intensive data onto SPM, it 

can provide a high performance memory system with keeping 

NVM advantages, since SPM performs a write operation at 

high speed and low energy consumption. The experiment 

shows that the proposed technique is able to improve energy 

consumption 5% and execution time 6% in average.  
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