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Abstract 

In this paper, the LRPIM meshless method is used for the 

numerical implementation of the equations of an elastostatic 2-

D plate problem based on the local Petrov Galerkin method 

formulation and by using two radial basis functions (RBFs) are: 

Multi-Quadratic(MQ) and Thin Plate Spline(TPS). We studied 

the effect of sizing parameters of sub-domains and the 

parameters of RBFs functions on the accuracy and convergence 

of the LRPIM method by using the regular distribution of nodes 

for different materials and by comparison with analytical 

results  and that available from the literatures.  
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INTRODUCTION 

In the last decades, many useful meshless methods have been 

provided to solve partial differential equations, and they are 

regarded as potential numerical methods in Computational 

Mechanics and Physics. Radial Basis Functions (RBF) were 

first applied to solve numerically, partial differential equations 

in 1990 by Kansa[1], when a technique based on the direct 

Collocation method and the Multiquadric RBF was used to 

model dynamic fluids. The direct Collocation procedure used 

by Kansa is relatively simple to implement, however, it results 

in asymmetric system of equations due to the mix of governing 

equations and boundary conditions. 

 Several meshless methods, such as Smoothed Particle 

Hydrodynamics Method[2], the Diffuse Element Method[3], 
the Element-Free Galerkin Method[4, 5],the Reproducing 

Kernel Particle Method [6], the Partition of Unity Method[7], 
the Hp-clouds method [8], the finite point method [9], the 

Meshless Local Petrov–Galerkin method [10], and the general 

Finite Difference Method [11], have been proposed and 

achieved remarkable progress in solving a wide range of static 

and dynamic problems.  

The meshless method is used in different works for example, a 

local Heaviside weighted meshless method for two-

dimensional solids using radial basis functions by J. R. Xiao 

and M. A. McCarthy[12], Meshless and Meshfree by J. S. Chen 

and T. Belytschko [13], a novel meshless local Petrov–Galerkin 

method for dynamic coupled thermoelasticity analysis under 

thermal and mechanical shock loading by Bao-Jing Zheng and 

al. [14]   

Two different types of PIM formulations have been 

simultaneously developed, the first using the polynomial basis 

and the radial basis functions (RBFs) and the second method 

using the pure radial basis functions (RBFs) [15 − 20]. The 

point interpolation method (PIM) is a MFree interpolation 

technique that was used by G.R. Liu and al. [21 − 24] to 

construct shape functions using nodes distributed locally to 

formulate MFree weak-form methods.  

The LRPIM formulation without polynomial for elastic 

analysis of 2D elastostatic plate proposed in this paper, we 

solve this problem by using two radial basis functions 

(RBFs) [26]  are; Multi-Quadratic (MQ) [27] and Thin Plate 

Spline (TPS)[28]. In a meshless (meshfree) method, a set of 

scattered nodes used instead of meshing the domain of the 

problem. The most attractive characteristic of the method is that 

its shape functions are of Kronecker Delta function, and thus 

the essential boundary condition can be imposed in a 

straightforward and effective manner. 

The organization of this paper is as follows. In Section 2, we 

describe Local Radial Point Interpolation Method (LRPIM) 

Formulation.  

In Section 3, the Point Interpolation using Radial Basis 

Functions presented. In Section 4, we give some numerical 

analysis results for different materials with LRPIM method to 

support our theoretical discussion. The conclusion presented in 

Section 5. 

 

LOCAL WEAK FORM OF LRPIM 

We consider the following 2D dimensional static problem 
in linear elasticity on the domain Ω bounded by the 
boundary Γ: 

        σij  +  bi  =  0                   in   Ω 

                  ui = ūi                  at   Γu 

             σijnj = t̄i                   at  Γt 

         
(1) 

where 

σij: is the stress tensor, 

bi: the body force, 

ūi: the prescribed displacements on essential boundaryΓu, 

t̄i: the tractions on natural boundary Γt 

nj: the normal direction index. 

Note that the global domain is shared by the subdomains and 

the nodes are regularly distributed over the domain used. 
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Figure 1: Sub-domains and their boundaries. 

 

where 

Γqi: the internal boundary of the quadrature domain, which 

does not intersect with the global boundary Γ, 

Γqt: the part of the natural boundary that intersects with the 

quadrature domain, 

Γqu: the part of the essential boundary that intersects with 

the quadrature domain. 

The local weighted residual form defined over a local 

quadrature domain Ωq bounded by Γq for each node i of the 

nodal distribution has the following form: 

∫𝛩i( σij,j + b𝑖)

 

Ωq

dΩ − α ∫𝛩i(ui − u̅𝑖)dΓ

 

Γqu

= 0           (2) 

where the test function 𝛩i chosen such that they eliminate or 

simplify the domain integral on Ωq. This we can use the cubic 

spline function: 

                                                   

𝜃𝒊 =

{
 
 

 
 

2

3
− 4ri

2 + 8ri
3,     si |ri| ≤

1

2
4
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− 4ri + 4ri

2 −
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ri
3,   si   
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2
< |ri| ≤ 1

0                            ,   si    |ri| > 1

              (3) 

 

where            r𝑖 =
d𝑖

rw
=

|X−X𝑖|

rw
 

In which di = |X − Xi| the distance from node Xi to the 

sampling point X, and rw is the size of the support domain for 

the weight function. 

The penalty parameter 𝛼 is introduced in order to satisfy the 

geometric boundary condition. 

Using  σij,j𝛩i =  (σij𝛩i),j −  σij𝛩i,j and the divergence 

theorem[24], eq. (2) can be re-written:        

∫ 𝛩iσijnj

 

∂Ωq

dΓ − ∫𝛩i,jσij

 

Ωq

dΩ + ∫𝛩ibi

 

Ωq

dΩ

− α ∫ 𝛩i(ui − u̅i)dΓ

 

Γqu

= 0              (4) 

  The boundary ∂Ωq for the local quadrature domain Ωq is 

composed by three parts (figure 1), i.e. 

∂Ωq = Γqi ∪ Γqt ∪ Γqu 

therefore, eq. (4) can be re-written: 

∫𝛩i σijnj

 

Γqi

dΓ + ∫  𝛩iσijnj

 

Γqt

dΓ + ∫  𝛩iσijnj

 

Γqu

dΓ − 

∫  𝛩i,jσij

 

Ωq

dΩ + ∫𝛩ibi

 

Ωq

dΩ

− α ∫𝛩i(ui − u̅i)dΓ = 0              (5)

 

Γqu

 

For a local quadrature domain located entirely within the global 

domain, there is no intersection between Γq and the global 

boundary Γ, thus, in this case:   ∂Ωq = Γqi = Γq i.e. 

 there is no integral over Γqu and Γqt 

 ∫  𝛩iσijnj

 

Γq

dΓ − ∫  𝛩i,jσij

 

Ωq

dΩ + ∫𝛩ibi

 

Ωq

dΩ = 0         (6) 

Considering the relation between the stress and the       traction 

on the boundary:                                                        

                              σijnj = ti                                           (7)                     

The local weak form eq. (6) is leading to local boundary 

integral equations: 

∫Θiti

 

Γq

dΓ − ∫Θi,j σij

 

Ωq

dΩ + ∫Θibi

 

Ωq

dΩ = 0       (8) 

 

LOCAL RADIAL POINT INTERPOLATION METHOD 

USING RADIAL BASIS FUNCTIONS 

We consider a point X = (𝑥, 𝑦) in the local support domain and 

the continuous function u defined in the problem domain. We 

use n nodes regularly distributed in the local support domain to 

approximate the value 𝐮(X)at the point X of function 𝐮 in the 

form: 

             𝐮h(X) = ∑ R𝑖(X)a𝑖
𝑛
𝑖=1 = 𝐑𝐓(X)𝒂                    (9) 

where 

     𝑛: the number of nodes in the local support domain. 

     𝒂: the vector of coefficients defined by 

                      𝒂T = {a1, a2, a3, … , a𝑛}                          (10)                                                                            

R𝑖(X): the Radial basis function it is expressed as: 

                  R𝑖(X) = R𝑖(r𝑖) = R𝑖(𝑥, 𝑦)                        (11)                                               

𝑟𝑖: The distance between point X = (𝑥, 𝑦) and node X𝑖 =
(x𝑖 , y𝑖)  in a two dimensional problem: 

             r𝑖 = [(𝑥 − 𝑥𝑖)
2 + (𝑦 − 𝑦𝑖)

2]
1

2                        (12)                                            
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The vector R has the form: 

            𝐑𝐓(X) = [R1(X), R2(X), … , R𝑛(X)]                 (13)                                                                     

We use two radial basis functions as: 

Table 1: Typical radial basis functions with dimensionless 

shape parameters. 

Name Expression Shape 

parameters 

(real number) 

1. Multi-quadratic(MQ) Ri(x, y)= (ri
2+(αcdc)2)q αc ≥0, q 

2. Thin plate 

spline(TPS) 

Ri(x, y)=ri
η  η 

 

The coefficients ai in eq. (10) are determined by enforcing the 

interpolated function 𝐮 through all the n nodes within the 

support domain.  

The numerical value at the kth point of the function 𝐮 has the 

form: 

      𝐮k(𝑟𝑘) = 𝐮(xk, yk)  

                  = ∑ Ri(xk, yk)ai, k = 1,2, … , 𝑛 
𝑛
i=1             (14) 

where 

                  rk = [(xk − xi)
2 + (yk − yi)

2]
1

2 

Eq. (9) can be expressed in following matrix form: 

                             𝐔 = 𝐑𝟎𝒂                                          (15)   

where 𝐔 is the vector that collects all the nodal displacements 

at the regularly distributed node of the support domain. A 

unique solution for vector of coefficients 𝒂 is obtained if the 

inverse of 𝐑𝟎 exists 

                                 𝒂 = 𝐑𝟎
−𝟏𝐔                                          (16)    

Substituting the foregoing equation into eq. (9) leads to: 

         𝐮h(X) = 𝐑T(X)𝐑0
−1U = 𝚽(X)𝐔                     (17) 

The matrix Φ(X) of n shape functions is 

𝚽(X) = [R1(X), R2(X), R3(X)… , R𝑛(X)]𝐑0
−1 

        𝚽(X) = [φ1(X), φ2(X),… , φk(X), … , φ𝑛(X)]     (18) 

The approximation for the displacement at a point X can be re-

written:        

𝐮h(2×1)(X) = {
u
v
}  

𝐮h(2×1)(X) = [
φ1    0   …    φn    0
0       φ1   …      0      φn

]

{
 
 

 
 
u1
v1
⋮
u𝑛
v𝑛}
 
 

 
 

 

             𝐮h(2×1)(X) = 𝚽(𝟐×𝟐𝒏)(X)𝐔(2𝑛×1)                  (19)                                                            

The strains can be obtained by using the approximated 

displacements: 

         𝛆(3×1) = 𝐋𝐮
h = 𝐋(𝟑×𝟐)𝚽(2×2𝑛)𝐔(2𝑛×1)              (20) 

     𝛆(𝟑×𝟏) =

[
 
 
 
 
 
 
∂

∂x
0

0
∂

∂y
∂

∂y

∂

∂x]
 
 
 
 
 
 

[
φ1    0   …    φ𝑛    0
0       φ1   …      0      φ𝑛

]

{
 
 

 
 
u1
v1
⋮
u𝑛
v𝑛}
 
 

 
 

 

𝛆(3×1)        =

[
 
 
 
 
 
 
∂φ1
∂x

0 …
∂φ𝑛
∂x

0

0
∂φ1
∂y

… 0
∂φ𝑛
∂y

∂φ1
∂y

∂φ1
∂x

…
∂φ𝑛
∂y

∂φ𝑛
∂x ]

 
 
 
 
 
 

{
 
 

 
 
u1
v1
⋮
u𝑛
v𝑛}
 
 

 
 

 

               𝛆(3×1) = 𝐁(3×2𝑛)𝐔(2𝑛×1)                               (21)                  

where B is the strain matrix. 

The stress vector using the constitutive equations for the 

material at the point X in the problem domain can be written 

as: 

         𝛔(3×1) = 𝐃(3×3)𝛆(3×1)  

        𝛔(3×1) = 𝐃(3×3)𝐁(3×2𝑛)𝐔(2𝑛×1)                          (22)                                          

For an isotropic homogeneous material in the plane stress state, 

the matrix of material elastic constants D can be expressed as: 

𝐃 =
E

1−ν2
[

1 ν 0
ν 1 0

0 0
1−ν

2

]                                                    (23)                                          

The traction t at a point X has the following form 

𝐭 = {
tx
ty
} = [

nx 0 ny
0 ny nx

] {

σxx
σyy
τxy
} 

 𝐭 = 𝐍(2×3)𝐃(3×3)𝐁(3×2𝑛)𝐔(2𝑛×1)                               (24)                                                                       

In which (nx, ny) is the vector of the unit outward normal on 

the boundary. 

We now change eq. (8) to the following matrix form to derive 

the discretized system equations in a matrix form: 

∫ 𝐖𝑖
𝑇𝛔

 

Ωq
dΩ − ∫ 𝚯𝑖

𝑇𝐭
 

Γq
dΓ = ∫ 𝚯i

𝑇𝐛
 

Ωq
dΩ              (25)   

where 𝚯i is a matrix of weight functions given by 

                𝚯i = [
𝛩i(X) 0
0 𝛩i(X)

]                                   (26)                                                                       

Wi is a matrix that collects the derivatives of the weight 

functions 

                                                                                          

            𝐖i = [

𝛩𝑖,𝑥(X) 0

0 𝛩𝑖,𝑦(X)

𝛩𝑖,𝑦(X) 𝛩𝑖,𝑥(X)
]                                  (27)                                            

Substitution of eq. (22) and eq. (24) into eq. (25) the matrix 

form of eq. (25) can be written as:  

                 (𝐊𝑖)2×2𝑛(𝐔)2𝑛×1 = (𝐟i)(2×1)                     (28)                                           
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 𝐔 is the vector that collecting displacements for each node i 

of field nodal distribution included in the considered support 

domain. 

The matrix  𝐊i called the nodal stiffness matrix for each node i 

of field nodal distribution, which is computed by using 

        𝐊𝑖 = ∫ 𝐖i
T𝐃𝐁

 

Ωq
dΩ − ∫ 𝚯i

T𝐍𝐃𝐁
 

Γq
dΓ               (29)                                         

The nodal force vector
 
 𝐟i with contributions from body forces 

applied in the problem domain: 

                          𝐟i = ∫ 𝚯i
T𝐛

 

Ωq
dΩ                                (30)                

Using eq. (28) for all 𝑛t distribution nodes in the entire problem 

domain, we obtain a total of 2𝑛𝑡 independent linear equations. 

Assembling all these 2𝑛𝑡 equations based on the global 

numbering system to obtain the final global system equations 

in the form 

[
 
 
 
 
 
 
𝐊𝟏𝟏 𝐊𝟏𝟐
⋮ ⋮

𝐊(𝟐𝐢−𝟏)𝟏 𝐊(𝟐𝐢−𝟏)𝟐

… 𝐊𝟏(𝟐𝒏𝒕−𝟏) 𝐊𝟏(𝟐𝒏𝒕)
⋱ ⋮ ⋮
… 𝐊(𝟐𝐢−𝟏)(𝟐𝒏𝒕−𝟏) 𝐊(𝟐𝐢−𝟏)(𝟐𝒏𝒕)

𝐊(𝟐𝐢)𝟏 𝐊(𝟐𝐢)𝟐
⋮ ⋮

𝐊(𝟐𝒏𝒕)𝟏 𝐊(𝟐𝒏𝒕)𝟐

… 𝐊(𝟐𝐢)(𝟐𝒏𝒕−𝟏) 𝐊(𝟐𝐢)(𝟐𝒏𝒕)
⋱ ⋮ ⋮
… 𝐊(𝟐𝒏𝒕)(𝟐𝒏𝒕−𝟏) 𝐊(𝟐𝒏𝒕)(𝟐𝒏𝒕) ]

 
 
 
 
 
 

{
  
 

  
 
u1
v1
⋮
u2
v2
⋮
u𝑛𝑡
v𝑛𝑡}
  
 

  
 

=

{
 
 
 
 

 
 
 
 
f1x
f1y
⋮
fix
fiy
⋮
f𝑛𝑡x
f𝑛𝑡y}

 
 
 
 

 
 
 
 

 

We obtain 

                     𝐊(𝟐𝑛𝑡)(𝟐𝑛𝑡)𝐔(𝟐𝑛𝑡×𝟏) = 𝐅(𝟐𝑛𝑡×𝟏)               (31)                                       

where 

𝐊(𝟐𝑛𝑡)(𝟐𝑛𝑡) is the global stiffness matrix for all 𝑛𝑡 nodes in the 

entire problem domain, 

𝐔(𝟐𝑛𝑡×𝟏) is the global displacement vector that collecting the 

nodal displacements of all  𝑛𝑡 nodes in the entire problem 

domain, 

𝐅(𝟐𝑛𝑡×𝟏) is the global body force vector assembled using the 

nodal body force vectors for all nodes in the entire problem 

domain. 

 

NUMERICAL RESULTS AND DISCUSSION 

In this section, we present a numerical study for elastostatic 2-

D problem of a cantilever rectangular homogeneous isotropic 

plate (figure 2). The plate has a unit thickness and hence a plane 

stress problem is assumed [25].  

We consider the following node numbers nt =
55, 95, 175 and 196, regularly distributed. The isotropic plate 

analyzed with different materials properties: Steel (E=210GP, 

v=0.29, ρ = 7860kg/m3) Aluminum (E=70GP, v=0.3,ρ =
2707kg/m3), Copper (E=128GP, v= 0.33, ρ = 8920kg/

m3;  Zinc(E = 78GP ;  ν = 0.25;  ρ = 7100kg/m3 ). In the 

process of this study, a rectangular support domain and 

rectangular quadrature domain are adopted and gauss  

quadrature  (4x4)  was  used  to  evaluate  the  integrals,  where  

the  dimension  of the  background  cell  was consistent with 

the nodal distance. 

 

Figure 2: Configuration and nodal arrangement for the 

cantilever plate 

Some important parameters on the performance of the method 

have been investigated. It has been found that the parameters 

𝛼𝑠 and 𝛼𝑞, which determines the size of the sub-domain needs 

to be chosen carefully, the results calculated by the LRPIM 

using Radial basis functions RBF-MQ (see table 1):   

The dependence of energy error as a function of the shape 

parameter q  for different types of considered materials (Steel, 

Aluminum, copper and zinc) and for the following node 

numbers 𝑛𝑡 = 55, 196 regularly distributed is shown in figure 

3.  In this figure the value of  𝛼𝑐 is fixed, we present the 

case 𝛼𝑐 = 9.0, the support domain adopted and is fixed at 𝛼𝑠 =
3.0. If the values of energy error between -2.0 and 2.8 the 

curves of each distribution of node number are identical form 

for all materials. The variation of energy error values with the 

shape parameter q is very little, and the domain of convergent 

is between -0.5 and 2.8 for 𝑛𝑡 = 55 and between 0.0 and 2.8 

for 𝑛𝑡 = 196 but for q =1, 2 and 3 the LRPIM method is 

divergent. When q>2.8 for all materials and all distributions the 

error will significantly increase.  We note that the energy error 

is small using the steel material compared with other materials 

used. Note that the domain of convergence is larger than that 

given in the references [16, 22] 
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Figure 3: Variation of energy error as a function of shape 

parameter q using the fixed values; 𝛼𝑠 = 3.0, 𝛼𝑞 = 2.0 and 

𝛼𝑐 = 9.0 
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Figure 4 displays the variation of energy error as a function of 

αc for the following node numbers nt = 55, 95 and 196 and 

different materials (Steel, Copper and Zinc). The results are 

obtained by using the values of 𝛼𝑞 = 2.0,  q = 0.99 and 𝛼𝑠 =

3.0. We found that all curves of energy error falls from 

maximum values to the minimum values between 𝛼𝑐=3.0 and 

𝛼𝑐=14 for nt = 55 or between 𝛼𝑐 = 3.0 and 𝛼𝑐=12.3 for nt =
95 and 12.0 for nt = 196.  

For the values of αc  greater than 14 for nt = 55 and 12.3 

for nt = 95 and 12.7 for nt = 196, the curves are not stable for 

all materials, and the LRPIM method is not convergent. The 

domain of convergence is very large and is between αc = 4.0 

and 14 for nt = 55, between 4.0 and 12.3 for nt=95 and 196. 

We can also say that the domain of the convergence is broader 

than that given in the reference [16]. 
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Figure 4: Variation of  energy error as a function of shape 

parameter 𝛼𝑐by using the fixed values ; 𝛼𝑠 = 3.0, 𝛼𝑞 = 2.0 

and q=0.99 

 

Figure 5 shows the energy error variation as a function of the 

size of support domain  𝛼𝑠. It is investigated the variation of 

maximum and minimum values of 𝛼𝑠 convergence domain for 

different regular distribution node numbers. It can be seen from 

this figure for all materials (Steel, Aluminum, copper and zinc) 

that; if the values of  𝛼𝑠 is smaller than 1.89, the energy error is 

large and LRPIM method is not convergent. The domain of 

convergence reaches the maximum value at 𝛼𝑠 = 5 for nt = 55 

and 𝛼𝑠 = 3.66 for nt = 196. In this study the convergence 

domain for all materials is noticed to be between a small 

value 𝛼𝑠 = 1.89 and the maximum value 𝛼𝑠 = 5 for nt=55 and 

the maximum value 𝛼𝑠 = 3.66 for the greater value of node 

number distribution nt = 196. We can also say that the domain 

of the convergence is broader than that given in the reference 

[22]. 
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Figure 5: Variation of energy error  as a function of  size of 

support  domain  𝛼𝑠by using the fixed values ; 𝛼𝑞=2.0 𝛼𝑐=9.0 

and q=0.99 

 

In figure 6 the variation of energy error as a function of the size 

of the local quadrature domain 𝛼𝑞 for following node 

number nt = 55, 95, 196 and different materials (Steel, 

Copper and Zinc) is plotted. The LRPIM method is convergent 

for the values of  𝛼𝑞 ranging; between 1.3 and 2.6 using Steel 

for all node numbers and between 1.3 and 2.5 for nt =
95 and 196, and between 1.3 and 2.4 for nt = 55 using zinc 

and copper, but if the values of  
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Figure 6: Variation of energy error as a function of size of  

quadrature domain 𝛼𝑞 by using the fixed values 𝛼𝑠 = 3.0, 

q=2,03 and 𝛼𝑐 = 9.0 

 

𝛼𝑞 is different this domains the energy error is very large and 

the LRPIM method is divergent. Note that the energy error 

using the Steel material is smaller comparing with that obtained 

by using zinc and copper.  

In the next paragraph the results are calculated by the RPIM 

using Radial Basis Functions TPS (table 1) for different 

distributions of node numbers using different materials (Steel, 

Aluminum, Copper and Zinc).  

Figure 7 illustrates the effect of different materials using two 

distributions of node numbers nt = 175 and 196 on shape 

parameter η with fixed values of  𝛼𝑠 and 𝛼𝑞 (𝛼𝑠 = 3.0, 𝛼𝑞 =

2.0).The obtained curves are identical for all materials and for 

all node numbers. Significant results can be obtained when the 
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value of η varies between 3.998 and 4.002.The value η =
4.0001 leads to the best result. 
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Figure 7: Variation of energy error as a function of shape 

parameter η by using the fixed values ; 𝛼𝑠 = 3.0 and 𝛼𝑞 = 2.0 

 

The effect of the size of support domain 𝛼𝑠 for different 

distribution of nodes using different materials is gives in figure 

8 with the fixed values ; η = 4.0001, 𝛼𝑞 = 2.0. We find that 

the curves of all materials are identical for each value of node 

numbers nt, and the value of energy error is smaller using steel 

material and it is greater using Copper and Zinc for all 

distribution of nodes. The domain of convergence reaches the 

maximum value at 𝛼𝑠 = 5 for nt = 55 and 𝛼𝑠 = 3.66 for nt =
91 and 196. For all materials the convergence domain is 

noticed to be between a small value  𝛼𝑠 = 1.89 for all 

distributions of nodes and the greater values 𝛼𝑠 = 5 for nt =
55 and 𝛼𝑠 = 3.66 for the node numbers nt = 91 and 196. 
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Figure 8: Variation of energy error as a function of size of  

support domain  𝛼𝑠 by using the fixed values ;  𝛼𝑞 = 2.0 and         

η = 4.0001 

 

The influence of the size of quadrature domains 𝛼𝑞 for tow 

distribution of nodes nt=175 and 196 using different materials 

is plotted in figure 9. In this study the values of η and 𝛼𝑠 are 

fixed (η = 4.0001 and  𝛼𝑠 = 3.0). We note that the energy 

error is smaller for steel in comparison with other materials and 

the obtained curves for two distribution of nodes nt=175 and 

196 and for all materials are very stable between 𝛼𝑞 = 0.5 and 

𝛼𝑞 = 2.5 and the convergence domain is very wide and it is 

between 𝛼𝑞 = 0.5 and 𝛼𝑞 = 2.5 for all materials.  
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Figure 9: Variation of energy error as a function of size of 

quadrature domain 𝛼𝑞 using the fixed values ; αs = 3.0 and   

η = 4.0001 

 

In figure 10, the displacement results are plotted as a function 

of x with y =0 for different materials and with fixed values of; 

size of quadrature domainα𝑞 = 2.0 and size of support 

domain α𝑠 = 3.0. The shape parameters of the considered 

radial basis function; RBF-MQ are α𝑐 = 9.0 and 𝑞 = 0.98 and 

RBF-TPS is η = 4.0001. The effect of different Young’s 

modulus E on the displacement values is presented in this 

figure, we note that the curves found using Radial Basis 

Functions MQ and TPS are identical for each material and each 

curve is identical to analytical value.   
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Figure 10 : Displacement  u𝑦 distribution along the Y axis 

usiug RBF  with MQ and TPS for different materials with 

𝛼𝑠 = 3.0, 𝛼𝑞 = 2.0, 𝛼𝑐 = 9.0 and q=2.03 

 

CONCLUSIONS 

In this paper, the pure meshfree Local Radial Point 

Interpolation Method (LRPIM) for 2D dimensional elastostatic 

plate is presented. Two Radial Basis Functions RBF-MQ and 

RBF-TPS are used to construct shape functions based on a 2D 

local support domain. Some important parameters are 

investigated in detail and the numerical example of different 

materials (different values of (E and ν)) are studied using the 

present LRPIM method. We note that energy error is small 

using steel plate compared with other materials and it’s 



International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 6 (2018) pp. 3590-3597 

© Research India Publications.  http://www.ripublication.com 

3596 

confirmed that, no effect of E and ν on convergence of LRPIM 

method.  

Comparatively with references [15, 16], we can conclude 

that the convergence domain of shape parameters of RBFs basis 

is significant. Concerning the sizing parameter 𝛼𝑠 of support 

domain, the domain of convergence for the different 

distribution of nodes used, decreases if the number of nodes 

increases, we find that for the small values of distribution node 

numbers 𝛼𝑠 = 5.0 and for the greater values of node number 

distributions 𝛼𝑠 is decreasing (𝛼𝑠 = 3.66). 
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