
International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 6 (2018) pp. 3507-3511

© Research India Publications. http://www.ripublication.com

3507

Testing and Design of a Web Application using Modern Implementations

Technologies

Al Rubaie Evan Madhi Hamzh

University of Babylon, Department of Architecture Engineering, Iraq.

Abstract

The paper involves creating a web architecture which will set

the basis for the completion of an e-commerce site. This is part

of the "design" stage, a stage which is present in almost all

methodologies for the development of software systems. The

technology proposed for the subsequent implementation of the

site is ASP.NET MVC (model view controller). The

application is designed for the submittal of offers for different

products and services. Each product is described in detail: name

or price, the category to which it belongs, its description and a

representative image. The products are put in a basket from

which they can be deleted or bought. The application allows its

management through a manager's panel: adding new products,

creating new categories of products, editing and deleting the

already existing products. After an order has been placed, the

manager is announced through an email containing the

necessary data for filling the order.

Keywords: Web design, web application, web programming,

software methodologies

INTRODUCTION

Generally, the purpose of many computers is to take over

information from a certain location, to process it according to

the user's preferences and lastly to display it to the user. After

the user has modified the contents of the information and after

some potential processing has been applied, the system renews

the information in the place from where he took it over initially.

The easiest method of performing an application that performs

these operations is to put the operations together and treat them

as a whole. This method is good because it's easy to implement.

Nevertheless, afterwards problems occur when one of the

components of the date flow is to be changed, for instance when

the change of the interface is desired. Another problem

involves the business logic that must be incorporated, a logic

which is also subject to changes and goes beyond a simple

interchange of information. Consequently, the need to

modularize the application appears, the need to delimit neatly

the components in order for them to be able to be changed

easily and after the modification the components must still be

compatible with the other modules that make up the

application. A solution to this problem is the Model-View-

Controller (MVC) architecture which separates data storage

from data presentation and processing. So, we have three

distinct classes: The model deals with the application behaviour

and data; it responds to requests concerning the state of the

system, requests to change the state and notifies the user when

these changes have taken place so that he may react. The view

transposes the model into a form allowing an easy interaction,

typically a visual interface. There may be multiple views for a

single model for different purposes. The controller receives

input from the user and initiates an answer following the

requests to model objects. The controller is the one that controls

the other two object classes, view and model, instructing them

to perform operations based on the input received from the user.

The diagram of the MVC architecture presents the solid lines

as direct associations and the dotted lines as indirect

associations.

MVC was described for the first time in 1979 by Trygve

Reenskaug who worked at the time with Smalltalk within

Xerox PARC. The original implementation is described in

detail in the paper Applications Programming in Smalltalk-80:

How to use Model-View-Controller.

An application oriented on the MVC principles may be a

collection of triad model/view/controller, each one being in

charge of a different element of the user interface.

MVC often occurs in web applications where the view is the

HTML code generated by the application. The controller

receives GET and POST variables as input and decides what to

do with them and it sends them forward to the model. The

model, which contains the business logic and the associated

rules, may perform the necessary operations on the data in order

to enable the application to generate the above-mentioned

HTML code via template engines, XML pipelines, Ajax type

requests etc.

The model is not necessarily only a database, as it's often both

the database and the necessary business logic in order to

manipulate the data in the application. Many applications use a

persistent mechanism of data storage. MVC does not specify

explicitly the level of access to the data precisely because it's

obvious that this in encapsulated in the model. In some simple

applications which have few logically imposed business rules,

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 6 (2018) pp. 3507-3511

© Research India Publications. http://www.ripublication.com

3508

the model may be confined to the database and the

functionalities provided by the database.

The view is also not confined to the display of the information,

as it has an important role also in the interaction with the user.

In the case of the above example of web applications, the

interface generated via an html code is the one in charge of

taking over the input and also the measures taken in order for it

to be accurate.

The controller is often mistaken for the application itself,

whereas its role is to direct data between the other two classes

of objects. Indeed, the model may perform many operations on

the data, but these operations depend on data format at a given

moment. The data which are displayed /collected from the user

often differs significantly from the data which is stored in the

database. These differences are due to the conversions the

controller may apply to the data in order to facilitate

information traffic between components. Each object class has

certain definite expectations regarding data format, but these

format transformations must be performed automatically in

order to maintain a constant data flow, relieving the other

classes of the concern for the conversions and assuring the

application that every module gets what it expects, besides the

basic function of controlling the request traffic between

modules.

The operational scheme of an application which is modelled

according to the MVC architecture is generally as follows:

1. The user interacts with the interface (example: he

presses a key on the keyboard)

2. The controller receives the action of pressing the key

and it converts it into an action the model can

understand.

3. The controller notifies the model of the user' s action

and there usually follows a change in the state of the

model (for instance: the model refreshes the state of

the address field)

4. A view interrogates the model in order to generate an

adequate interface (for instance: the viewer displays

the new address next to the old one, near a

confirmation key).

5. The interface awaits additional action from the user

and the cycle repeats itself.

THE PROJECTION OF THE APPLICATION

THE IMPLEMENTATION OF THE APPLICATION

AND THE DESCRIPTION OF THE FUNCTIONALITY

OF THE CODE

The List method () of Product Controller is the first one to be

used and it deals with listing the products which exist in the

database. Actually, it creates an instance of Produce List View

Model which it initializes with the data extracted from the

database: images, name, product, price etc. This model is then

sent to the List view (made up of an html code which is

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 6 (2018) pp. 3507-3511

© Research India Publications. http://www.ripublication.com

3509

dynamically generated by the razor) which displays the data

that is encapsulated in it. The List View contains an "Add to

Cart" button which is a form that sends the ID of the desired

product to the add To Cart method of Cart Controller.

The add To Cart method in Cart Controller involves the

following actions: First, the database is interrogated in order to

obtain an object which encapsulates the product data with the

user-selected ID. Once this object has been obtained, a list shall

be created and the object shall be added to the list, then the

server shall return the Index view to the user. The ASP.NET

technology allows this list to be deleted from the server RAM

memory after a certain period of inactivity of the user thanks to

whom the list was initialized. The Index view only displays the

lists of the products in the cart (the prioritized list as a parameter

from the add To Cart method). Here, the user may manage the

cart as each item of the list of the products which are in the cart

is accompanied by a displayed button which accesses the

remove From Cart method of Cart Controller, which removes

that product from the list. In this view, the user may access the

"Continue Shopping" link, which shall send him directly to the

previous List view that displays all the products. Also in the

Index view, the user may finish the order by pushing the

"finish" button which calls the Finish method in Cart

Controller. The methods of Cart Controller only deal with the

user's interaction with the products in the cart.

The Finish Method in Cart Controller returns to the user a view

that requests him to introduce his personal data in order to

finish the order: email, surname, first name, address etc. Once

the form has been filled in, it shall be sent to the server, namely

to the second Finish method, the one with parameters. This

method checks the cart, and if the cart is empty, it returns an

error " We're sorry, we cannot finish the order, as the cart is

empty". If the cart is not empty, then the Order Processor

method belonging to the Email Order Processor class is used

through the IO rder Processor interface. This is possible due to

the dependency injection of the container, which allows the

methods belonging to the Email Order Processor class to be

accessed through the I Order Processor interface. This is one of

the SOLID principles, which enable the programmer to create

programs which are easy to maintain and extend in time. In our

case, if the name of the Email Order Processor is modified, we

won't have to make changes in all the places where we

initialized it because we always used its interface and the name

of the implemented class shall only be modified in the

dependency injection container.

The Order Processor method of the Email Order Processor class

uses an email model which it fills in with the buyer's data and

the products ordered by him. This email is sent to the email of

the owner of the online shop. Now the entire process is finished.

TESTING THE APPLICATION

The purpose of the unit testing it to have a suite of tests where

the system behaves in a certain manner for each test. Each unit

test is used in order to check a certain action regarding the

system, but the side effect of each one is the supply of examples

regarding the manner of interacting with different objects.

These examples could specify the types of arguments, the types

which expect to be returned or the scenarios when the

exceptions are thrown away. All these together achieve an

excellent form of system documentation. The unit tests are

generally created with the support of a testing framework.

There are several frameworks available for .NET but we are

going to use the one which is integrated into visual studio.

These frameworks provide support in order to know which

methods are performed as tests and they provide additional

functions in order to support the developer when he writes the

tests.

Basically, there are a few key points when the unit tests are

created. First, the test methods must belong to a public class,

which has the attribute Test Class. Secondly, the test method

per se must be public, with the test attribute Test Method

(different test frameworks have a different syntax in these

cases).

After the tests have been created, there must be a way to

perform them in order to find out if they're valid or not. Most

frameworks come with different ways of performing unit tests,

but in our case this step is achieved through the visual studio

platform.

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 6 (2018) pp. 3507-3511

© Research India Publications. http://www.ripublication.com

3510

When creating unit tests, there is a series of best practices which

should be followed. The most important practice is to treat the

test code with the same consideration and importance as the

application code. This means checking the source code,

building the tests together with the application, and making

sure that they are easy to read without having any duplicate

code or an identical logic broken down into separate methods.

One of the reasons for which some tests are easy to perform is

the fact that they do not depend any other class in order to work.

Nevertheless, there are objects in the real projects which cannot

work independently. In these situations, we must find a way to

concentrate on the class or methods in which we are interested,

in order to prevent the classes on which it depended from being

tested implicitly. A useful approach is that of using false

objects, which simulate the functionality of the real objects

within the project we are working on, but in a very specific and

controlled manner. The false objects allow us to restrict the

tests in order to examine only the functionality in which we are

interested. The paid versions for Visual Studio 2012 include

support for creating false objects, but we'll use a library named

Rhino Mocks, which is easy to use and may be used together

with all Visual Studio editions.

Adding a false object to a unit test is telling the Rhino Mocks

library the kind of object we want to work with, the

configuration of its behaviour and then its application to the test

code. We can see how we added and used a false object in our

unit tests belonging to the Validator Tests class, a class which

we specified above.

An issue which is often overlooked is the fact that every test

must be performed only in order to test one single thing. There

are two reasons for this: first, if the test fails, the identification

of the reason for its failure becomes a lot more difficult,

because there may be several causes. Ideally, we want the

reason for the failure of the test to be as clear and obvious as

possible, because the troubleshooting of the unit test code in

order to identify the reason for its failure is a big waste of time,

energy and productivity. The second reason is maintainability:

if we have large tests, then their maintenance cost will be all

the higher as their code is more difficult to understand.

We can test the validity of the models returned by the action

methods of the controller by creating an instance of the

controller and using the appropriate method for a view request.

Then, by using the Model property, we'll obtain the model

returned by the view. Then we can compare this model to a

reference model, which will enable us to find out if the

controller method returns accurate data to the view.

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 6 (2018) pp. 3507-3511

© Research India Publications. http://www.ripublication.com

3511

CONCLUSION

Apart from exposing the method for the design and

implementation of a web application, the paper also dealt with

the issue of unit testing, which involves having a suite of tests

where the system behaves in a certain manner for each test.

Each unit test is used in order to check a certain action

regarding the system, but each one has the side effect of

providing examples regarding the manner of interaction with

different objects. These objects could specify the types of

arguments, the types which expect to be returned or the

scenarios when the exceptions are thrown away. These together

achieve an excellent form of system documentation. The unit

tests are generally created with the support of a test framework.

There are different available frameworks for .NET, but we'll

use the one which is integrated into visual studio. These

frameworks enable us to know which methods are performed

as tests and they provide additional functions in order to

support the developer when he writes the tests.

REFERENCES

[1] Patterns of Enterprise Application Architecture,

Martin Fowler, David Rice, Addison Wesley 2002.

[2] Adam Freeman and Steven Sanderson - “Pro

ASP.NET MVC 4”, Fourth Edition.

[3] Professional ASP.NET MVC4- Jon Galloway, Phil

Haack, Brad Wilson, K. Scott Allen.

[4] Doru Constantin, Emilia Clipici, "Backpropagation

neural scheme for estimating the risk of bankruptcy of

the Romanian insurance and reinsurance companies",

Proceedings of the 15th International Conference on

INFORMATICS in ECONOMY (IE 2016),

Education, Research & Business Technologies, ISSN

2284-7472, ISSN-L 2247-1480, pg 415-421,

Bucharest University of Economic Studies Press, June

02 – 05, 2016, Cluj-Napoca, Romania.

[5] http://www.enode.com/x/markup/tutorial/mvc.html.

[6] http://msdn.microsoft.com/en-

us/library/ff649643.aspx.

[7] Doru Constantin, "Principal Directions for Local

Independent Components Analysis", ADVANCED

TOPICS ON NEURAL NETWORKS, Proceedings of

the 9th WSEAS International Conference on

NEURAL NETWORKS (NN'08), Artificial

Intelligence Series, WSEAS Press, ISBN: 978-960-

6766-56-5, ISSN: 1790-5109, pg. 127-130, Sofia,

Bulgaria, 2-4 Mai, 2008.

[8] David Lane, Hugh E. Williams - Web Database

Application with PHP and MySQL, 2nd Edition,

O'Reilly, 2004.

http://www.enode.com/x/markup/tutorial/mvc.html
http://msdn.microsoft.com/en-us/library/ff649643.aspx
http://msdn.microsoft.com/en-us/library/ff649643.aspx

