
International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 6 (2018) pp. 3296-3414

© Research India Publications. http://www.ripublication.com

3396

The Pillars of Lossless Compression Algorithms a Road Map

and Genealogy Tree

Evon Abu-Taieh, PhD

Information System Technology Faculty, The University of Jordan, Aqaba, Jordan.

Abstract

This paper presents the pillars of lossless compression

algorithms, methods and techniques. The paper counted more

than 40 compression algorithms. Although each algorithm is

an independent in its own right, still; these algorithms

interrelate genealogically and chronologically. The paper then

presents the genealogy tree suggested by researcher. The tree

shows the interrelationships between the 40 algorithms. Also,

the tree showed the chronological order the algorithms came to

life. The time relation shows the cooperation among the

scientific society and how the amended each other's work. The

paper presents the 12 pillars researched in this paper, and a

comparison table is to be developed. Furthermore, novice users

of the algorithms and researchers can find a reference where

they can use this research as spring board for future work. The

researchers, wanted to accompany each algorithm with a

classical example to make understanding easier and recalling

the algorithm much faster with an example rather than an

algorithm.

Keywords: Compression algorithms, Haar, Huffman, LZW,

bizip2, RLE, MTF, SHANNON, Coding and Information

Theory.

INTRODUCTION

This paper presents the pillars of lossless compression

algorithms, methods and techniques. In compression

algorithms, there are two types lossy and lossless. The lossless

compression algorithms keep the file in its original state before

and after compression. On the other hand, lossy compression

algorithm the file loses some of its quality after the

compression process. The paper counted more than 40

compression algorithm: Arithmetic Coding - SHANNON

(1948), Huffman coding (1952), FANO (1949), Run Length

Encoding (1967), Peter's Version (1963), Enumerative Coding

(1973), LIFO(1976), FiFO Pasco(1976), LZ77(1977), Move

To Front (MTF) Transform (1980), LZ78(1978), LZR (1981),

LZSS (1982), LZJ(1985), LZC(1985), LZZMW(1985),

LZB(1987), LZH(1987), LZT(1987), LZAP (1988), LZRW

(1991)), DEFLATE(1993), LZS(1994), LZP(1995),

LZX(1995), LZO(1996), LZMA, LZJB, LZWL(2006),

LZMA2(2009), LZ4(2011), Burrows- Wheeler Transform

(1994), Haar (1910), Wavelet tree(2003), Stream(1979), P-

Based FIFO(1981), Delta Encoding, Rice & Golomb Coding

(1966,1979), Run-Length Golomb-Rice (RLGR) (2007),

Tunstall coding (1967). Although each algorithm is an

independent in its own right, still; these algorithms interrelate

genealogically and chronologically. Hence, the major stubs in

the developed tree of the compression algorithms are 12. The

tree is presented in the last section of the paper after presenting

the 12 main compression algorithms each with a practical

example.

The paper first introduces Shannon–Fano code showing its

relation to Shannon (1948), Huffman coding (1952), FANO

(1949), Run Length Encoding (1967), Peter's Version (1963),

Enumerative Coding (1973), LIFO (1976), FiFO Pasco (1976),

Stream (1979), P-Based FIFO (1981). Two examples are to be

presented one for Shannon-Fano Code and the other is for

Arithmetic Coding. Next, Huffman code is to be presented

with simulation example and algorithm. The third is Lempel-

Ziv-Welch (LZW) Algorithm which hatched more than 24

algorithms. The LZW family is to be presented and a working

example is given. The fourth is Run Length Encoding (RLE)

which essentially codes using frequency and position. The fifth

is Burrows-Wheeler Transform. The sixth is Move-to-Front

(MTF) Transform. The seventh is Haar and the eighth is

wavelet tree. The ninth is the Delta Encoding, and the tenth is

Rice & Golomb Coding. The eleventh is Tunstall coding. The

twelfth is a hybrid example bzip2 which is a mix of many

algorithms & DEFLATE algorithm which is also a mix of three

algorithms. The last example of the hybrid is Run-Length

Golomb-Rice (RLGR).

The paper will present the genealogy tree suggested by the

authors. The tree will show the interrelationships between the

40 algorithms. Also, the tree will show the chronological order

the algorithms came to life. The time relation shows the

cooperation among the scientific society and how they

amended each other's work. Furthermore, novice users of the

algorithms and researchers can find a reference where they can

use this research as spring board for future work. The

researcher, wanted to accompany each algorithm with a

classical example to make understanding easier and recalling

the algorithm much faster with an example rather than an

algorithm.

SHANNON–FANO CODE

In 1948 Shannon proposed a technique in an article titled "A

mathematical Theory of Communication" (Shannon, 1948) and

in 1949 Fano proposed a method that was published in a

technical report titled "The transmission of information" (Fano,

1949). Hence, a term was dubbed as "Shannon-Fano Code".

Peter Elias improved the algorithm in unpublished work that

was later described by (Abramson, 1963). In 1973 (Cover,

1973) published another version named Enumerative Coding.

In 1976 (Rissanen, 1976) introduced Last in First Out (LIFO)

version of the algorithm. In 1976 Pasco (Pasco, 1976)

introduced the FIFO version of the algorithm. In 1979 "stream"

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 6 (2018) pp. 3296-3414

© Research India Publications. http://www.ripublication.com

3397

code was discovered by Rubin (1979) as an improvement of

Pasco's work. Martin (1979) and Jones (1981) developed P-

based FIFO arithmetic codes (Jones, 1981) and (Martin, 1979).

The algorithm Shannon-Fano code is explained in the next

section by showing the algorithm and an example is given in

section A and section B.

A) Shannon–Fano Algorithm

Shannon-Fano algorithm is presented in the five steps below;

the algorithm is recursive in nature and easily coded and

understood.

1. Scan text to be compressed and count the occurrence

of all characters.

2. Sort the lists of symbols according to frequency, with

the most frequently occurring symbols at the left and

the least common at the right.

3. Divide the list into two parts, with the total frequency

counts of the left part being as close to the total of the

right as possible.

4. The left part of the list is assigned the binary digit 0,

and the right part is assigned the digit 1. This means

that the codes for the symbols in the first part will all

start with 0, and the codes in the second part will all

start with 1.

5. Recursively apply the steps 3 and 4 to each of the two

halves, subdividing groups and adding bits to the

codes until each symbol has become a corresponding

code leaf on the tree.

B) Classical Example

This is a classical of example of Shannon–Fano algorithm

(Shannon, 1948), consider the following text

ABRACADABRA ABRACADABRA.

The first step is "Scan text to be compressed and count the

occurrence of all characters". The seven symbols which can be

coded have the following, table 1, is frequency table:

Table 1. Frequency table of the scanning phase of the

algorithm.

Character Frequency Probabilities code

A 10 0.416667 00

R 4 0.166667 01

B 4 0.166667 100

C 2 0.083333 101

D 2 0.083333 110

SP 1 0.041667 1110

period 1 0.041667 1111

The second step according to the algorithm is show in graph

below and marked as step #1. As shown, the priority list and

the character are sorted according to frequency in descending

order. In figure 1 step#2, the list is broken into two groups as

mentioned in the algorithm above, with the total frequency

counts of the left part being as close to the total of the right as

possible. Hence the first sub list composed of letter A and letter

R with a total frequency is 14, while the second sub list is

composed of B, C, D, SP, Period with total frequency is 10.

In step #3 each sub list is further divided into two sub lists.

Each list must adhere to algorithm condition (the total

frequency counts of the left part being as close to the total of

the right as possible). The first list is further divided into two

leaves with frequency 10 and 4 respectively.

Figure 1: Shannon–Fano algorithm tree of the example steps

1 & 2 & 3.

The second list is divided into two lists, the first one is letters

B & C with total frequency 6 and the second list is D, SP, Period

with total frequency of 4. In step#4, each sub list is further

divided in accordance to previously mention condition, see

figure 2. The B &C list is divided into two leaves; the second

list (D, SP, and Period) is further divided into leaf D with

frequency 2 and list SP & Period with total frequency 2. In the

step #5, the last sub list SP & Period is divided into two leaves

as show in figure 3. The product is a binary tree, the tree

branches are labeled according to algorithm (left branch is

labeled 0, and right branch is labeled 1).

Figure 2. Operations of step #4.

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 6 (2018) pp. 3296-3414

© Research India Publications. http://www.ripublication.com

3398

Figure 3. Shannon–Fano algorithm tree of the example steps

5.

The text length is 24 letters usually coded using 8-bit fixed

length which is 24*8 = 192 bit. Using Shannon–Fano code the

24 letters were coded using 60 bits as shown in table 2. Hence,

the savings are 1- 60/192=.6875 which is almost 68.75%.

Table 2. Table showing the savings using Shannon-Fano

algorithm.

Character Frequency Code

length

Frequency X Code

length

A 10 2 10*2

R 4 2 4*2

B 4 3 4*3

C 2 3 2*3

D 2 3 2*3

SP 1 4 1*4

period 1 4 1*4

Total bit 60

C) Example of Arithmetic Coding

As an example of arithmetic coding, the following example is

presented. Code the word "COMCA" (Langdon, 1984)

Symbol Frequency Probability Interval

C 2 0.4 [0-0.4]

O 1 0.2 [0.4-0.6]

M 1 0.2 [0.6-0.8]

A 1 0.2 [0.8-1]

TOTAL 5 1

Figure 4. Step by step Arithmetic Coding

Since the letter, C is the first of the required word we start by

expanding the probability line number see figure 4.

(0.4-0) *0.4+0=0.16

(0.4-0) *0.2+0.16=0.24

(0.4-0) *0.2+0.24=.32

The second symbol is O so we start expanding the limits of the

O [0.16, 0.24]

(0.24-0.16) *0.4+0.16=0.192

(0.32-0.24) *0.2+0.192=.208

(0.4-0.32) *0.2+0.208=0.224

Then we move on to letter M, and start limit with 0.208

(0.208-0.192) *0.4+0.208=0.2144

(0.224-0.208) *0.2+0.2144=0.2176

(0.24-0.224) *0.2+0.2176=0.2208

Then letter C and start limit with 0.208

(0.2144 - 0.208) * 0.4 + 0.208 = 0.20928

(0.2208 - 0.2176) * 0.2 + 0.2092 8= 0.20992

(0.224 - 0.2208) * 0.2 + 0.20992 = 0.21056

Next is the letter A, see figure 4, the Lower limit is 0.21056

(0.20992-0.20928) * 0.4 + 0.21056=0.210816

(0.21056-0.20992) * 0.2 + 0.210816=0.210944

(0.2144-0.21056) *0.2 + 0.210944=0.211712

The coded word for COMCA is 0.2144, see figure 4. To

decode the word back we decode 0.2144 as follows:

CR=upper limit - Lower limit of current interval……..(1)

ES=ES - lower limit of current interval………………(2)

ES=ES/CR………………….…………………………(3)

Since the coded word is 0.2144 hence the interval [0-0.4]

applies which belongs to letter C.

CR = 0.4 - 0.0=0.4

ES = 0.2144 - 0.0

ES = 0.2144/0.4=0.536

Since ES is in interval [0.4-0.6] the letter is O

CR = 0.6-0.4 = 0.2

ES = 0.536-0.4 = 0.136

ES = 0.136/0.2 = 0.68

Since ES is in interval [0.6-0.8] then the decoded letter is M

CR=0.8-0.6-0.2

ES=0.68-0.6=0.08

ES=0.08/0.2=0.4

Since ES is in interval [0.0-0.4] then the decoded letter is C

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 6 (2018) pp. 3296-3414

© Research India Publications. http://www.ripublication.com

3399

CR=04-0.0=0.4

ES=0.4-0.0=0.4

ES=0.4/0.4=1

Since ES is in interval [0.8-1.0] then the decoded letter is A

HUFFMAN CODE

Huffman coding is a technique used to compress files for

transmission; it is a variable-length encoding/compression

scheme. Proposed by Dr. David A. Huffman in 1952 in a paper

titled “A Method for the Construction of Minimum

Redundancy Codes” (Huffman, 1952). The technique uses

statistical coding (most frequently used symbols have shorter

code words). The technique uses several data structures:

queues, trees, etc. In the next section the algorithm is presented

and explained using an example.

A) Huffman Code Algorithm

Huffman Code algorithm is presented in the six steps below,

the algorithm will produce the tree shown in figure 5, and the

algorithm is easily coded and understood.

 1. Scan text to be compressed and count the occurrence of

all characters.

 2. Create priority list: Sort or characters based on their

frequency in text.

 3. Build Huffman code tree based on prioritized list.

 4. Perform a traversal of tree to determine all code words.

 5. Scan text again and create new file using the Huffman

codes.

 6. send coded file and the tree for decoding

B) Classical Example

To fully understand Huffman code, an example is presented

here. Consider the following text: "ABRACADABRA

ABRACADABRA." The first step is "Scan text to be

compressed and count the occurrence of all characters", the

following table of frequency will result from applying the first

step of the algorithm:

Character Frequency

A 10

R 4

B 4

C 2

D 2

SP 1

period 1

The second step according to the algorithm is shown in figure

5 below and marked as step #1. As shown, the priority list and

the character are sorted according to frequency in ascending

order.

Figure 5. Steps 1, 2 and three explained graphically.

In step#2, choose the lowest frequency nodes and co-join the

two with one node and add their frequency to be the frequency

of the new node. In this case, the space and period each has

frequency of 1, the new node has the frequency 2, see figure 5.

In step #3, insert the new node before the nodes of D & C, both

have frequency of 2, figure 5.

Figure 6. Operations carried out in step #4 D & C,

and step #5.

In step #4, repeat what happened in step #2, picture the first two

nodes with lowest frequency in the queue. Co-join the two

node C &D in one node and the new node frequency is 4, see

figure 6 step # 4. Step #5, insert the new node in the queue

before “R” and after node “A”, see figure 6.

Figure 7. Operations of step # 6 and step # 7.

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 6 (2018) pp. 3296-3414

© Research India Publications. http://www.ripublication.com

3400

Step #6, co-join the SP and period with count=2 with the B

count=4 the sum of the count is 6 now, see figure 7. In

preparation for step #7. In step#7 The sub-tree of count=6 is

put in queue between the A of count=10 and the subtree of

count=6, see figure 7.

Figure 8. Operations of step # 8 and step #9.

In step # 8, co-join the r with count =4 and the D-C subtree with

count=4, the total count is shown in step# 9 figure 8. In step#

9, new count is set for the R and the sub-tree (D-C). the new

count is 8.

Figure 9. Operations of step # 10 and step #11.

Figure 10. The operations in step # 12step #13.

In step # 9 the new sub-tree with count=8 is now to be placed

after the A of count=10, as seen in figure 8. The Sub tree is put

in the queue after the A with count=8, while count of the A is

greater than 8, it is 10, as seen in figure 9.

In step #11, the two sub-trees are co-joined: the first with

count=6 and the second subtree with count=8. The total is 14

as seen in in figure 9. The step # 12, the new sub-tree of

count=14, is but in the queue before the A of count=10. As

seen in figure 10. In step#13, co-join the two sub-trees the leaf

A with count =10 and the sub-tree with count=14,

After going through all 13 steps, the final tree appears as seen

in figure 11. Now each letter is coded according to the binary

branches value. The A is coded to be 0, the SP is coded as

1000, the period (.) is coded as 1001, the B with more frequency

is coded as 101, the R with frequency 4 is coded as 110, the D

with frequency is 2 is coded as 111, the C with frequency 2 is

coded as 1111. Now each letter in the coded word is replace

by its code. The A is replaced by 0s, the B with 101, the R with

110, the D with 111, The C with 1111, the period with 1001

and the space with 1000. The process is seen in figure 11.

Figure 11. Huffman coding, the final tree of the code.

One can conclude that the letter with highest frequency is

replaced with shortest code. For example, A with highest

frequency (10) is coded by one bit which is (0). While the letter

with least frequency like the period and SP are, both coded with

4 bits 1001and 1000 respectively. Hence the intended word

"ABRACADABRA ABRACADABRA" was coded with 58

bits

(0101110011110111001011100100001011100111101110010

11100).

The text length is 24 letters usually coded using 8-bit fixed

length which is 24*8 = 192 bit. Using Huffman algorithm, the

24 letters were coded with only 58 bits instead of 192 bits as

seen in table 3. Hence, the savings are 1- 58/192=.697 which

means 69.7% savings.

Table 3 Showing the savings when Huffman is used.

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 6 (2018) pp. 3296-3414

© Research India Publications. http://www.ripublication.com

3401

Character Frequency Code

length

Frequency X

Code length

A 10 1 10*1

R 4 3 4*3

B 4 3 4*3

C 2 4 2*4

D 2 4 2*4

SP 1 4 1*4

period 1 4 1*4

Total bits 58

Huffman code reduced what could have been coded in 192 bits

to 58 bits which is 69.7% saving in storage. Still, in order to

send such coded word, the whole tree must be sent to be used

in the decoding process. Furthermore, what Huffman saved in

compression countered it in the sending process. The

computational complexity of Huffman code is O (n log n).,

where n is the number of symbols used in the text message.

LEMPEL-ZIV-WELCH (LZW) ALGORITHM

Historically LZ was first developed in 1977 by Jacob Ziv and

Abraham Lempel, and was name LZ77. In 1978, both Ziv and

Lemple, developed the algorithm and named it LZ78. Many

LZ based algorithms were developed over the years: in 1981

LZR was developed, in 1982 LZSS Lempel-Ziv-Storer-

Szymanski by James Storer and Thomas Szymanski, in1984

LZW, in 1985 LZJ, LZC, and LZZMW; in 1987 LZB, LZH,

LZT. In 1988 LZAP was developed, in 1991 LZRW, in 1993

DEFLATE, in 1994 LZS, in 1995 LZP, & LZX, in 1996 LZO,

in 1998 LZMA & LZJB, in 2006 LZWL in 2009 LZMA2 and

in 2011 LZ4.

LZW was developed in 1984; Terry Welch came on board with

both authors and the three developed LZW. LZW is used in

GIF file format. The compression algorithm is in figure 12 and

the decompression algorithm is in figure 13.

set w = NIL

loop

read a character k

if wk exists in the dictionary

 w = wk

else

output the code for w

add wk to the dictionary

 w = k

endloop

read a character k

output k

w = k

loop

 read a character k

 entry = dictionary entry for k

 output entry

 add w + first char of entry to

the dictionary

 w = entry

endloop

Figure 12. LZW

Compression algorithm.

Figure 13. LZW

Decompression algorithm.

A) Classical Example LZW

To show the work of LZW a trace classical examples are shown

in this section. Two words will be coded using LZW:

"thisisthe" and "ABRACADABRABRABRA". The first

example reduces a 10-letter word to 7 characters. The second

example reduces 17 letters word to 12-character coded word.

The first example we save 30% size the second saves even more

29.4%.

Compressing the following string (Cslearning, 2013) thisisthe.

First, look at the current (first character) and the next character

which is letter (h), since letter (t) is in the alphabets output is

set to t. Next, see if the two characters (th) are in the dictionary

and since two characters (th) are not, then (th) are added to the

dictionary. In addition, since (th) is not in our dictionary we

give it a new value which is (256). Second, the pointer moves

to next letter which (h), so the current letter (h) and the next

letter is (i), since (hi) is not in the dictionary a new value (257)

is given to the two characters (hi). Third step, we move the

pointer to the thirds letter (i). the next letter is s, and we see if

(is) in the dictionary, since it is not we add is to dictionary and

give it the value 258. The fourth step, the current letter is (s),

the next letter is (i) since (si) not in dictionary we add it to

dictionary and give it a value (259). The fifth step, the current

letter is (i), and the next letter (s), and (is) is in the dictionary

so we look if (ist) is in the dictionary and since it is not we add

it to the dictionary and we output (is) and add (ist) to dictionary

and give it the value (260). Hence, we reduced the code by one

letter. The sixth step, current letter is (t) and next letter is (h)

and (th) is in dictionary so we output (th) is (256) and we add

to dictionary (the) and give it the value (261). The seventh step,

the current letter is e and the next is null we output (e) and add

null to dictionary.

Step Current Next Output Add to Dictionary

1 t 116 h 104 t 116 th 256

2 h 104 i 105 h 104 hi 257

3 i 105 s 115 i 105 is 258

4 s 115 i 105 s 115 si 259

5 i 105 s 115 "is" is in the dictionary but ist is not

 is 258 t 116 is 258 ist 260

6 t 116 h 104 "th" is in dictionary

 th 256 e 101 th 256 the 261

7 e 101 - e 101 -

Hence, we coded the text of length 10 characters into 7

characters, which means we compressed the text by almost

13%.

t h i s i s t h e

116 104 105 115 258 256 101

Using the same idea, try to co de

"ABRACADABRABRABRA".

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 6 (2018) pp. 3296-3414

© Research India Publications. http://www.ripublication.com

3402

Current Next Output Add to Dictionary

A 41 B 42 A 41 AB 81

B 42 R 52 B 42 BR 82

R 52 A 41 R 52 RA 83

A 41 C 43 A 41 AC 84

C 43 A 41 C 43 CA 85

A 41 D 44 A 41 AD 86

D 44 A 41 D 44 DA 87

A 41 B 42 AB 81 ABR 88

R 52 A 41 RA 83 RAB 89

B 42 R 52 BR 82 BRA 8A

A 41 B 42 ABR 88 ABRA 8B

A 41 - A 41 -

The coded text will be as follows

A B R A C A D A B R A B R A B R A

41 42 52 41 43 41 44 81 83 82 88 41

Saving 5 out of 17 characters. Which means 1-

12/17=.294=29.4%. The two examples show the work of

LZW. Both showed the amount of compression conducted on

10 letter word and 17 letter word.

B) LZSS

LZSS is another flavor of LZ based compression algorithm.

Developed by James Storer and Thomas Szymanski in 1982

(STORER & SZYMANSKI, 1982). In LZSS " the section of

the input is replaced with an (offset, length) pair where the

offset is how many bytes from the start of the input and the

length is how many characters to read from that position"

(STORER & SZYMANSKI, 1982) According to the same

source the NEXT pointer was eliminated. Hence when

compressing "these theses" the compressed is "these(0,6)s",

where the 0 is the index and 6 is the offset.

RUN LENGTH ENCODING (RLE)

RLE is lossless encoding schema. RLE is very simple and easy

to use. RLE was used since 1967 to compress television

signals. As can be seen in the next example: To encode the

text "aaaabccabbbc" the answer is (a,4), (b,1), (c,2), (a,1), (b,3),

(c,1). So basically, each letter is keeps its position and the

frequency of the letter is counted both are put in (letter,

frequency). The algorithm in RLE is shown in figure 14:

Counter=0

For i=1 to end of sequence

 If Sequence [i]=sequence[i+1] then

 Counter=counter+1

 Else

 Set pair= (Sequence [i], Counter)

 Counter=0

 Endif

Figure 14. RLE compression algorithm.

BURROWS- WHEELER TRANSFORM(BWT)

The Burrows-Wheeler Transform method was developed by

two scientists: M. Burrows and D.J. Wheeler in 1994 in a

technical report for Digital Equipment Corporation (Burrows &

Wheeler, 1994). The following is an algorithm to clarify the

process of BWT shown in figure 15. In other literature the

suggested time complexity of the BWT is O (n log n) (Lippert,

Mobarry, & Walenz, 2005).

To further explain the Burrows-Wheeler Transform method the

following example is presented in the next section.

A) Classical Example of Burrows- Wheeler Transform

To code the word " abracadabra ". First put the word in a

matrix with all possible rotations like shown in figure 16.a, in

a matrix while shifting in each row by one character (space).

Next, the matrix should look like the figure 16.b, the second

row shifted last letter, will become first in the second row.

Next, Sort the matrix according to column 1, then 2, then,3 etc.

the result is the matrix figure 16.c.

To encode

Input: input sequence

Create BWT an nXn matrix, n is the length of input

sequence.

For counter =1 to n do

Rotate input sequence (shift left by counter)

Insert rotated input sequence into row[counter]

Sort matrix BWT according to each column from 1..n,

alphabetically

Find the row of the original input sequence in sorted-BWT,

return the index (ptr)

Coded sequence is the last column, position of each letter

and the index from previous step

To decode

Input: coded matrix with 2 columns: last column, letter

position and ptr

First letter=coded matrix [ptr]. letter

Next=coded matrix.index[ptr]

Loop until done

 Next letter=coded matrix[next].letter

 Output next letter

 Next= coded matrix[next] . letter position

End loop

Figure 15. BURROWS- WHEELER TRANSFORM

algorithm.

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 6 (2018) pp. 3296-3414

© Research India Publications. http://www.ripublication.com

3403

Figure 16: Burrows- Wheeler Transform example at work

Notice that the original word is in row #3, the encoded word is

the last column. The pair will send over the medium which is

(rdarcaaaabb,3). To decode the word the following is to be

carried out: First, index the coded word like figure 16.d.

Second, sort the matrix in alphabetical order and index it again

as seen in the below form, figure 16.e:

To decode, start decoding from row #3, use the second column

to point to the next letter First letter must be "a", the next letter

is in row #7 as the second column suggests which is "b", the

third letter is indexed in row 11, etc.

MOVE TO FRONT (MTF) TRANSFORM

MTF was first published by Ryabko and is used as an extra step

in encoding algorithm to improve the performance of entropy

encoding techniques of compression Ryabko, 1980 and again

published in (Ryabko, 1980) . Next section presents the MTF

algorithm, and a classical working example of MTF.

A) MTF Algorithm

The algorithm of MTF shown in figure 17, for both coding and

decoding. The time complexity of MTF is O(n), where n is the

number of symbols in the input sequence.

Encode

for each symbol of the input sequence:

 output the index of the symbol in the symbol table

 move that symbol to the front of the symbol table

Decode

Using the same starting symbol table

for each index of the input sequence:

 output the symbol at that index of the symbol table

 move that symbol to the front of the symbol table

Figure 17. MTF Algorithm of encoding and decoding

The process of the MTF is very simple two structures are

needed: one for all symbols used in in the intended to be coded

input sequence, the second is the input sequence itself. The

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 6 (2018) pp. 3296-3414

© Research India Publications. http://www.ripublication.com

3404

algorithm steps in the input sequence character by character.

For each character the algorithm look-up the position of the

character from input sequence from the symbols table. Next

the algorithm moves the symbol at hand to the beginning of the

symbols table. To decode, the exact opposite takes place. For

each symbol in the coded input sequence, look-up the symbol

of the position of the coded input sequence from the look-up

symbols table, next move that symbol to the front of the

symbols table.

B) Classical Example of MTF

First create an alphabet queue as shown in the first row of the

matrix in figure 18.a. To code the word abracadabra shown in

the matrix in figure 18.b. record the position of the letter from

the coded word and move that letter to the front of the

alphabetical queue, as shown in figure 18.b second line. The

first letter is "a" record its position "1" ass seen below, and

move "a" to front of the queue. The queue stays the same since

"a" is the first letter in the alphabets. Next letter is "b", record

its position in the alphabets and move "b" to the front of the

queue, as seen third line in matrix figure 18.b. The queue now

is as in figure 18.b third line. The third letter is "r", which is in

position 18, record the position and move the r to the front of

the queue. See the fourth line in both matrices in figure 18.a

and b. The fourth letter is "a" the position is 3, hence the letter

“a” moves to beginning of the letters que and 3 is add to matrix

18.b.

The fifth letter is "c" the position is 4, and the index of "c: is 4

and both matrices are updated accordingly in the 5th line. The

sixth letter is "a" the position is 2, hence both matrices are

updated accordingly. The letter "a" is moved to the beginning

of the letter que and its position is registered in matrix b. The

seventh letter is "d" and the position is 5, both matrices are

updated where the letter "d" is moved to front of the letters que

and the position "5" is registered in matrix b, see figure 18 line

8.

The eighth letter is "a" and the position its is 2 in the letter que,

hence its position is recorded in matrix b and the letter itself is

moved to the beginning of the que. The ninth letter is "b" and

the position is 5 in the que, furthermore, position is registered

in the figure 18.b matrix and the letter itself is moved to head

of the Que. The ninth letter is "r" and the position is 5, the

position is recorded and the queue is updated as shown in line

11 both matrices in figure 18. The tenth letter is "a" and the

position is 3 the position is recorded and the queue is updated

as shown in line 12 both matrices in figure 18. The coded word

is in the last line in figure 18.b and is send to the corresponding

person as is. Next the coded word will be decoded in the

following paragraphs.

To decode the word, the process starts with original letter queue

and the coded word, as shown in figure 19 first line. Look at

the first item in the coded text, value =1, hence the first letter

in the coded alphabet is "a", move the "a" from the alphabet.

The new alphabet looks like the one below. The second in the

coded text is 2 which is "b" now move "b" to beginning of the

alphabet queue as shown in line 2 of figure 19.

Figure 18. A classical example of MTF.

Figure 19. Decoding using MTF.

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 6 (2018) pp. 3296-3414

© Research India Publications. http://www.ripublication.com

3405

The third in the coded text is 18 which is "r" in the alphabet,

again move it to the front of the alphabet, like line 3, in figure

19. The fourth is number 3 which is "a" in alphabets, again

move the "a" to beginning of the alphabets queue line 4 figure

19. The fifth in the coded word is 4 which is "c" in the

alphabets queue. Move the c to the front of the alphabets queue

as shown in line 5. The sixth coded letter is 2 which "a" in the

alphabets above, again move a to front of the alphabets queue

shown in line 6. The seventh is 5, which "d" in the alphabets

queue, and move the d to the front of alphabets queue as in line

7 in figure 19. The eighth is 2 which is "a" in the alphabets,

and move the "a" to the front of letter queue, seen line 8. The

ninth is 5 in the coded word which is "b" in the alphabets, again

move "b" to the front of the alphabets queue. The tenth is "5"

which is "r" in the alphabets above, and move "r" to front of the

alphabets queue. The eleventh is 3, which is a in the alphabet

above, and move the "a" to the front. Hence producing the

decoded word: abracadabra.

HAAR WAVELET TRANSFORM

Haar was proposed in 1910 by the Hungarian mathematician

Alfréd Haar; hence it is one of the oldest transform functions.

The basic philosophy of the Haar is to create two functions

using a 2X2 matrix: one function adds two variables and

calculates the average; the second function calculates the

difference between the variables and calculate the difference

average. In the next sections: first the steps of forward

transform & revers transform are explained, then an example

of the forward transform is given with real numbers. The revers

transform is explained in details with an example.

A) The Haar Process

In this section, the Haar process is explained. There are two

major steps conducted in the process: Forward transform and

revers transform. The forward transform is represented in steps

1 & 2, and then the revers transform is explained in steps 3 &

4, as shown below

The following will be conducted:

1. Create D matrix from C, where C is a 2X2 matrix

D-Col#1=(C-Col#1+C-Col#2)/2,

D-Col#2= (C-Col #3+C-Col#4)/2

D-Col#3= (C-Col #1-C-Col #2)/2,

D-Col#4= (C-Col #3-C-Col #4)/2

2. Use the D matrix to create the new F matrix as

shown below:

F-Row#1= (D-Row 1+D-Row 2)/2,

F-Row#2= (D-Row 3+ D-Row 4)/2

F-Row#3 = (D-Row 1-D-Row 2)/2,

F-Row#4 = (D-Row 3- D-row 4)/2

The resulting matrix F is the coded matric created from the

original matrix C. To reverse the whole process and to prove

that we can reproduce the original matrix C, the following steps

are to be followed:

3. Revers operation create R matrix by using matrix F

from the previous step, as follows:

R-Row#1= F-Row1+Row 3,

R-Row#2= F-Row 1-F-Row 3

R-Row#3= F-Row 2+ F-Row 4,

R-Row#4= F-Row 2- F-Row 4

4. Create E Matrix by:

E-Col#1=R-Col#1+R-Col#3,

E-Col#2=R-Col 1-R-Col 3

E-Col#3= R-Col 2+R-Col 4;

E-Col#4= R-Col 2+R-Col 4

B) Example Forward Transfer

In this section, the forward transform is shown in an example

using real numbers to show the process clearly. Say we have

the following 4X4 matrix named C. Each element in C will be

as shown in the matrix C below

C=

Col 1 Col 2 Col 3 Col 4

100 50 60 150

20 60 40 30

50 90 70 82

74 66 90 58

First, calculate the average & distance for each row, as follows:

Designate the first two columns for the average and the two

columns for the distance for every two consecutive elements in

a row. Hence

D (1,1) = (C (1,1) +C (1,2))/2,

D (1,2) = (C (1,3) +C (1,4))/2.

For the distance (the second two columns) we do the

following

D (1,3) = (C (1,1)-C (1,2))/2,

D (1,4) = (C (1,3)-C (1,4))/2.

For the second row, again we do the following:

D (2,1) = (C (2,1) +C (2,2))/2,

D (2,2) = (C (2,3) +C (2,4))/2.

For the distance (the second two columns) we do the

following:

D (2,3) = (C (2,1)-C (2,2))/2,

D (2,4) = (C (2,3)-C (2,4))/2.

For the third row, we do again the following:

D (3,1) = (C (3,1) +C (3,2))/2,

D (3,2) = (C (3,3) +C (3,4))/2.

For the distance (the second two columns) we do the

following:

D (3,3) = (C (3,1)-C (3,2))/2,

D (3,4) = (C (3,3)-C (3,4))/2.

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 6 (2018) pp. 3296-3414

© Research India Publications. http://www.ripublication.com

3406

Last for row number 4 we do the following:

D (4,1) = (C (4,1) +C (4,2))/2,

D (4,2) = (C (4,3) +C (4,4))/2.

For the distance (the second two columns) we do the

following:

D (4,3) = (C (4,1)-C (4,2))/2,

D (4,4) = (C (4,3)-C (4,4))/2.

The result with addition and subtraction is shown in the

matrix D, below:

D=

(Col 1+Col 2)/2 (Col 3+Col 4)/2 (Col 1-Col 2)/2 (Col 3-Col 4)/2

(100+50)/2=75 (60+150)/2=105 (100-50)/2=25 (60-150)/2=-45

(20+60)/2=40 (40+30)/2=35 (20-60)/2=-20 (40-30)/2=5

(50+90)/2=70 (70+82)/2=76 (50-90)/2=-20 (70-82)/2=-6

(74+66)/2=70 (90+58)/2=74 (74-66)/2=4 (90-58)/2=16

Hence, the result is simply shown below:

D=

Row1 75 105 25 -45

Row 2 40 35 -20 5

Row 3 70 76 -20 -6

Row 4 70 74 4 16

Second step is, we work with the D matrix to create the new F

matrix shown below: We store the average in the first two rows

of F matrix and the distance in the lower two rows: Hence,

F (1,1) = (D (1,1) +D (2,1))/2,

F (1,2) = (D (1,2) +D (2,2))/2,

F (1,3) = (D (1,3) +D (2,3))/2,

F (1,4) = (D (1,4) +D (2,3))/2.

The second row in F is calculated as follows:

F (2,1) = (D (3,1) +D (4,1))/2,

F (2,2) = (D (3,2) +D (4,2))/2,

F (2,3) = (D (3,3) +D (4,3))/2,

F (2,4) = (D (3,4) +D (4,3))/2.

The third row in F, is designated for distance and is calculated

as follows:

F (3,1) = (D (1,1) -D (2,1))/2,

F (3,2) = (D (1,2) -D (2,2))/2,

F (3,3) = (D (1,3) -D (2,3))/2,

F (3,4) = (D (1,4) -D (2,3))/2.

The fourth row in F, is designated for distance and is

calculated as follows:

F (4,1) = (D (3,1) -D (4,1))/2,

F (4,2) = (D (3,2) -D (4,2))/2,

F (4,3) = (D (3,3) -D (4,3))/2,

F (4,4) = (D (3,4) -D (4,3))/2.

(Row1+row2)/2 (75+40)/2=57.5 (105+35)/2=70 (25+-20)/2=2.5 (-45+5)/2=-20

(Row 3+ row 4)/2 (70+70)/2=70 (76+74)/2=75 (-20+4)/2=-8 (-6+16)/2=5

(Row1-row2)/2 (75-40)/2=17.5 (105-35)/2=35 (25--20)/2=22.5 (-45-5)/2=--25

(Row 3- row 4)/2 (70-70)/2=0 (76-74)/2=1 (-20-4)/2=-12 (-6-16)/2=-11

The end result is the following matrix shown below name F.

matrix F when the reverse function is used will return to the

original matrix.

F=

Row 1 57.5 70 2.5 -20

Row 2 70 75 -8 5

Row 3 17.5 35 22.5 -25

Row 4 0 1 -12 -11

C) The Revers Transfer of Haar

The revers process is conducted on the matrix F produced

previously. The result of the revers is show in the matrix R

below and will be explained next. First, each element in first

row of matrix F is added to the third row (row3). We name the

result matrix from the operation the R matrix for reference

purposes. Hence:

R (1,1) =F (1,1) +F (3,1),

R (1,2) =F (1,2) +F (3,2),

R (1,3) =F (1,3) +F (3,3),

R (1,4) =(F1,4) +F (3,4).

Second, each element in first row of F matrix will be

subtracted from the third row of F matrix, as shown below

R (2,1) =F (1,1)-F (3,1),

R (2,2) =F (1,2)-F (3,2),

R (2,3) =F (1,3)-F (3,3),

R (2,4) =(F1,4)-F (3,4).

The third row of R is adding the element of second and fourth

row of F matrix, as shown below:

R (3,1) =F (2,1) +F (4,1),

R (3,2) =F (2,2) +F (4,2),

R (3,3) =F (2,3) +F (4,3),

R (3,4) =(F2,4) +F (4,4).

The fourth row of R is subtracting the element of second row

and fourth row of matrix F, as shown below:

R (4,1) =F (2,1)-F (4,1),

R (4,2) =F (2,2)-F (4,2),

R (4,3) =F (2,3)-F (4,3),

R (4,4) =(F2,4)-F (4,4).

All addition and subtract are included in the matrix R below:

R=

Row1+Row 3 57.5+17.5=75 70+35=105 2.5+22.5=25 -20+-25=-45

Row 1-row 3 57.5-17.5=40 70-35=35 2.5-22.5=-20 -20—25=5

Row 2+ Row4 70+0=70 75+1=76 -8+-12=-20 5+-11=-6

Row 2- row 4 70-0=70 75-1=74 -8- -12=4 5- -1=16

The result is matrix R which one step short for complete

reversal:

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 6 (2018) pp. 3296-3414

© Research India Publications. http://www.ripublication.com

3407

R=

Col 1 Col 2 Col3 Col 4

75 105 25 -45

40 35 -20 5

70 76 -20 -6

70 74 4 16

The final step is column operations which is conducted on the

R matrix, the first column and the third column are add, then

first column and third column are subtracted. Furthermore, the

same for second column and fourth column. Hence the rule:

Add every other column and subtract every other column. All

the steps will be explained in the following:

The end result matrix we will call E matrix

E=

Col 1+Col 3 Col 1-Col 3 Col 2+Col 4 Col 2-Col 4

75+25=100 75-25=50 105+-45=60 105- -45=150

40+-20=20 40- -20=60 35+5=40 35-5=30

70+-20= 50 70- -20=90 76+-6=70 76 - -6 =82

70+4= 74 70-4=66 74+16=90 74-16 = 58

First step is to add every element in first column and second

column respectively, as follows:

E (1,1) =R (1,1) +R (1,3), E (2,1) =R (2,1) +R (2,3)

E (3,1) =R (3,1) +R (3,3), E (4,1) =R (4,1) +R (4,3)

The second column is the subtract operation which is conducted

as follows:

E (1,2) =R (1,1)-R (1,3), E (2,2) =R (2,1)-R (2,3)

E (3,2) =R (3,1)-R (3,3), E (4,2) =R (4,1)-R (4,3)

Third step is to add Col2 and column 4 as follows:

E (1,3) =R (1,2) +R (1,4), E (2,3) =R (2,2) +R (2,4)

E (3,3) =R (3,2) +R (3,4), E (4,3) =R (4,2) +R (4,4)

The fourth column is the subtract operation which is conducted

as follows:

E (1,4) =R (1,2)-R (1,4), E (2,4) =R (2,2)-R (2,4)

E (3,4) =R (3,2)-R (3,4), E (4,4) =R (4,2)-R (4,4)

WAVELET TREE

Wavelet Tree, a succinct data structure for storing a

compressed sequence developed by R. Grossi and A. Gupta in

2003 (Gross, Gupta, & Vitter, 2003). In the next section the

algorithm is shown along with and example that shows position

search, symbol search and Bottom-to-top search.

A) Build the Wavelet Tree Algorithm

The algorithm of the building a wavelet tree is recursive simple

algorithm as shown in figure 20. The example following the

algorithm will show how intuitive the algorithm is. The

following is the algorithm put simply:

Scan the alphabet of the text and encode the first half to zero

and the second half to one.

Group each 0-encoded symbol as sub tree.

Group each 1-encoded symbol as sub tree.

Reapply this to each sub tree recursively until there are only

leaves.

Figure 20. Build the Wavelet Tree algorithm.

B) Classical Example Wavelet Tree

Suppose we want to code the famous word "abracadabra", first

scan the word for the alphabets used in "abracadabra", we find

that the 5 letters are "abrcd". Next, split the letters "abrcd" into

two groups: "ab" and "rcd" code the first group to zero (0) and

the second group to one (1). Replace, the letters with the

respective code, as follows

a b r a c a d a b r a

0 0 1 0 1 0 1 0 0 1 0

Now we build the original tree, figure 21. At the root of the

tree is the previously code word as seen in the graph below:

split the word into two parts: part the "ab" letters as they are

shown in the root, and part with all "cdr" as shown in the root.

This operation will produce two subtrees: "abaaaba" coded

"0100010"and the subtree "rcdr " coded "0110". The first sub

tree will produce two leaves the "a" & "b" leaves. The second

subtree "rcdr" will be coded "0110" will produce the leaf "r"

and sub tree "cd" again code "01".

To make sure that our coding is right; we will ask the following

question, what is the letter in the 7th position? To answer the

question, we look at the 7th position value, it is "1". We at the

tree above at the branch labeled "1" and also count how many

1s before the 7th position. There are two (2) ones (1s) before

the 7th position. Now, follow the branch labeled "1" from the

root. The sub tree "rcdr" is located at the end of that branch.

Examine the subtree and count, the second one in the subtree,

and follow the branch labeled "1" while remembering how

many ones (1s) are before that digit "1". The branch will lead

to sub tree "cd", again examine the sub tree, find the first one

(1), and follow the branch labeled 1. The end leaf is "d" which

is the answer we are look for.

Figure 21. The tree produced from the Wavelet Tree

algorithm.

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 6 (2018) pp. 3296-3414

© Research India Publications. http://www.ripublication.com

3408

Another example, find the letter in the 10th position? First find

the value of the 10th position, which is "1" and there are 3

ones"1s" before it. Next, move down the branch labeled 1 and

in the coded tree find the 4th digit, the 4th digit is "0". Follow

the branch labeled "0", at the end of the branch a leaf of letter

"r" is found. Hence, the letter in the 10th position in text is the

letter "r".

C) Bottom-To-Top Search

Find the second letter "b" in the coded word using the tree.

Start with the leaf labeled "b", climb up the branch, the branch

is labeled "1", now look for the 2ed "1" in the sub tree. The

position of the second "1" in the subtree is 6th position. Again,

climb once more through the branch labeled "0"and remember

the number 6. Once you reach, the higher subtree count to the

6th zero in the code of the higher sub tree.

Another example, find the 5th "a" in the code. First, we start

with leaf "a", and climb up the branch "0", we find the 5th zero

it is in the 7th position. We climb again through the branch

which labeled zero. Now we look for the 7th zero in the code

which the last bit and it is the code for the 5th "a".

DELTA ENCODING

Delta encoding is also known as: Delta compression and Data

Differencing. Simple delta encoding is transmitting or storing

data in the form of differences (deltas) between sequential data

rather than the value of data itself. Storing and transmitting the

differences lightens the load and reduces the amount of data

variance. The algorithm, figure 22, is also a very simple

intuitive algorithm. To store or transmit two values 99, 100 the

transmitted data will be 99, 1, hence transmitting 3 digits rather

than 5 digits. A simple example of using Delta encoding is

consider the following sequence 2 4 6 8 9 10 7 will stored as

follows: 2 2 2 2 1 1 -3 basically the value stored is the previous

value subtracted from the consequent value hence the name

Delta.

For i=2 to end of sequence

 Sequence[i] = Sequence[i-1]-Sequence[i]

End loop

Figure 22. Delta algorithm.

RICE & GOLOMB CODING

Rice coding was developed by Robert F. Rice in 1979 and is

(Golomb, 1966) a subset from Golomb coding which

developed by Solomon W. Golomb in 1966 as an alternative to

Huffman coding (Golomb, 1966). Rice coding is an important

yet simple algorithm. Rice coding is used in: shorten, FLAC,

Apple Lossless, MPEG-4 ALS, JPEG-LS, and FELICS. Hence

it is imperative to discuss Rice coding. Rice coding is a subset

of Golomb codes, when M is power 2 type.

A) The Algorithm

The algorithm below is a simplest version of the Rice &

Golomb algorithm (Rice, 1979). The algorithm, figure 23, is

best seen through the example as follows.

B) The Rice Coding in Simple Steps.

The following is an example that shows the algorithm live

work. The simple operation of breaking a number into quotient

and remainder. Suppose, N is presented, where N is the

message needs to be coded given an M. M is a number usually

given for such a problem.

Suppose that M=10.

N: the message needs to be codded.

First, Divide N to quotient (Q) and remainder (R). The Q is

represented by unary coding followed by zero. The R is

represented by binary.

𝑄 = ⌊
𝑁

𝑀
⌋

R= N mod M

Second, calculate 𝑏 = ⌈log2 𝑀⌉ then check the following:

1. Fix the parameter M to an integer value.

2. For N, the number to be encoded, find

quotient = q = int[N/M]

remainder = r = N modulo M

3. Generate Codeword

1. The Code format: <Quotient Code><Remainder

Code>, where

2. Quotient Code (in unary coding)

1. Write a q-length string of 1 bits

2. Write a 0 bit

3. Remainder Code (in truncated binary encoding)

1. If M is power of 2, code remainder as binary format.

So log2(M) bits are needed. (Rice code)

2. If M is not a power of 2, set 𝑏 = ⌈log2 𝑀⌉

1. If R < (2b-M) then code R in (b-1) binary Bits

2. If R>= (2b-M) then code the number R+2b-M in

binary representation using b bits.

Figure 23. Golomb & Rice algorithm (Rice, 1979).

 If M is of power 2, code R in binary format,

so log2 𝑀 bits are needed (Rice)

 If R< 2b-M Code R in b-1 binary bits.

 If R >= 2b-M code the number R+2b-M in binary

representation using b bits.

To calculate 𝑏 = ⌈log2 10⌉=4

If R < (24-10 =6) then code R in (b-1) which is (3) binary Bits

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 6 (2018) pp. 3296-3414

© Research India Publications. http://www.ripublication.com

3409

If R>= (24-10 =6) then code the number R+24-10 in binary

representation using b bits.

QUOTIENT REMAINDER

Q Output Bits R Offset Binary Output bit

Binary

Note

0 0 0 0 0000 000 R<6

Rule 1

Use 3 bits

1 10 1 1 0001 001

2 110 2 2 0010 010

3 1110 3 3 0011 011

4 11110 4 4 0100 100

5 111110 5 5 0101 101

6 1111110 6 6+6=12 1100 1100 R>=6

Rule 2

Use 4 bits & Code R+6

 7 7+6=13 1101 1101

N 111..110 8 8+6=14 1110 1110

 9 9+6=15 1111 1111

For example, if the coded word is 42 then the quotient is 4 and

the R is 2, hence the coded word is <11110>;<010>. Notice

that in the remainder less than 6 the first rule is invoked and the

R is coded using b-1 bits or if the word is 67, then Q=6 and

R=7, hence the coded word is <1111110>;<1101>. Notice that

since the remainder greater than 6 the second rule is invoked

and the coded R is the R+24-10 which is the offset =13 in other

words 7+16-10=13 offset.

To decode a coded word, say "11111101111" given M=10 we

do the following?

 First, we can guess that the Q= 6 since the word started

with 6 ones.

 Second, we can calculate b from the given M, which

is b=4.

 To reverse the rules 1 and 2 since the R is 4 bits' length

then the code must have used the second rule. Hence

the R+6=15 which is 9. Hence the coded word is 69.

TUNSTALL CODING

Tunstall Coding was developed by Brian Parker Tunstall as part

of his PhD thesis in 1967. Tunstall coding builds a tree for all

possible combinations of the symbols used in a text. The tree

is built according the frequency of the symbols hence the

symbol with highest probability is to branch out in the tree. In

the next two sections: the algorithm, figure 24 is explained and

an example that shows the work of the algorithm. The variable

u: is an input string. The D is the constructed dictionary as tree

probabilities; each branch is associated with a letter from input

alphabets.

The C is upper bound to the size of the dictionary.

D := tree of |u| leaves, one for each letter in u.

 While |D|<C:

 Convert most probable leaf to tree with |u| leaves.

Figure 24. Tunstall Coding algorithm.

For example, to code the following text "Hello world." using

Tunstall algorithm the following is to be done: First, scan the

text and find the alphabet and calculate the frequency of each

character, as shown below in table 4:

Table 4. Frequency of Tunstall's scan.

Letter Frequency in text Portability

H 1 1/12

E 1 1/12

L 3 3/12

0 2 2/12

W 1 1/12

R 1 1/12

d 1 1/12

Sp 1 1/12

period 1 1/12

Second, since there are |u| = 9 then each symbol can be

represented with log2 9 = 4 bits, and build a tree with one root

and 9 branches as figure 25:

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 6 (2018) pp. 3296-3414

© Research India Publications. http://www.ripublication.com

3410

Figure 25. Tree of Tunstall Coding.

Next, we branch for the leave L since it has the highest

probability. We don't stop branching since the number of leave

16 >28-9. But the dictionary is as follows:

H 00000

E 00001

LL 00010

LE 00011

LH 00100

LO 00101

LW 00110

LR 00111

LD 01000

L SP 01001

L PERIOD 01010

0 01011

W 01100

R 01101

d 01110

Sp 01111

period 10000

Looking back at the text "hello world" of length 12 symbols,

each symbol must have been coded with 8 bits. The total coded

should have been 12*8=96 bits. Using Tunstall coding each

symbol was coded with 5bits and the symbol "LL" in the word

"hello" was also code by 5 bits, hence the total number of bits

is 5*8+5=45 bits. The compression ratio is 1-45/96=1-

0.468=53%.

HYBRID TYPES

Three hybrid compression algorithms are discussed in this

section: bzip2, deflate, Run-Length Golomb-Rice (RLGR)

A) bzip2

Hybrid types are quite common in the compression world.

Hybrid types are the compression algorithms that use more than

one method and technique and algorithms to come up with

software that compresses using the advantage of each

algorithm. An example of hybrid types is bzip2. bzip2 is a mix

of compression algorithms and methods, bzip2 uses Run-

Length Encoder, Burrows-Wheeler Transform, Move-To-Front

Transform, and Huffman code. The steps carried out as follows

according to Seward (Seward, 2000):

bzip2 algorithm

The algorithm or mix of algorithms named bzip2, figure (26):

DEFLATE

DEFLATE invented in 1993 by Phil Katz. Deflate is basically

LZ&& and LZSS and Huffman Code. Hence, DEFLATE is a

combination of three compression methods.

Run-Length Golomb-Rice (RLGR)

Run-Length Golomb-Rice (ARLGR) developed and used in

Microsoft research center was a natural development to Rice &

Golomb coding which is really adding the algorithms together.

Hence, ARLGR is considered hybrid algorithm. The ARLGR

was developed by Malvar in 2006 (Malvar, 2006).

GENEALOGY TREE

The following tree, figure 27, tells the story of 40 compression

algorithms. Starting with Haar Wavelete transform (1910),

Arithmetic coding of Shannon developed in 1948, then Fano in

1949. After Fano's Peter's version was developed and Run

Length Encoding in 1967. In 1973 published another version

named Enumerative Coding. In 1976 (Rissanen, 1976)

introduced Last in First Out (LIFO) version of the algorithm.

In 1976 Pasco (Pasco, 1976) introduced the FIFO version of the

algorithm. In 1979 "stream" code was discovered by Rubin

(Rubin, 1979) as an improvement of Pasco's work. Martin

(1979) and Jones (1981) developed P-based FIFO arithmetic

codes (Jones, 1981) and (Martin, 1979). In 1977 LZ was first

developed in 1977 by Jacob Ziv and Abraham Lempel, and was

name LZ77. In 1978, both Ziv and Lemple, developed the

algorithm and named it LZ78. Many LZ based algorithms were

developed over the years: in 1981 LZR was developed, in 1982

LZSS, in1984 LZW, in 1985 LZJ, LZC, and LZZMW; in 1987

LZB, LZH, LZT. In 1988 LZAP was developed, in 1991

LZRW, in 1993 DEFLATE, in 1994 LZS, in 1995 LZP, &

LZX, in 1996 LZO, in 1998 LZMA & LZJB, in 2006 LZWL in

2009 LZMA2 and in 2011 LZ4. Move to Front (MTF) was

developed in 1980. MTF was first published by Ryabko and is

used as an extra step in encoding algorithm to improve the

performance of entropy encoding techniques of compression.

Chronologically LZS and Burrows-Wheeler Transform were

developed. Also, table 5 recaps the results of researching the

12 coding algorithms.

CONCLUSION

This paper presented the pillars of compression algorithms,

methods and techniques. The paper counted more than 40

compression algorithm: Arithmetic Coding - SHANNON

(1948), Huffman coding (1952), FANO (1949), Run Length

Encoding (1967), Peter's Version (1963), Enumerative Coding

(1973), LIFO(1976), FiFO Pasco(1976), LZ77(1977), Move

To Front (MTF)Transform (1980), LZ78(1978), LZR (1981),

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 6 (2018) pp. 3296-3414

© Research India Publications. http://www.ripublication.com

3411

LZSS (1982), LZJ (1985), LZC(1985), LZZMW(1985), LZB

(1987), LZH (1987), LZT (1987), LZAP (1988), LZRW

(1991)), DEFLATE(1993), LZS(1994), LZP(1995), LZX

(1995), LZO (1996), LZMA, LZJB, LZWL(2006),

LZMA2(2009),

First, a Run-Length Encoder is applied to the data.

Next, the Burrows-Wheeler Transform is applied.

Then, a Move-To-Front Transform is applied with the intent

of creating a large number of identical symbols forming runs

for use in yet another Run-Length Encoder.

Finally, the result is Huffman coded and wrapped with a

header

Figure 26. bzip2 Algorithm (Seward, 2000).

Table 5. The summery table of 12 coding algorithms, where n is length of text.

Coding Algorithm Year Time complexity Developer Philosophy

SHANNON–FANO CODE 1948

1949

O (n + |symbols| * log|

symbols |)

Shannon

Fano

Recursive Frequency &

Tree

Arithmetic Coding O(|symbols|+n) Probability Split

intervals

Frequency

HUFFMAN CODE 1952 O (|symbols| log |symbols|) David A. Huffman Priority list &

frequency

Tree

LZ 1977 O(n) Jacob Ziv and

Abraham Lempel

Dictionary

LZSS 1982 James Storer and

Thomas

Szymanski

Dictionary with

offset

RUN LENGTH

ENCODING (RLE)

1967 O(n) Count of each

repeated symbol

BURROWS- WHEELER

TRANSFORM

1994 O (n log n) BURROWS-

WHEELER

Matrix warp

MOVE TO FRONT

(MTF)TRANSFORM

1980 O(n) Ryabko Queue of

symbols & their

order

Haar Wavelete transform 1910 O(n) Haar 2 functions & 2

unknowns

Matrix 2X2

WAVELET TREE 2003 O (n log symbols) R. Grossi and A.

Gupta

Binary tree

DELTA ENCODING O(n) Difference

between two

symbols

RICE & GOLOMB

CODING

1967

1979

 Golomb & Rice Mod &

remainder

TUNSTALL CODING 1967 O (symbols log symbols) Tunstall Tree &

Maximum

probability of

symbol

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 6 (2018) pp. 3296-3414

© Research India Publications. http://www.ripublication.com

3412

LZ4(2011), Burrows- Wheeler Transform (1994), Haar (1910),

Wavelet tree (2003), Stream (1979), P-Based FIFO (1981),

Delta Encoding, Rice & Golomb Coding (1966,1979), Run-

Length Golomb-Rice (RLGR) (2007), Tunstall coding (1967).

Although each algorithm is an independent in its own right,

still; these algorithms interrelate genealogically and

chronologically. Hence, the major stubs in the developed tree

of the compression algorithms are 12. The tree is presented in

the last section of the paper after presenting the 12 main

compression algorithms each with a practical example.

The paper first introduced Shannon–Fano code showing its

relation to Shannon (1948), Huffman coding (1952), Fano

(1949), Run Length Encoding (1967), Peter's Version (1963),

Enumerative Coding (1973), LIFO (1976), FiFO Pasco (1976),

Stream (1979), P-Based FIFO (1981). Two examples are

presented one for Shannon-Fano Code and the other is for

Arithmetic Coding. Next, Huffman code was presented with

simulation example and algorithm. The third is Lempel-Ziv-

Welch (LZW) Algorithm which hatched more than 24

algorithms. The LZW family was presented and a working

example was given. The fourth is Run Length Encoding (RLE)

which essentially codes using frequency and position. The fifth

is Burrows-Wheeler Transform. The sixth is Move-to-Front

(MTF) Transform. The seventh is Haar the eighth is wavelet

tree. The ninth is the Delta Encoding, and the tenth is Rice &

Golomb Coding. The eleventh is Tunstall coding. The twelfth

is a hybrid example bzip2 which is a mix of many algorithms

& DEFLATE algorithm which is also a mix of three algorithms.

The last example of the hybrid is Run-Length Golomb-Rice

(RLGR).

The paper then presented the genealogy tree suggested by the

paper. The tree shows the interrelationships between the 40

algorithms. Also, the tree showed the chronological order the

algorithms came to life. The time relation shows the

cooperation among the scientific society and how they

amended each other's work. Furthermore, novice users of the

algorithms and researchers can find a reference where they can

use this research as spring board for future work. The

researcher, wanted to accompany each algorithm with a

classical example to make understanding easier and recalling

the algorithm much faster with an example rather than an

algorithm.

REFERENCES

Abramson, N. (1963). Information Theory and Coding. New

York: McGraw-Hill Book Co., Inc.

Burrows, M., & Wheeler, D. J. (1994). A block sorting

lossless data compression algorithm. Digital Systems

Research Center. Palo Alto, California: Digital

Equipment Corporation. Retrieved from

http://www.hpl.hp.com/techreports/Compaq-

DEC/SRC-RR-124.pdf

Cover, T. M. (1973). Enumerative Source Coding. IEEE

Transactions on Information Theory, 19(1), 73 - 77.

doi:10.1109/TIT.1973.1054929

Cslearning. (2013, Dec 19). Lempel-Ziv-Welch Compression

Algorithm – Tutorial. Retrieved from

www.youtube.com:

https://www.youtube.com/watch?v=j2HSd3HCpDs

Fano, R. (1949). The transmission of information.

MASSACHUSETTS INSTITUTE OF

TECHNOLOGY. Cambridge (Mass.), USA:

Research Laboratory of Electronics at MIT.

Retrieved from https://www.hcs64.com/files/fano-

tr65-ocr-only.pdf

Golomb, S. (1966). Run-Length Encodings. IEEE

Transactions on Information Theory, 12(3), 399-401.

doi:10.1109/TIT.1966.1053907

Gross, R., Gupta, A., & Vitter, J. (2003). High-order entropy-

compressed text indexes. SODA '03 Proceedings of

the fourteenth annual ACM-SIAM symposium on

Discrete algorithms (pp. 841–850). Baltimore,

Maryland: Society for Industrial and Applied

Mathematics. Retrieved from

https://dl.acm.org/citation.cfm?id=644108.644250

Huffman, D. (1952). A Method for the Construction of

Minimum-Redundancy Codes. Proceedings of the

IRE. 40 (30), pp. 1098–1101. IEEE .

Jones, C. B. (1981, May C. B. , , IT-27,280-291 (May 1981)).

An Efficient Coding System for Long Source

Sequences. IEEE Trans. Info. Theory, 280-291.

Langdon, G. (1984, March). An Introduction to Arithmetic

Coding. IBM Journal of Research and Development ,

28(2), 135-149. doi:10.1147/rd.282.0135

Lippert, R., Mobarry, C., & Walenz, B. (2005, October). A

space-efficient construction of the burrows wheeler

transform for genomic data. Journal of

Computational Biology, 12(7), 943-51.

doi:10.1089/cmb.2005.12.943

Malvar, H. (2006). Adaptive run-length/Golomb-Rice

encoding of quantized generalized Gaussian sources

with unknown statistics. DCC '06 Proceedings of the

Data Compression Conference (pp. 23-32).

Washington, DC, USA: IEEE Computer Society .

doi:10.1109/DCC.2006.5

Martin, G. N. (1979). Range Encoding: an Algorithm for

Removing Redundancy from a Digitized Message.

Video and Data Recording Conference.

Southampton, England,: presented at the , July .

Retrieved from

http://sachingarg.com/compression/entropy_coding/r

ange_coder.pdf

Pasco, R. (1976). Source Coding Algorithms for Fast Data

Compression. Ph.D. Thesis. CA, USA: Department

of Electrical Engineering, Stanford University.

Retrieved from

https://www.richpasco.org/scaffdc.pdf

Rice, R. F. (1979). Some Practical Universal Noiseless

Coding Techniques. California Institute of

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 6 (2018) pp. 3296-3414

© Research India Publications. http://www.ripublication.com

3413

Technology . Pasadena: Jet Propulsion Laboratory.

Retrieved from

http://citeseerx.ist.psu.edu/viewdoc/download?doi=1

0.1.1.453.6684&rep=rep1&type=pdf

Rissanen, J. (1976, May). Generalized Kraft Inequality and

Arithmetic Coding. IBM Journal of Research and

Development, 20(3), 198-203.

doi:10.1147/rd.203.0198

Rubin, F. (1979, Nov). Arithmetic Stream Coding Using

Fixed Precision Registers. IEEE Transactions on

Information Theory, 25(6), 672-675.

doi:10.1109/TIT.1979.1056107

Ryabko, B. Y. (1980). Data compression by means of a "book

stack”. Problems of Information Transmission, 16(4),

265–269. Retrieved from

http://www.mathnet.ru/links/d9830cf76762a2b414a7

9938f7102090/ppi1458.pdf

Schalkwijk, J. (1972, May). An Algorithm for Source Coding.

IEEE Transactions on Information Theory, 18(3),

395 - 399. doi:10.1109/TIT.1972.1054832

Seward, J. (2000, March). bzip2 and libbzip2. Retrieved from

bzip2 Manual: http://www.bzip.org/1.0.5/bzip2-

manual-1.0.5.pdf

Shannon, C. (1948, July). A Mathematical Theory of

Communication. The Bell System Technical Journal,

27, 379–423. doi:10.1002/j.1538-

7305.1948.tb01338.x

STORER, J. A., & SZYMANSKI, T. G. (1982, Oct). Data

compression via textual substitution. Journal of the

ACM (JACM), 29(4), 928-951.

doi:10.1145/322344.322346

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 6 (2018) pp. 3296-3414

© Research India Publications. http://www.ripublication.com

3414

Figure 27. Genealogy Tree.

Arithmetic Coding - SHANNON
(1948)

Huffman coding
(1952)

Tunstal

1967

FANO
(1949)

Run Length
Encoding

(1967)

Rice & Golomb

1966 &1979

Peter's Version
(1963)

Enumerative
Coding (1973)

LIFO
(1976)

FiFO
Pasco(1976)

1977

LZ Family

LZ77(1977)

Move To Front
(MTF)Transform

(1980)

LZ78
(1978)

LZR (1981)

LZSS (1982)

(1985)

LZJ LZC LZZMW 1987

LZB LZH LZT
LZAP

(1988)

LZRW
(1991)

DEFLATE
(1993)

LZS (1994)

1995

LZP LZX
LZO

(1996)

1988

LZMA LZJB 2006

LZMA2
(2009)

LZ4 (2011)

LZW RLGR

Wavelet

2003

Burrows- Wheeler
Transform (1994)

Stream
(1979)

P-Based
FIFO(1981)

Haar

1910

