
International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 6 (2018) pp. 3475-3482

© Research India Publications. http://www.ripublication.com

3475

Database Replication Algorithm Performance in High Speed Networks

Under Load Balancing

Rekh Nath Singh1, Raghuraj Singh2

1Research Scholar, A. P. J. Abdul Kalam Technical University , Lucknow, India.

2Director, K.N.I.T., Sultanpur, Sultanpur, India.

Abstract

Database replication process maintains objects of database like

tables, in a number of databases that build a system of

distributed database. The database replication requirements are

increasing day by day due to the more use of internet. To meet

such requirements priorities of request can be used. In this

work two classes of requests are considered i.e., Low Priority

and High Priority. Low priority requests are not so important

and they can be delayed or drooped over high priority

requests. For example, downloading a song is low priority

requests, while information send by defense applications are

high priority requests. The request loss rate can be further

reduced using load balancing conditions where some of the

contending requests sent to some other nodes, and they reach

their destination using some alternative paths. In view of

above aspects performance evaluation of M-PDDRA

(Modified Pre-bringing Based Dynamic Data Replication

Algorithm) is done using computer simulation.

Keywords: Database repliation; database; priorities; load

balancing etc.

INTRODUCTION

We could define the process of Replication of copying and

keeping up the objects of database like tables, in a number of

databases that build a system of distributed database [1]. We

notice and make storing of these variations that are put into

one site prior to sending and are being applied at all the remote

positions. This process makes use of technique of distributed

database in order to make sharing of data between numerous

sites, however we can conclude that a replicated database and

a distributed database are different. If we talk about a

distributed database, we can find the data at numerous

positions, still a specific table is available at just one position.

We are going to mention few typical causes for making use of

replication: This technique gives rapid, local access to shared

data due to the fact that it maintains activity over a number of

sites. A few users can have the authority to access one server

however other may have the benefit of accessing various

servers, hence diminishing the load at each server. In addition,

the replication site with the least expense of access could be

source from where users can access data. Generally, this is the

geographically nearest site to them [2]. However, in the

distributed database servers can be located anywhere across

the globe. Nowadays, backbone network runs on fiber optic

cable, with these cables servers are connected using O/E or

E/O conversions as required.

The request arriving on these servers may have priorities, and

if request cannot be served, then it will be dropped. To save

the dropping of requests, buffering is performed at the servers.

But if buffer overflows, then it is most likely that low priority

requests will be dropped. To minimize this loss network load

balancing scheme can be applied. This paper, investigate the

performance of the algorithm, under low and high priority of

requests along-with load balancing conditions at various

server.

Figure 1: Schematic of a four-hosts cluster a single virtual

server to handle network traffic.

We get great accessibility and versatility to enterprise-wide

TCP/IP services by Network Load Balancing. These services

may be streaming media, proxy, Web, Terminal Services,

Virtual Private Networking (VPN) services. IP traffic is

distributed to numerous copies of a TCP/IP service by

Network Load Balancing like a Web server, all going on a

host inside the cluster. Network Load Balancing

straightforwardly segments the requests of the client among

the hosts and gives the clients a chance to get to the cluster by

making use of at least one or more "virtual" IP addresses. If

we consider the client's perspective, the client find cluster to

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 6 (2018) pp. 3475-3482

© Research India Publications. http://www.ripublication.com

3476

be a solitary server that gives responses to these requests made

by clients. With the enhancement in the enterprise traffic,

network administrators could just connect an extra server into

the cluster.

For instance, as shown in the Figure 1, the clustered hosts

operator with one another with the purpose to serve traffic of

the network from the Internet. A copy of an IP-based service

like Internet Information Services 5.0 (IIS) is run by each

server, and networking workload is distributed by Network

Load Balancing among them. This pace up ordinary

processing in the manner that client of Internet can observe

speedier turnaround in regards to their requests. For included

framework accessibility, the application at the back-end

(suppose a database) may work on a two-node cluster going on

Cluster service.

In comparison to the other software solutions, Network Load

Balancing gives better results. For example, round robin DNS

(RRDNS), makes the distribution of workload among a

number of different servers however it is not able to give a

mechanism for the availability of server. In the event of a

server failure, RRDNS, not in the way like Network Load

Balancing, will carry on to transfer it work till the failure is

observed by a network administrator and eliminates the

particular server from the DNS address list. This is in turn,

brings in service interruption for clients. We have some

benefits of Network Load Balancing over some other options

for load balancing—on the basis of both hardware- and

software—that present single failure points or execution

hindrances by making use of a centralized dispatcher. Since

Network Load Balancing got no restrictive hardware

necessities, we can use any proper computer. This gives

noteworthy cost reserve funds when contrasted with exclusive

equipment load balancing solutions .

RELATED WORKS

A PDDRA (Pre-bringing Based Dynamic Data Replication

Algorithm) is exhibited in [7]. The principle thought is to pre-

get a few information utilizing the heuristic algorithm prior to

the real replication begin to lessen latency. In earlier research,

adjustments in PDDRA (M-PDDRA) are recommended to

make the further reduction in latency. In yadav et. al. modified

the PDDRA scheme and also establish connections among RS

(regional servers) for sharing information, this allow local

searching of the required information [8-11]. For more detail

Please allude to [7] for further details. The fundamental

purposes of the algorithm are outlined as below:

1. We consider the internet cloud in M-PDDRA technique as

master node due to the fact that there is availability of data in

the internet for the replication (Figure 2)

Figure 2: Schematic of the PDDRA scheme

2. In the case a node develops any replication request then it

will get looked for in local network through edge node, and

further a simultaneous request will be transmitted to the global

network.

3. It is possible that we may not have the availability of data at

any local node or we have a large waiting time is too large,

due to the reason that simultaneous request is transmitted to

both to a local node as well as a master node, in the event of

master node access is in queue for suppose time tq

then we

can make the local search for time ts< tq. The above discussed

simultaneous requests to both global and local network will

make the reduction in latency as compared to the initial

request send to local network and after that to global network.

SIMULATION AND RESULTS

We carry out the simulation in MATLAB. The simulator is

based on a random event generator and popularly termed as

Monte Carlo simulation. In the simulation random traffic

model is considered. This model is not complex; and even then

it gives decent insight about the replication process. This

model considers that the request can be originated from any of

one the client with probability ρ and each generated request is

equally likely to be served by any of the N servers with

probability 1/N. Therefore, probability that l requests arrive

for a specific server in any time slot is [12]

 

0
!

Pr() 1 for
! !

l N l

l NNl
l N l N N

 


   
    

  






, (1)

Let Q1, Q2, ……….., Qq denote the ratio type-1,type-2,……,

type-q requests to the total number of requests;

1

1
q

i
i

Q


 .where q is the priority types (1 is the highest, q is

the lowest).

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 6 (2018) pp. 3475-3482

© Research India Publications. http://www.ripublication.com

3477

Probability that n1 type-1, n2 type-2, ... nq type-q requests

arrive at the server in same time slot can be formulated as:

 1
,,...., 11

()!

Pr(() ...())
(!)

l
nn q l

n n Pq
K l

l

n
b Q Q

n
 





 (2)

The requests will only be generated at the slot boundary only.

Most of the systems have load in range of 0.4 to 0.8. Systems

having load 1 will always be saturated and in general it is

impractical. If requests is generated then it will randomly

assigned a server from the available servers which can serve

the request. However, if more than one server can serve the

request than server selection is done randomly. However, if

load balancing scheme is employed, then request will be

assign a server with lesser request to serve. Again if same

number of requests is left to be served then any one of the

available server is randomly assigned. This paper adds one

more parameter on the request generation, i.e., the priority. In

this mechanism each generated request carries priority. We

considered two type of priority; high and low. High priority

requests are served first over low priority requests. If request is

generated on the given load then high priority requests are

serve first over low priority requests.

If arriving request can be served instantly, then it will be

placed in the buffer and later on it will be retrieved from the

buffer and served. The number of requests that can be buffered

will depends on the buffer capacity of the server. If arriving

request cannot be served at the server then it will be drooped

and a negative acknowledgement (Server in not found/ please

try again) is send back to the sender and sender again re-

generate request after a few more time slots. To avoid loss of

larger number of requests a hard load balancing scheme which

restrict the number of request that can be send to particular

server, while other leftover requests are send to other servers is

employed. Requests are filled in the buffer using rules defined

under:

A. Rules for filling Buffer

1. For each arriving request first buffer is checked, if

buffer is empty, then request will be served

instantaneously.

2. If buffer is not empty, then priorities of the buffered

will be checked and one high priority request leaves

the buffer in FIFO manner, and incoming request will

be buffered using rule 5

3. If in the buffer only low priority requests are stored

and arriving request also has low priority then it will

be buffered using rule 2.

4. If in the buffer only low priority requests are stored

and arriving request has high priority then it will be

served.

5. The number of requests in the buffer should be lesser

or equal to buffer capacity.

6. In above scheme low priority request may remain in

the buffer for very long duration, to avoid this after a

fix time slots a low priority request leave the buffer.

This time slot is chosen randomly depending on

buffer capacity.

7. To avoid overflow of buffer a hard load balancing

scheme is employed at each server which restricts the

number of requests that need to be served by

particular server.

B. Results and Discussions

Request Loss probability: It could be defined as the volume of

data that cannot flow via a network, or else we can define it as

the fraction of the generated requests which are not served by

any one of the server.

Network Load: We can define network load as the measure of

data (traffic) is flowing through the network.

In the simulation two types of request requests low and high is

considered. In figures 3 and 4 legends TRL, HPR and LPR are

stand for total request loss, high priority request loss and low

priority request loss respectively. The numbers of

clients/servers (N) are considered to be 4.

Figure 3: Request loss probability vs. load for Low

priority 0.2 under buffer 4

Figure 4: Request loss probability vs. load for Low

priority 0.6 under buffer 4

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 6 (2018) pp. 3475-3482

© Research India Publications. http://www.ripublication.com

3478

Figure 3 shows the request loss probability vs. Load. In our

work we have not shown throughput vs. load plot because low

request loss rate. Moreover throughput is equal to 1- request

loss probability. Therefore, both the graph can be used as they

lead to same conclusions. In the request generated 4 clients are

considered and servers are also considered to be 4. The

performance low priority requests is shown with diamond

marker, for high priority requests is shown by square marker

while total request loss which include the loss of both high and

low priority requests is shown with circle marker. Out of the

total generated requests 20% are of low priority while left over

80% are high priority requests. At the load of 0.4, the request

loss probability for high priority requests is 6×10-6, for low

priority requests it is 9×10-5 which is nearly equal to the total

loss it is evident from the figure that the request loss rate of

high priority requests is much less than that of low priority

requests.

Figure 4 shows the request loss probability vs. Load. Out of

the total generated requests 60% are of low priority while rest

40% are high priority requests. Considering the request loss

probability at the load of 0.8, for HPR is 8.6×10-4, for LPR and

TRL is 4.27×10-2. Here it is clear from the figure that till load

0.8, HPR loss is zero and only low priority requests are lost.

Comparing figures 3 and 4, it is clear that low priority packets

are lost first, and as their proportion in total requests increases,

their loss also increases. However, the performance of HPR

improves significantly.

Load Balancing

The load on a particular node can be reduced by deflecting the

some of the arriving packets. The number of packets arriving

for a particular output can be expressed as

 0

!
[] 1

! !

l N lN

l

NE l l
l N l N N

 




   
    

    
 . (3)

Now, ‘g’ is the fraction of packets that are deflected that

effective load is

 0

!
(1) 1

! !

l N lN

l
e

Ng l
l N l N N

N

 







   
    

    



. (4)

In core nodes once packets arrive then decision regarding

deflection is performed, therefore above equation can be

simplified to

(1)e g   (5)

Figure 5: N = 4, B = 4, Low priority 0.2, load balancing

factor 0.1

Figure 5 shows the request loss probability vs. Load. Out of

the total generated requests 20% are of low priority while rest

80% are high priority requests and out of generated requests

10% requests follows some alternative path to reach to the

server. Comparing the results at the load of 0.8, the request

loss probability (HPRL) for high priority requests is 1.26×10-3,

for low priority (LPRL) requests it is 2.4×10-3 while the total

loss (TRL) is 3.66×10-3.

Figure 6 shows the request loss probability vs. Load. Out of

the total generated requests 25% are of low priority while rest

75% are high priority requests and out of generated requests

25% requests are directed towards the output through some

alternative path. Initially below 0.6 load, a significant

difference is observed between high and low priority requests

loss. Comparing the results at the load of 0.8, the request loss

probability for high priority requests is 8×10-3, for low priority

requests it is 1.1×10-2 while the total loss is 1.86×10-2.

Figure 7 shows the request loss probability vs. Load. Out of

the total generated requests 50% are of low priority while rest

50% are high priority requests and out of generated requests

25% requests are directed towards the output through some

alternative routes. Comparing the results at the load of 0.8, the

request loss probability for high priority requests is 2.43×10-4,

for low priority requests it is 4.85×10-5while the total loss is

9.7×10-5. In the figure 3.7 at the load of 0.8, the request loss

probability for high priority requests is 3.4×10-3 for low

priority requests it is 3.66×10-3. Thus it is evident from the

figures load balancing reduces the request loss probability.

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 6 (2018) pp. 3475-3482

© Research India Publications. http://www.ripublication.com

3479

Figure 6: N = 4, B = 4, Low priority 0.25, load balancing

factor 0.25

Figure 7: N = 4, B = 4, Low priority 0.25, load balancing

factor 0.5

It is clear from Figs 5 to 7 that as the load balancing factor

increases the request loss probability decreases. However, due

to the high priority of some requests they get upper hand over

other requests, therefore improvement for high priority

requests is more.

As the number of low and high priorities requests affects the

total loss, therefore for clear observation various types of

requests losses are obtained for this Monte Carlo simulation is

performed for 500000 iterations while keeping load to a fixed

value of 0.6 for different proportion of high priority packets.

The obtained results are shown in Figure 8. Here, for higher

proportion of high priority requests, in total loss both high and

low priority request contributes. While for moderate value of

high priority requests in total loss major contribution is due to

low priority requests. For lower proportion of high priority

requests, in total loss is due to the low priority requests only.

Figure 8: Bar graph for request loss for different

proportion of high priority requests

Figure 9: Bar graph for request loss for different buffering

conditions

As discussed above, different proportions of high and low

priorities can change the proportion of the loss of different

types of requests, but over-all loss cannot be reduced. The

over-all loss can be reduced by using more buffers as shown in

Figure 9. In this figure proportion of low priority request is

taken to be 0.2.By increasing the buffer form 4 to 6 and then

from 6 to 8, the request loss reduces by a factor of more than

10. However, the quality of service is maintained, and loss of

high priority requests is lowest and by increasing buffer and

using load balancing can be brig down to a negligibly small

value.

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 6 (2018) pp. 3475-3482

© Research India Publications. http://www.ripublication.com

3480

Figure 10: Schematic of n nodes network

Load Balancing

On a particular node ‘i’ the arriving load is the sum of the

partial load arriving from various links (Figure 10) and can be

written as

1

m

j
j

 


 , under the condition 0 1  and

m n where m is the number of nodes directly connected to

node i and n is the total number of nodes in the network.

1 1

m m

eff j i j
j j

g  
 

   (6)

where gi denotes the fraction of load which is being

deflected. In addition to this other m nodes which are directly

connected to node i can also deflect their data to node i.
Therefore effective load should be written as

1 1 1

m m m

eff j i j j j
j j j

g g p   
  

    

If links are chosen uniformly then we have,

1 1 1

m m m
j j

eff j i j
j j j j

g
g

w


  
  

     . (7)

Where, wj denotes the number of input/outgoing links to a

particular node ‘j’.

The load balancing is effective when

1 1

0
m m

j j
i j

j j j

g
g

w



 

  

Therefore,

1

1

m
j j

j j
i m

j
j

g
w

g














. (6)

Eqn 6, provides the minimum value of fraction of load that

needs to be deflected on node ‘i’ for load balancing to be

effective. While ρj denotes the load arriving form link ‘j’
towards node ‘i’ and it considered to be random between 0 and

1. The simulation results for two networks are detailed in

Figure 10. In high speed optical networks, the numbers of core

nodes are less than 20, while in current electronic networks

number of core nodes can grow up-to to millions on nodes. In

two networks 10 and 100 nodes are considered which can be

considered as representation of optical and electronic

networks. The results for 10 nodes network is shown in Figure

10, while for a general electronic networks of 100 nodes is

shown in Figure 11. As shown in figure 10, the minimum

value of load deflection factor is high with lesser number of

nodes and as the number of nodes increases the value of load

deflection factor reduces. For example in a 4 node network

minimum value for load deflection is 0.125 while for 10 nodes

it becomes 0.05. in case of large node network, load

deflection factor reduces to zero if number of nodes are greater

than 80. Therefore results presented in figures 3-9 are

applicable for large node networks. However, with lesser

number of nodes some corrections need to be done in packet

loss results.

Figure 11: Load balancing factor vs. number of

input/output links (10).

Figure 12: Load balancing factor vs. number of

input/output links (100).

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 6 (2018) pp. 3475-3482

© Research India Publications. http://www.ripublication.com

3481

Figure 13: Request loss probability vs. load under load

balancing factor (0.5) expected and actual loss.

Figure 14: Request loss probability vs. load under load

balancing factor (0.2) expected and actual loss.

In figure 13, request loss probability vs. load is plotted, under

load balancing factor of 0.5, here expected loss is much lesser

in comparison to actual loss, and obtained difference is

significant. Here, expected loss is obtained using eqn. 6, while

actual loss is obtained using eqn. 7. At the load of 0.6, the

expected request loss probability is 3.3×10-6 while actual loss

probability is 6.5×10-5. In figure 14, request loss probability

vs. load is plotted, under load balancing factor of 0.2, here

again expected loss is much lesser in comparison to actual

loss, and obtained difference is less significant. At the load of

0.6, the expected request loss probability is 5×10-4 while actual

loss probability is 1.9×10-3.

CONCLUSIONS

In this paper, performance evaluation of per-fetching

replication algorithm is done. The performance evaluation is

done under prioritized traffic while considering load balancing

scheme. In the results it has been found that, using buffering,

high priority requests can be served with nearly 100 percent

efficiency. However, at higher loads (>0.8) for low priority

requests throughput is slightly lesser. To keep loss of high and

low priority requests to a very low level, we have also adopted

a hard load balancing mechanism, which reduces the load on a

particular server. Further, it is shown that in high speed

networks, load balancing mechanism is affected by both

outgoing and incoming traffics, and load balancing at

particular node is also affected by load balancing of other

nodes.

REFERENCES

[1] B. Kemme and G. Alonso, “Database replication: a

tale of research across communities,” Proceedings of
the International Conference on VLDB Endowment.
Switzerland), Vol. 3, No. 1, pp.5-12, 2010.

[2] A. Yair, D. Claudiu, M.A. Michal, S. Jonathan and T.

Ciprian, “Practical wide-area database replication.

Technical report, Johns Hopkins University,”2002.

[3] Y. Chen, D. Berry and P. Dantressangle, “Transaction

based grid database replication,” Proceedings of UK
e-Science. Edinburgh, U.K. pp. 166-173, 2007.

[4] A. Correia, L. Rodrigues, N. Carvalho, R. Vilaça, R.

Oliveira and S. Guedes, “GORDA: An open

architecture for database replication” Proceedings of
Sixth International Symposium on Network
Computing and Applications. Boston, USA, pp. 287-

290, 2007.

[5] S. Goel, R. Buyya, “Data replication strategies in

wide area distributed systems,” Enterprise service
computing: from concept to deployment, pp. 211-241,

2006.

[6] A. Thomson, T. Diamond, S. C. Weng, K. Ren, P.

Shao and D. J. Abadi, “Calvin: fast distributed

transactions for partitioned database,” Proceedings of
the ACM SIGMOD International Conference on
Management of Data. Scottsdale, Arizona, USA, pp.

1-12, 2012.

[7] N. Saadat and A.M. Rahmani, “PDDRA: A new pre-

fetching based dynamic data replication algorithm in

data grids,” Springer: Future Generation Computer
Systems, Vol.28, pp. 666-68, 2012.

[8] S.K. Yadav, G. Singh and D. S. Yadav,

“Mathematical framework for a novel database

replication algorithm,” International journal of
ModernEducation & Computer Science, Vol.5, No. 9,

pp.1-10, 2013.

[9] S.K. Yadav, G. Singh and D. S. Yadav, “Analysis of

database replication algorithm in local and global

networks,” International journal of Computer
Applications, Vol.84, No. 6, pp.48-54, 2013.

[10] S.K. Yadav, G. Singh and D. S. Yadav, “Throughput

and delay analysis of database replication algorithm,”

International journal of ModernEducation &
Computer Science, Vol.5, No. 12, pp.47-53, 2013.

[11] S.K. Yadav, G. Singh and D. S. Yadav, “Analysis of

a database replication algorithm under load sharing in

networks,,” Journal of engineering Science and

http://jestec.taylors.edu.my/Vol%2011%20issue%202%20February%202016/Volume%20%2811%29%20Issue%20%282%29%20193-%20211.pdf
http://jestec.taylors.edu.my/Vol%2011%20issue%202%20February%202016/Volume%20%2811%29%20Issue%20%282%29%20193-%20211.pdf
http://jestec.taylors.edu.my/Vol%2011%20issue%202%20February%202016/Volume%20%2811%29%20Issue%20%282%29%20193-%20211.pdf

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 6 (2018) pp. 3475-3482

© Research India Publications. http://www.ripublication.com

3482

Technology (JESTEC),, Vol.11, No. 2, pp.193-211,

2016.

[12] R. J. Mishra, and A. Jain, “Performance of Data

Replication Algorithm in Local and Global Networks

under Different Buffering Conditions,” International
journal of ModernEducation & Computer Science,

Vol.7, No. 9, pp.34-41, 2015.

