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Abstract 

This paper presents the pillars of lossless compression 

algorithms, methods and techniques.  The paper counted more 

than 40 compression algorithms.  Although each algorithm is 

an independent in its own right, still; these algorithms 

interrelate genealogically and chronologically.  The paper then 

presents the genealogy tree suggested by researcher.  The tree 

shows the interrelationships between the 40 algorithms.  Also, 

the tree showed the chronological order the algorithms came to 

life.  The time relation shows the cooperation among the 

scientific society and how the amended each other's work.  The 

paper presents the 12 pillars researched in this paper, and a 

comparison table is to be developed.  Furthermore, novice users 

of the algorithms and researchers can find a reference where 

they can use this research as spring board for future work.  The 

researchers, wanted to accompany each algorithm with a 

classical example to make understanding easier and recalling 

the algorithm much faster with an example rather than an 

algorithm. 

Keywords: Compression algorithms, Haar, Huffman, LZW, 

bizip2, RLE, MTF, SHANNON, Coding and Information 

Theory. 

 

INTRODUCTION 

This paper presents the pillars of lossless compression 

algorithms, methods and techniques.  In compression 

algorithms, there are two types lossy and lossless.  The lossless 

compression algorithms keep the file in its original state before 

and after compression.  On the other hand, lossy compression 

algorithm the file loses some of its quality after the 

compression process.  The paper counted more than 40 

compression algorithm: Arithmetic Coding - SHANNON 

(1948), Huffman coding (1952), FANO (1949), Run Length 

Encoding (1967), Peter's Version (1963), Enumerative Coding 

(1973), LIFO(1976), FiFO Pasco(1976), LZ77(1977), Move 

To Front (MTF) Transform (1980), LZ78(1978), LZR (1981), 

LZSS (1982), LZJ(1985), LZC(1985), LZZMW(1985), 

LZB(1987), LZH(1987), LZT(1987), LZAP (1988), LZRW 

(1991)), DEFLATE(1993), LZS(1994), LZP(1995), 

LZX(1995), LZO(1996), LZMA, LZJB, LZWL(2006), 

LZMA2(2009), LZ4(2011), Burrows- Wheeler Transform 

(1994), Haar (1910), Wavelet tree(2003), Stream(1979), P-

Based FIFO(1981), Delta Encoding, Rice & Golomb Coding 

(1966,1979), Run-Length Golomb-Rice (RLGR) (2007), 

Tunstall coding (1967).  Although each algorithm is an 

independent in its own right, still; these algorithms interrelate 

genealogically and chronologically.  Hence, the major stubs in 

the developed tree of the compression algorithms are 12.  The 

tree is presented in the last section of the paper after presenting 

the 12 main compression algorithms each with a practical 

example. 

The paper first introduces Shannon–Fano code showing its 

relation to Shannon (1948), Huffman coding (1952), FANO 

(1949), Run Length Encoding (1967), Peter's Version (1963), 

Enumerative Coding (1973), LIFO (1976), FiFO Pasco (1976), 

Stream (1979), P-Based FIFO (1981).  Two examples are to be 

presented one for Shannon-Fano Code and the other is for 

Arithmetic Coding.  Next, Huffman code is to be presented 

with simulation example and algorithm.  The third is Lempel-

Ziv-Welch (LZW) Algorithm which hatched more than 24 

algorithms.  The LZW family is to be presented and a working 

example is given.  The fourth is Run Length Encoding (RLE) 

which essentially codes using frequency and position.  The fifth 

is Burrows-Wheeler Transform.  The sixth is Move-to-Front 

(MTF) Transform.  The seventh is Haar and the eighth is 

wavelet tree.  The ninth is the Delta Encoding, and the tenth is 

Rice & Golomb Coding.  The eleventh is Tunstall coding.   The 

twelfth is a hybrid example bzip2 which is a mix of many 

algorithms & DEFLATE algorithm which is also a mix of three 

algorithms.  The last example of the hybrid is Run-Length 

Golomb-Rice (RLGR). 

The paper will present the genealogy tree suggested by the 

authors.  The tree will show the interrelationships between the 

40 algorithms.  Also, the tree will show the chronological order 

the algorithms came to life.  The time relation shows the 

cooperation among the scientific society and how they 

amended each other's work.  Furthermore, novice users of the 

algorithms and researchers can find a reference where they can 

use this research as spring board for future work.  The 

researcher, wanted to accompany each algorithm with a 

classical example to make understanding easier and recalling 

the algorithm much faster with an example rather than an 

algorithm. 

 

SHANNON–FANO CODE 

In 1948 Shannon proposed a technique in an article titled "A 

mathematical Theory of Communication" (Shannon, 1948) and 

in 1949 Fano proposed a method that was published in a 

technical report titled "The transmission of information" (Fano, 

1949).  Hence, a term was dubbed as "Shannon-Fano Code".  

Peter Elias improved the algorithm in unpublished work that 

was later described by (Abramson, 1963).  In 1973 (Cover, 

1973) published another version named Enumerative Coding.  

In 1976 (Rissanen, 1976) introduced Last in First Out (LIFO) 

version of the algorithm.  In 1976 Pasco (Pasco, 1976) 

introduced the FIFO version of the algorithm.  In 1979 "stream" 
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code was discovered by Rubin (1979) as an improvement of 

Pasco's work.  Martin (1979) and Jones (1981) developed P-

based FIFO arithmetic codes (Jones, 1981) and (Martin, 1979).  

The algorithm Shannon-Fano code is explained in the next 

section by showing the algorithm and an example is given in 

section A and section B. 

A) Shannon–Fano Algorithm 

Shannon-Fano algorithm is presented in the five steps below; 

the algorithm is recursive in nature and easily coded and 

understood. 

1. Scan text to be compressed and count the occurrence 

of all characters. 

2. Sort the lists of symbols according to frequency, with 

the most frequently occurring symbols at the left and 

the least common at the right. 

3. Divide the list into two parts, with the total frequency 

counts of the left part being as close to the total of the 

right as possible. 

4. The left part of the list is assigned the binary digit 0, 

and the right part is assigned the digit 1.  This means 

that the codes for the symbols in the first part will all 

start with 0, and the codes in the second part will all 

start with 1. 

5. Recursively apply the steps 3 and 4 to each of the two 

halves, subdividing groups and adding bits to the 

codes until each symbol has become a corresponding 

code leaf on the tree. 

B) Classical Example 

This is a classical of example of Shannon–Fano algorithm 

(Shannon, 1948), consider the following text 

ABRACADABRA ABRACADABRA. 

The first step is "Scan text to be compressed and count the 

occurrence of all characters".  The seven symbols which can be 

coded have the following, table 1, is frequency table: 

Table 1. Frequency table of the scanning phase of the 

algorithm. 

Character Frequency Probabilities code 

A 10 0.416667 00 

R 4 0.166667 01 

B 4 0.166667 100 

C 2 0.083333 101 

D 2 0.083333 110 

SP 1 0.041667 1110 

period 1 0.041667 1111 

 

The second step according to the algorithm is show in graph 

below and marked as step #1.  As shown, the priority list and 

the character are sorted according to frequency in descending 

order.  In figure 1 step#2, the list is broken into two groups as 

mentioned in the algorithm above, with the total frequency 

counts of the left part being as close to the total of the right as 

possible.  Hence the first sub list composed of letter A and letter 

R with a total frequency is 14, while the second sub list is 

composed of B, C, D, SP, Period with total frequency is 10. 

In step #3 each sub list is further divided into two sub lists.  

Each list must adhere to algorithm condition (the total 

frequency counts of the left part being as close to the total of 

the right as possible).  The first list is further divided into two 

leaves with frequency 10 and 4 respectively.   

 

 

 

Figure 1:  Shannon–Fano algorithm tree of the example steps 

1 & 2 & 3. 

 

The second list is divided into two lists, the first one is letters 

B & C with total frequency 6 and the second list is D, SP, Period 

with total frequency of 4.  In step#4, each sub list is further 

divided in accordance to previously mention condition, see 

figure 2.  The B &C list is divided into two leaves; the second 

list (D, SP, and Period) is further divided into leaf D with 

frequency 2 and list SP & Period with total frequency 2.  In the 

step #5, the last sub list SP & Period is divided into two leaves 

as show in figure 3.  The product is a binary tree, the tree 

branches are labeled according to algorithm (left branch is 

labeled 0, and right branch is labeled 1). 

 

Figure 2. Operations of step #4. 
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Figure 3.  Shannon–Fano algorithm tree of the example steps 

5. 

 

The text length is 24 letters usually coded using 8-bit fixed 

length which is 24*8 = 192 bit.  Using Shannon–Fano code the 

24 letters were coded using 60 bits as shown in table 2.  Hence, 

the savings are 1- 60/192=.6875 which is almost 68.75%.   

Table 2. Table showing the savings using Shannon-Fano 

algorithm. 

Character Frequency Code 

length 

Frequency X Code 

length 

A 10 2 10*2 

R 4 2 4*2 

B 4 3 4*3 

C 2 3 2*3 

D 2 3 2*3 

SP 1 4 1*4 

period 1 4 1*4 

Total bit   60 

 

C) Example of Arithmetic Coding 

As an example of arithmetic coding, the following example is 

presented.  Code the word "COMCA" (Langdon, 1984) 

Symbol Frequency Probability Interval 

C 2 0.4 [0-0.4] 

O 1 0.2 [0.4-0.6] 

M 1 0.2 [0.6-0.8] 

A 1 0.2 [0.8-1] 

TOTAL 5 1  

 

 

Figure 4.  Step by step Arithmetic Coding 

 

Since the letter, C is the first of the required word we start by 

expanding the probability line number see figure 4.   

(0.4-0) *0.4+0=0.16 

(0.4-0) *0.2+0.16=0.24 

(0.4-0) *0.2+0.24=.32 

The second symbol is O so we start expanding the limits of the 

O [0.16, 0.24] 

(0.24-0.16) *0.4+0.16=0.192 

(0.32-0.24) *0.2+0.192=.208 

(0.4-0.32) *0.2+0.208=0.224 

Then we move on to letter M, and start limit with 0.208 

(0.208-0.192) *0.4+0.208=0.2144 

(0.224-0.208) *0.2+0.2144=0.2176 

(0.24-0.224) *0.2+0.2176=0.2208 

Then letter C and start limit with 0.208 

(0.2144 - 0.208) * 0.4 + 0.208 = 0.20928 

(0.2208 - 0.2176) * 0.2 + 0.2092 8= 0.20992 

(0.224 - 0.2208) * 0.2 + 0.20992 = 0.21056 

Next is the letter A, see figure 4, the Lower limit is 0.21056 

(0.20992-0.20928) * 0.4 + 0.21056=0.210816 

(0.21056-0.20992) * 0.2 + 0.210816=0.210944 

(0.2144-0.21056) *0.2 + 0.210944=0.211712 

The coded word for COMCA is 0.2144, see figure 4.  To 

decode the word back we decode 0.2144 as follows: 

CR=upper limit - Lower limit of current interval……..(1) 

ES=ES - lower limit of current interval………………(2) 

ES=ES/CR………………….…………………………(3) 

Since the coded word is 0.2144 hence the interval [0-0.4] 

applies which belongs to letter C. 

CR = 0.4 - 0.0=0.4 

ES = 0.2144 - 0.0 

ES = 0.2144/0.4=0.536 

Since ES is in interval [0.4-0.6] the letter is O 

CR = 0.6-0.4 = 0.2 

ES = 0.536-0.4 = 0.136 

ES = 0.136/0.2 = 0.68 

Since ES is in interval [0.6-0.8] then the decoded letter is M 

CR=0.8-0.6-0.2 

ES=0.68-0.6=0.08 

ES=0.08/0.2=0.4 

Since ES is in interval [0.0-0.4] then the decoded letter is C 
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CR=04-0.0=0.4 

ES=0.4-0.0=0.4 

ES=0.4/0.4=1 

Since ES is in interval [0.8-1.0] then the decoded letter is A 

 

HUFFMAN CODE  

Huffman coding is a technique used to compress files for 

transmission; it is a variable-length encoding/compression 

scheme.  Proposed by Dr.  David A. Huffman in 1952 in a paper 

titled “A Method for the Construction of Minimum 

Redundancy Codes” (Huffman, 1952).  The technique uses 

statistical coding (most frequently used symbols have shorter 

code words).  The technique uses several data structures: 

queues, trees, etc.  In the next section the algorithm is presented 

and explained using an example. 

A) Huffman Code Algorithm 

Huffman Code algorithm is presented in the six steps below, 

the algorithm will produce the tree shown in figure 5, and the 

algorithm is easily coded and understood. 

  1. Scan text to be compressed and count the occurrence of 

all characters. 

  2. Create priority list: Sort or characters based on their 

frequency in text. 

  3. Build Huffman code tree based on prioritized list. 

  4. Perform a traversal of tree to determine all code words. 

  5. Scan text again and create new file using the Huffman 

codes. 

  6. send coded file and the tree for decoding 

   

B) Classical Example 

To fully understand Huffman code, an example is presented 

here. Consider the following text: "ABRACADABRA 

ABRACADABRA."  The first step is "Scan text to be 

compressed and count the occurrence of all characters", the 

following table of frequency will result from applying the first 

step of the algorithm: 

Character Frequency 

A 10 

R 4 

B 4 

C 2 

D 2 

SP 1 

period 1 

 

The second step according to the algorithm is shown in figure 

5 below and marked as step #1.  As shown, the priority list and 

the character are sorted according to frequency in ascending 

order. 

 

Figure 5.  Steps 1, 2 and three explained graphically. 

 

In step#2, choose the lowest frequency nodes and co-join the 

two with one node and add their frequency to be the frequency 

of the new node.  In this case, the space and period each has 

frequency of 1, the new node has the frequency 2, see figure 5.  

In step #3, insert the new node before the nodes of D & C, both 

have frequency of 2, figure 5. 

 

Figure 6. Operations carried out in step #4 D & C,  

and step #5. 

 

In step #4, repeat what happened in step #2, picture the first two 

nodes with lowest frequency in the queue.  Co-join the two 

node C &D in one node and the new node frequency is 4, see 

figure 6 step # 4.  Step #5, insert the new node in the queue 

before “R” and after node “A”, see figure 6. 

 

Figure 7. Operations of step # 6 and step # 7. 
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Step #6, co-join the SP and period with count=2 with the B 

count=4 the sum of the count is 6 now, see figure 7.  In 

preparation for step #7.  In step#7 The sub-tree of count=6 is 

put in queue between the A of count=10 and the subtree of 

count=6, see figure 7. 

 

Figure 8. Operations of step # 8 and step #9. 

In step # 8, co-join the r with count =4 and the D-C subtree with 

count=4, the total count is shown in step# 9 figure 8.  In step# 

9, new count is set for the R and the sub-tree (D-C).  the new 

count is 8.   

 

Figure 9. Operations of step # 10 and step #11. 

 

 

Figure 10. The operations in step # 12step #13. 

 

In step # 9 the new sub-tree with count=8 is now to be placed 

after the A of count=10, as seen in figure 8.  The Sub tree is put 

in the queue after the A with count=8, while count of the A is 

greater than 8, it is 10, as seen in figure 9. 

In step #11, the two sub-trees are co-joined: the first with 

count=6 and the second subtree with count=8.  The total is 14 

as seen in in figure 9.  The step # 12, the new sub-tree of 

count=14, is but in the queue before the A of count=10.  As 

seen in figure 10.  In step#13, co-join the two sub-trees the leaf 

A with count =10 and the sub-tree with count=14,  

After going through all 13 steps, the final tree appears as seen 

in figure 11.  Now each letter is coded according to the binary 

branches value.  The A is coded to be 0, the SP is coded as 

1000, the period (.) is coded as 1001, the B with more frequency 

is coded as 101, the R with frequency 4 is coded as 110, the D 

with frequency is 2 is coded as 111, the C with frequency 2 is 

coded as 1111.  Now each letter in the coded word is replace 

by its code.  The A is replaced by 0s, the B with 101, the R with 

110, the D with 111, The C with 1111, the period with 1001 

and the space with 1000.  The process is seen in figure 11. 

 

Figure 11.  Huffman coding, the final tree of the code. 

 

One can conclude that the letter with highest frequency is 

replaced with shortest code.  For example, A with highest 

frequency (10) is coded by one bit which is (0).  While the letter 

with least frequency like the period and SP are, both coded with 

4 bits 1001and 1000 respectively.  Hence the intended word 

"ABRACADABRA ABRACADABRA" was coded with 58 

bits 

(0101110011110111001011100100001011100111101110010

11100). 

The text length is 24 letters usually coded using 8-bit fixed 

length which is 24*8 = 192 bit.  Using Huffman algorithm, the 

24 letters were coded with only 58 bits instead of 192 bits as 

seen in table 3.  Hence, the savings are 1- 58/192=.697 which 

means 69.7% savings. 

 

Table 3 Showing the savings when Huffman is used. 
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Character Frequency Code 

length 

Frequency X  

Code length 

A 10 1 10*1 

R 4 3 4*3 

B 4 3 4*3 

C 2 4 2*4 

D 2 4 2*4 

SP 1 4 1*4 

period 1 4 1*4 

Total bits   58 

 

Huffman code reduced what could have been coded in 192 bits 

to 58 bits which is 69.7% saving in storage.  Still, in order to 

send such coded word, the whole tree must be sent to be used 

in the decoding process.  Furthermore, what Huffman saved in 

compression countered it in the sending process.  The 

computational complexity of Huffman code is O (n log n)., 

where n is the number of symbols used in the text message. 

 

LEMPEL-ZIV-WELCH (LZW) ALGORITHM 

Historically LZ was first developed in 1977 by Jacob Ziv and 

Abraham Lempel, and was name LZ77.  In 1978, both Ziv and 

Lemple, developed the algorithm and named it LZ78.  Many 

LZ based algorithms were developed over the years: in 1981 

LZR was developed, in 1982 LZSS Lempel-Ziv-Storer-

Szymanski by James Storer and Thomas Szymanski, in1984 

LZW, in 1985 LZJ, LZC, and LZZMW; in 1987 LZB, LZH, 

LZT.  In 1988 LZAP was developed, in 1991 LZRW, in 1993 

DEFLATE, in 1994 LZS, in 1995 LZP, & LZX, in 1996 LZO, 

in 1998 LZMA & LZJB, in 2006 LZWL in 2009 LZMA2 and 

in 2011 LZ4. 

LZW was developed in 1984; Terry Welch came on board with 

both authors and the three developed LZW.  LZW is used in 

GIF file format.  The compression algorithm is in figure 12 and 

the decompression algorithm is in figure 13. 

 

set w = NIL 

loop 

read a character k 

if wk exists in the dictionary 

 w = wk 

else 

output the code for w 

add wk to the dictionary 

 w = k 

endloop 

read a character k 

output k 

w = k 

loop 

       read a character k 

       entry = dictionary entry for k 

       output entry 

       add w + first char of entry to 

the dictionary 

       w = entry 

endloop 

Figure 12. LZW 

Compression algorithm. 

Figure 13. LZW 

Decompression algorithm. 

 

 

 

A) Classical Example LZW  

To show the work of LZW a trace classical examples are shown 

in this section.  Two words will be coded using LZW: 

"thisisthe" and "ABRACADABRABRABRA".  The first 

example reduces a 10-letter word to 7 characters.  The second 

example reduces 17 letters word to 12-character coded word.  

The first example we save 30% size the second saves even more 

29.4%. 

Compressing the following string (Cslearning, 2013) thisisthe.  

First, look at the current (first character) and the next character 

which is letter (h), since letter (t) is in the alphabets output is 

set to t.  Next, see if the two characters (th) are in the dictionary 

and since two characters (th) are not, then (th) are added to the 

dictionary.  In addition, since (th) is not in our dictionary we 

give it a new value which is (256).  Second, the pointer moves 

to next letter which (h), so the current letter (h) and the next 

letter is (i), since (hi) is not in the dictionary a new value (257) 

is given to the two characters (hi).  Third step, we move the 

pointer to the thirds letter (i).  the next letter is s, and we see if 

(is) in the dictionary, since it is not we add is to dictionary and 

give it the value 258.  The fourth step, the current letter is (s), 

the next letter is (i) since (si) not in dictionary we add it to 

dictionary and give it a value (259).  The fifth step, the current 

letter is (i), and the next letter (s), and (is) is in the dictionary 

so we look if (ist) is in the dictionary and since it is not we add 

it to the dictionary and we output (is) and add (ist) to dictionary 

and give it the value (260).  Hence, we reduced the code by one 

letter.  The sixth step, current letter is (t) and next letter is (h) 

and (th) is in dictionary so we output (th) is (256) and we add 

to dictionary (the) and give it the value (261).  The seventh step, 

the current letter is e and the next is null we output (e) and add 

null to dictionary. 

 

Step Current Next Output Add to Dictionary 

1 t 116 h 104 t 116 th 256 

2 h 104 i 105 h 104 hi 257 

3 i 105 s 115 i 105 is 258 

4 s 115 i 105 s 115 si 259 

5 i 105 s 115 "is" is in the dictionary but ist is not 

 is 258 t 116 is 258 ist 260 

6 t 116 h 104 "th" is in dictionary 

 th 256 e 101 th 256 the 261 

7 e 101 -  e 101 -  

 

Hence, we coded the text of length 10 characters into 7 

characters, which means we compressed the text by almost 

13%. 

t h i s i s t h e 

116 104 105 115 258 256 101 

 

Using the same idea, try to co de 

"ABRACADABRABRABRA". 
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Current Next Output Add to Dictionary 

A 41 B 42 A 41 AB 81 

B 42 R 52 B 42 BR 82 

R 52 A 41 R 52 RA 83 

A 41 C 43 A 41 AC 84 

C 43 A 41 C 43 CA 85 

A 41 D 44 A 41 AD 86 

D 44 A 41 D 44 DA 87 

A 41 B 42 AB 81 ABR 88 

R 52 A 41 RA 83 RAB 89 

B 42 R 52 BR 82 BRA 8A 

A 41 B 42 ABR 88 ABRA 8B 

A 41 -  A 41 -  

 

The coded text will be as follows 

A B R A C A D A B R A B R A B R A 

41 42 52 41 43 41 44 81 83 82 88 41 

Saving 5 out of 17 characters.  Which means 1-

12/17=.294=29.4%.  The two examples show the work of 

LZW.  Both showed the amount of compression conducted on 

10 letter word and 17 letter word.   

B) LZSS 

LZSS is another flavor of LZ based compression algorithm.  

Developed by James Storer and Thomas Szymanski in 1982 

(STORER & SZYMANSKI, 1982).  In LZSS " the section of 

the input is replaced with an (offset, length) pair where the 

offset is how many bytes from the start of the input and the 

length is how many characters to read from that position" 

(STORER & SZYMANSKI, 1982)  According to the same 

source the NEXT pointer was eliminated.  Hence when 

compressing "these theses" the compressed is "these(0,6)s", 

where the 0 is the index and 6 is the offset. 

 

RUN LENGTH ENCODING (RLE) 

RLE is lossless encoding schema.  RLE is very simple and easy 

to use.  RLE was used since 1967 to compress television 

signals.   As can be seen in the next example:  To encode the 

text "aaaabccabbbc" the answer is (a,4), (b,1), (c,2), (a,1), (b,3), 

(c,1).  So basically, each letter is keeps its position and the 

frequency of the letter is counted both are put in (letter, 

frequency).  The algorithm in RLE is shown in figure 14: 

Counter=0 

For i=1 to end of sequence 

 If Sequence [i]=sequence[i+1] then  

  Counter=counter+1 

 Else 

  Set pair= (Sequence [i], Counter) 

  Counter=0 

 Endif 

Figure 14. RLE compression algorithm. 

BURROWS- WHEELER TRANSFORM(BWT) 

The Burrows-Wheeler Transform method was developed by 

two scientists: M. Burrows and D.J. Wheeler in 1994 in a 

technical report for Digital Equipment Corporation (Burrows & 

Wheeler, 1994).  The following is an algorithm to clarify the 

process of BWT shown in figure 15.  In other literature the 

suggested time complexity of the BWT is O (n log n) (Lippert, 

Mobarry, & Walenz, 2005). 

To further explain the Burrows-Wheeler Transform method the 

following example is presented in the next section. 

 

A) Classical Example of Burrows- Wheeler Transform 

To code the word " abracadabra ".  First put the word in a 

matrix with all possible rotations like shown in figure 16.a, in 

a matrix while shifting in each row by one character (space).  

Next, the matrix should look like the figure 16.b, the second 

row shifted last letter, will become first in the second row.  

Next, Sort the matrix according to column 1, then 2, then,3 etc.  

the result is the matrix figure 16.c.   

 

To encode 

Input: input sequence 

Create BWT an nXn matrix, n is the length of input 

sequence. 

For counter =1 to n do  

Rotate input sequence (shift left by counter)  

Insert rotated input sequence into row[counter] 

Sort matrix BWT according to each column from 1..n, 

alphabetically 

Find the row of the original input sequence in sorted-BWT, 

return the index (ptr) 

Coded sequence is the last column, position of each letter 

and the index from previous step 

To decode 

Input: coded matrix with 2 columns: last column, letter 

position and ptr 

First letter=coded matrix [ptr]. letter 

Next=coded matrix.index[ptr] 

Loop until done 

 Next letter=coded matrix[next].letter 

 Output next letter 

 Next= coded matrix[next] . letter position 

End loop 

Figure 15. BURROWS- WHEELER TRANSFORM 

algorithm. 
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Figure 16: Burrows- Wheeler Transform example at work 

 

Notice that the original word is in row #3, the encoded word is 

the last column.  The pair will send over the medium which is 

(rdarcaaaabb,3).  To decode the word the following is to be 

carried out: First, index the coded word like figure 16.d.  

Second, sort the matrix in alphabetical order and index it again 

as seen in the below form, figure 16.e: 

To decode, start decoding from row #3, use the second column 

to point to the next letter   First letter must be "a", the next letter 

is in row #7 as the second column suggests which is "b", the 

third letter is indexed in row 11, etc. 

 

MOVE TO FRONT (MTF) TRANSFORM 

MTF was first published by Ryabko and is used as an extra step 

in encoding algorithm to improve the performance of entropy 

encoding techniques of compression Ryabko, 1980 and again 

published in (Ryabko, 1980) .  Next section presents the MTF 

algorithm, and a classical working example of MTF.  

A) MTF Algorithm 

The algorithm of MTF shown in figure 17, for both coding and 

decoding.  The time complexity of MTF is O(n), where n is the 

number of symbols in the input sequence. 

Encode 

for each symbol of the input sequence: 

      output the index of the symbol in the symbol table 

       move that symbol to the front of the symbol table 

Decode 

# Using the same starting symbol table 

for each index of the input sequence: 

  output the symbol at that index of the symbol table 

  move that symbol to the front of the symbol table 

Figure 17.  MTF Algorithm of encoding and decoding 

 

The process of the MTF is very simple two structures are 

needed: one for all symbols used in in the intended to be coded 

input sequence, the second is the input sequence itself.  The 
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algorithm steps in the input sequence character by character.  

For each character the algorithm look-up the position of the 

character from input sequence from the symbols table.  Next 

the algorithm moves the symbol at hand to the beginning of the 

symbols table.  To decode, the exact opposite takes place.  For 

each symbol in the coded input sequence, look-up the symbol 

of the position of the coded input sequence from the look-up 

symbols table, next move that symbol to the front of the 

symbols table. 

B) Classical Example of MTF 

First create an alphabet queue as shown in the first row of the 

matrix in figure 18.a.  To code the word abracadabra shown in 

the matrix in figure 18.b. record the position of the letter from 

the coded word and move that letter to the front of the 

alphabetical queue, as shown in figure 18.b second line. The 

first letter is "a" record its position "1" ass seen below, and 

move "a" to front of the queue. The queue stays the same since 

"a" is the first letter in the alphabets.  Next letter is "b", record 

its position in the alphabets and move "b" to the front of the 

queue, as seen third line in matrix figure 18.b.  The queue now 

is as in figure 18.b third line.  The third letter is "r", which is in 

position 18, record the position and move the r to the front of 

the queue. See the fourth line in both matrices in figure 18.a 

and b. The fourth letter is "a" the position is 3, hence the letter 

“a” moves to beginning of the letters que and 3 is add to matrix 

18.b. 

The fifth letter is "c" the position is 4, and the index of "c: is 4 

and both matrices are updated accordingly in the 5th line.  The 

sixth letter is "a" the position is 2, hence both matrices are 

updated accordingly. The letter "a" is moved to the beginning 

of the letter que and its position is registered in matrix b.  The 

seventh letter is "d" and the position is 5, both matrices are 

updated where the letter "d" is moved to front of the letters que 

and the position "5" is registered in matrix b, see figure 18 line 

8. 

The eighth letter is "a" and the position its is 2 in the letter que, 

hence its position is recorded in matrix b and the letter itself is 

moved to the beginning of the que.  The ninth letter is "b" and 

the position is 5 in the que, furthermore, position is registered 

in the figure 18.b matrix and the letter itself is moved to head 

of the Que.  The ninth letter is "r" and the position is 5, the 

position is recorded and the queue is updated as shown in line 

11 both matrices in figure 18.  The tenth letter is "a" and the 

position is 3 the position is recorded and the queue is updated 

as shown in line 12 both matrices in figure 18.  The coded word 

is in the last line in figure 18.b and is send to the corresponding 

person as is.  Next the coded word will be decoded in the 

following paragraphs. 

To decode the word, the process starts with original letter queue 

and the coded word, as shown in figure 19 first line.  Look at 

the first item in the coded text, value =1, hence the first letter 

in the coded alphabet is "a", move the "a" from the alphabet.  

The new alphabet looks like the one below.  The second in the 

coded text is 2 which is "b" now move "b" to beginning of the 

alphabet queue as shown in line 2 of figure 19.    

 

 

Figure 18. A classical example of MTF. 

 

Figure 19. Decoding using MTF. 
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The third in the coded text is 18 which is "r" in the alphabet, 

again move it to the front of the alphabet, like line 3, in figure 

19.  The fourth is number 3 which is "a" in alphabets, again 

move the "a" to beginning of the alphabets queue line 4 figure 

19.  The fifth in the coded word is 4 which is "c" in the 

alphabets queue.  Move the c to the front of the alphabets queue 

as shown in line 5.  The sixth coded letter is 2 which "a" in the 

alphabets above, again move a to front of the alphabets queue 

shown in line 6.  The seventh is 5, which "d" in the alphabets 

queue, and move the d to the front of alphabets queue as in line 

7 in figure 19.  The eighth is 2 which is "a" in the alphabets, 

and move the "a" to the front of letter queue, seen line 8.  The 

ninth is 5 in the coded word which is "b" in the alphabets, again 

move "b" to the front of the alphabets queue.  The tenth is "5" 

which is "r" in the alphabets above, and move "r" to front of the 

alphabets queue.  The eleventh is 3, which is a in the alphabet 

above, and move the "a" to the front.  Hence producing the 

decoded word: abracadabra. 

 

HAAR WAVELET TRANSFORM  

Haar was proposed in 1910 by the Hungarian mathematician 

Alfréd Haar; hence it is one of the oldest transform functions.  

The basic philosophy of the Haar is to create two functions 

using a 2X2 matrix: one function adds two variables and 

calculates the average; the second function calculates the 

difference between the variables and calculate the difference 

average.  In the next sections: first the steps of forward 

transform & revers transform are explained, then an example 

of the forward transform is given with real numbers.  The revers 

transform is explained in details with an example. 

A) The Haar Process 

In this section, the Haar process is explained.  There are two 

major steps conducted in the process: Forward transform and 

revers transform.  The forward transform is represented in steps 

1 & 2, and then the revers transform is explained in steps 3 & 

4, as shown below 

The following will be conducted: 

1. Create D matrix from C, where C is a 2X2 matrix 

D-Col#1=(C-Col#1+C-Col#2)/2,  

D-Col#2= (C-Col #3+C-Col#4)/2 

D-Col#3= (C-Col #1-C-Col #2)/2,  

D-Col#4= (C-Col #3-C-Col #4)/2 

2. Use the D matrix to create the new F matrix as 

shown below: 

F-Row#1= (D-Row 1+D-Row 2)/2,  

F-Row#2= (D-Row 3+ D-Row 4)/2 

F-Row#3 = (D-Row 1-D-Row 2)/2,  

F-Row#4 = (D-Row 3- D-row 4)/2 

The resulting matrix F is the coded matric created from the 

original matrix C.   To reverse the whole process and to prove 

that we can reproduce the original matrix C, the following steps 

are to be followed: 

3. Revers operation create R matrix by using matrix F 

from the previous step, as follows: 

R-Row#1= F-Row1+Row 3, 

R-Row#2= F-Row 1-F-Row 3 

R-Row#3= F-Row 2+ F-Row 4, 

R-Row#4= F-Row 2- F-Row 4 

4. Create E Matrix by: 

E-Col#1=R-Col#1+R-Col#3,  

E-Col#2=R-Col 1-R-Col 3 

E-Col#3= R-Col 2+R-Col 4;  

E-Col#4= R-Col 2+R-Col 4 

B) Example Forward Transfer  

In this section, the forward transform is shown in an example 

using real numbers to show the process clearly.  Say we have 

the following 4X4 matrix named C.  Each element in C will be 

as shown in the matrix C below 

 

 

 

C= 

Col 1 Col 2 Col 3 Col 4 

100 50 60 150 

20 60 40 30 

50 90 70 82 

74 66 90 58 

First, calculate the average & distance for each row, as follows: 

Designate the first two columns for the average and the two 

columns for the distance for every two consecutive elements in 

a row.  Hence  

D (1,1) = (C (1,1) +C (1,2))/2,  

D (1,2) = (C (1,3) +C (1,4))/2. 

For the distance (the second two columns) we do the 

following  

D (1,3) = (C (1,1)-C (1,2))/2,  

D (1,4) = (C (1,3)-C (1,4))/2. 

For the second row, again we do the following:  

D (2,1) = (C (2,1) +C (2,2))/2,  

D (2,2) = (C (2,3) +C (2,4))/2. 

For the distance (the second two columns) we do the 

following:  

D (2,3) = (C (2,1)-C (2,2))/2,  

D (2,4) = (C (2,3)-C (2,4))/2. 

For the third row, we do again the following:  

D (3,1) = (C (3,1) +C (3,2))/2,  

D (3,2) = (C (3,3) +C (3,4))/2. 

For the distance (the second two columns) we do the 

following: 

D (3,3) = (C (3,1)-C (3,2))/2,  

D (3,4) = (C (3,3)-C (3,4))/2. 
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Last for row number 4 we do the following:  

D (4,1) = (C (4,1) +C (4,2))/2,  

D (4,2) = (C (4,3) +C (4,4))/2. 

For the distance (the second two columns) we do the 

following: 

D (4,3) = (C (4,1)-C (4,2))/2,  

D (4,4) = (C (4,3)-C (4,4))/2. 

The result with addition and subtraction is shown in the 

matrix D, below: 

 

 

 

 

D= 

(Col 1+Col 2)/2 (Col 3+Col 4)/2 (Col 1-Col 2)/2 (Col 3-Col 4)/2 

(100+50)/2=75 (60+150)/2=105 (100-50)/2=25 (60-150)/2=-45 

(20+60)/2=40 (40+30)/2=35 (20-60)/2=-20 (40-30)/2=5 

(50+90)/2=70 (70+82)/2=76 (50-90)/2=-20 (70-82)/2=-6 

(74+66)/2=70 (90+58)/2=74 (74-66)/2=4 (90-58)/2=16 

 

Hence, the result is simply shown below:  

 

 

D= 

Row1  75 105 25 -45 

Row 2 40 35 -20 5 

Row 3 70 76 -20 -6 

Row 4 70 74 4 16 

Second step is, we work with the D matrix to create the new F 

matrix shown below:  We store the average in the first two rows 

of F matrix and the distance in the lower two rows:  Hence,  

F (1,1) = (D (1,1) +D (2,1))/2,  

F (1,2) = (D (1,2) +D (2,2))/2, 

F (1,3) = (D (1,3) +D (2,3))/2,  

F (1,4) = (D (1,4) +D (2,3))/2. 

The second row in F is calculated as follows:  

F (2,1) = (D (3,1) +D (4,1))/2,  

F (2,2) = (D (3,2) +D (4,2))/2, 

F (2,3) = (D (3,3) +D (4,3))/2,  

F (2,4) = (D (3,4) +D (4,3))/2. 

The third row in F, is designated for distance and is calculated 

as follows: 

F (3,1) = (D (1,1) -D (2,1))/2,  

F (3,2) = (D (1,2) -D (2,2))/2, 

F (3,3) = (D (1,3) -D (2,3))/2,  

F (3,4) = (D (1,4) -D (2,3))/2. 

The fourth row in F, is designated for distance and is 

calculated as follows: 

F (4,1) = (D (3,1) -D (4,1))/2,  

F (4,2) = (D (3,2) -D (4,2))/2, 

F (4,3) = (D (3,3) -D (4,3))/2,  

F (4,4) = (D (3,4) -D (4,3))/2. 

 

(Row1+row2)/2 (75+40)/2=57.5 (105+35)/2=70 (25+-20)/2=2.5 (-45+5)/2=-20 

(Row 3+ row 4)/2 (70+70)/2=70 (76+74)/2=75 (-20+4)/2=-8 (-6+16)/2=5 

(Row1-row2)/2 (75-40)/2=17.5 (105-35)/2=35 (25--20)/2=22.5 (-45-5)/2=--25 

(Row 3- row 4)/2 (70-70)/2=0 (76-74)/2=1 (-20-4)/2=-12 (-6-16)/2=-11 

The end result is the following matrix shown below name F.  

matrix F when the reverse function is used will return to the 

original matrix. 

 

 

F= 

Row 1 57.5 70 2.5 -20 

Row 2 70 75 -8 5 

Row 3 17.5 35 22.5 -25 

Row 4 0 1 -12 -11 

 

C) The Revers Transfer of Haar 

The revers process is conducted on the matrix F produced 

previously.  The result of the revers is show in the matrix R 

below and will be explained next.  First, each element in first 

row of matrix F is added to the third row (row3).  We name the 

result matrix from the operation the R matrix for reference 

purposes.  Hence: 

R (1,1) =F (1,1) +F (3,1),  

R (1,2) =F (1,2) +F (3,2), 

R (1,3) =F (1,3) +F (3,3),  

R (1,4) =(F1,4) +F (3,4). 

Second, each element in first row of F matrix will be 

subtracted from the third row of F matrix, as shown below 

R (2,1) =F (1,1)-F (3,1),  

R (2,2) =F (1,2)-F (3,2), 

R (2,3) =F (1,3)-F (3,3),  

R (2,4) =(F1,4)-F (3,4). 

The third row of R is adding the element of second and fourth 

row of F matrix, as shown below:  

R (3,1) =F (2,1) +F (4,1),  

R (3,2) =F (2,2) +F (4,2), 

R (3,3) =F (2,3) +F (4,3),  

R (3,4) =(F2,4) +F (4,4). 

The fourth row of R is subtracting the element of second row 

and fourth row of matrix F, as shown below:  

R (4,1) =F (2,1)-F (4,1),  

R (4,2) =F (2,2)-F (4,2), 

R (4,3) =F (2,3)-F (4,3),  

R (4,4) =(F2,4)-F (4,4). 

All addition and subtract are included in the matrix R below: 

 

 

R= 

Row1+Row 3 57.5+17.5=75 70+35=105 2.5+22.5=25 -20+-25=-45 

Row 1-row 3 57.5-17.5=40 70-35=35 2.5-22.5=-20 -20—25=5 

Row 2+ Row4 70+0=70 75+1=76 -8+-12=-20 5+-11=-6 

Row 2- row 4 70-0=70 75-1=74 -8- -12=4 5- -1=16 

 

The result is matrix R which one step short for complete 

reversal: 
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R= 

Col 1 Col 2 Col3 Col 4 

75 105 25 -45 

40 35 -20 5 

70 76 -20 -6 

70 74 4 16 

The final step is column operations which is conducted on the 

R matrix, the first column and the third column are add, then 

first column and third column are subtracted.  Furthermore, the 

same for second column and fourth column.  Hence the rule: 

Add every other column and subtract every other column.  All 

the steps will be explained in the following: 

The end result matrix we will call E matrix  

 

 

 

E= 

Col 1+Col 3 Col 1-Col 3 Col 2+Col 4 Col 2-Col 4 

75+25=100 75-25=50 105+-45=60 105- -45=150 

40+-20=20 40- -20=60 35+5=40 35-5=30 

70+-20= 50 70- -20=90 76+-6=70 76 - -6 =82 

70+4= 74 70-4=66 74+16=90 74-16 = 58 

 

First step is to add every element in first column and second 

column respectively, as follows: 

E (1,1) =R (1,1) +R (1,3), E (2,1) =R (2,1) +R (2,3) 

E (3,1) =R (3,1) +R (3,3),  E (4,1) =R (4,1) +R (4,3) 

The second column is the subtract operation which is conducted 

as follows: 

E (1,2) =R (1,1)-R (1,3),  E (2,2) =R (2,1)-R (2,3) 

E (3,2) =R (3,1)-R (3,3),  E (4,2) =R (4,1)-R (4,3) 

Third step is to add Col2 and column 4 as follows: 

E (1,3) =R (1,2) +R (1,4), E (2,3) =R (2,2) +R (2,4) 

E (3,3) =R (3,2) +R (3,4),  E (4,3) =R (4,2) +R (4,4) 

The fourth column is the subtract operation which is conducted 

as follows: 

E (1,4) =R (1,2)-R (1,4),  E (2,4) =R (2,2)-R (2,4) 

E (3,4) =R (3,2)-R (3,4),  E (4,4) =R (4,2)-R (4,4) 

 

WAVELET TREE 

Wavelet Tree, a succinct data structure for storing a 

compressed sequence developed by R. Grossi and A. Gupta in 

2003 (Gross, Gupta, & Vitter, 2003).  In the next section the 

algorithm is shown along with and example that shows position 

search, symbol search and Bottom-to-top search. 

A) Build the Wavelet Tree Algorithm 

The algorithm of the building a wavelet tree is recursive simple 

algorithm as shown in figure 20.  The example following the 

algorithm will show how intuitive the algorithm is.  The 

following is the algorithm put simply: 

Scan the alphabet of the text and encode the first half to zero 

and the second half to one. 

Group each 0-encoded symbol as sub tree. 

Group each 1-encoded symbol as sub tree. 

Reapply this to each sub tree recursively until there are only 

leaves. 

Figure 20.  Build the Wavelet Tree algorithm. 

 

B) Classical Example Wavelet Tree 

Suppose we want to code the famous word "abracadabra", first 

scan the word for the alphabets used in "abracadabra", we find 

that the 5 letters are "abrcd".  Next, split the letters "abrcd" into 

two groups: "ab" and "rcd" code the first group to zero (0) and 

the second group to one (1).  Replace, the letters with the 

respective code, as follows 

a b r a c a d a b r a 

0 0 1 0 1 0 1 0 0 1 0 

 

Now we build the original tree, figure 21.  At the root of the 

tree is the previously code word as seen in the graph below:  

split the word into two parts: part the "ab" letters as they are 

shown in the root, and part with all "cdr" as shown in the root.  

This operation will produce two subtrees: "abaaaba" coded 

"0100010"and the subtree "rcdr " coded "0110".  The first sub 

tree will produce two leaves the "a" & "b" leaves.  The second 

subtree "rcdr" will be coded "0110" will produce the leaf "r" 

and sub tree "cd" again code "01".   

To make sure that our coding is right; we will ask the following 

question, what is the letter in the 7th position?  To answer the 

question, we look at the 7th position value, it is "1".  We at the 

tree above at the branch labeled "1" and also count how many 

1s before the 7th position.  There are two (2) ones (1s) before 

the 7th position.  Now, follow the branch labeled "1" from the 

root.  The sub tree "rcdr" is located at the end of that branch.  

Examine the subtree and count, the second one in the subtree, 

and follow the branch labeled "1" while remembering how 

many ones (1s) are before that digit "1".  The branch will lead 

to sub tree "cd", again examine the sub tree, find the first one 

(1), and follow the branch labeled 1.  The end leaf is "d" which 

is the answer we are look for. 

 

Figure 21. The tree produced from the Wavelet Tree 

algorithm. 
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Another example, find the letter in the 10th position?  First find 

the value of the 10th position, which is "1" and there are 3 

ones"1s" before it.  Next, move down the branch labeled 1 and 

in the coded tree find the 4th digit, the 4th digit is "0".  Follow 

the branch labeled "0", at the end of the branch a leaf of letter 

"r" is found.  Hence, the letter in the 10th position in text is the 

letter "r". 

 

C) Bottom-To-Top Search 

Find the second letter "b" in the coded word using the tree.  

Start with the leaf labeled "b", climb up the branch, the branch 

is labeled "1", now look for the 2ed "1" in the sub tree.  The 

position of the second "1" in the subtree is 6th position.  Again, 

climb once more through the branch labeled "0"and remember 

the number 6.  Once you reach, the higher subtree count to the 

6th zero in the code of the higher sub tree. 

Another example, find the 5th "a" in the code.  First, we start 

with leaf "a", and climb up the branch "0", we find the 5th zero 

it is in the 7th position.  We climb again through the branch 

which labeled zero.  Now we look for the 7th zero in the code 

which the last bit and it is the code for the 5th "a". 

 

DELTA ENCODING 

Delta encoding is also known as: Delta compression and Data 

Differencing.  Simple delta encoding is transmitting or storing 

data in the form of differences (deltas) between sequential data 

rather than the value of data itself.  Storing and transmitting the 

differences lightens the load and reduces the amount of data 

variance.  The algorithm, figure 22, is also a very simple 

intuitive algorithm.  To store or transmit two values 99, 100 the 

transmitted data will be 99, 1, hence transmitting 3 digits rather 

than 5 digits.  A simple example of using Delta encoding is 

consider the following sequence 2 4 6 8 9 10 7 will stored as 

follows: 2 2 2 2 1 1 -3 basically the value stored is the previous 

value subtracted from the consequent value hence the name 

Delta.   

For i=2 to end of sequence 

 Sequence[i] = Sequence[i-1]-Sequence[i] 

End loop 

Figure 22. Delta algorithm. 

 

RICE & GOLOMB CODING 

Rice coding was developed by Robert F. Rice in 1979 and is 

(Golomb, 1966) a subset from Golomb coding which 

developed by Solomon W. Golomb in 1966 as an alternative to 

Huffman coding (Golomb, 1966).  Rice coding is an important 

yet simple algorithm.  Rice coding is used in: shorten, FLAC, 

Apple Lossless, MPEG-4 ALS, JPEG-LS, and FELICS.  Hence 

it is imperative to discuss Rice coding.  Rice coding is a subset 

of Golomb codes, when M is power 2 type. 

 

 

A) The Algorithm  

The algorithm below is a simplest version of the Rice & 

Golomb algorithm (Rice, 1979).  The algorithm, figure 23, is 

best seen through the example as follows. 

B) The Rice Coding in Simple Steps. 

The following is an example that shows the algorithm live 

work.  The simple operation of breaking a number into quotient 

and remainder.  Suppose, N is presented, where N is the 

message needs to be coded given an M.  M is a number usually 

given for such a problem. 

Suppose that M=10. 

N: the message needs to be codded. 

First, Divide N to quotient (Q) and remainder (R).  The Q is 

represented by unary coding followed by zero.   The R is 

represented by binary. 

𝑄 = ⌊
𝑁

𝑀
⌋ 

R= N mod M 

Second, calculate    𝑏 = ⌈log2 𝑀⌉ then check the following: 

1. Fix the parameter M to an integer value. 

2. For N, the number to be encoded, find 

quotient = q = int[N/M] 

remainder = r = N modulo M 

3. Generate Codeword 

1. The Code format: <Quotient Code><Remainder 

Code>, where   

2. Quotient Code (in unary coding) 

1. Write a q-length string of 1 bits 

2. Write a 0 bit 

3.  Remainder Code (in truncated binary encoding) 

1. If M is power of 2, code remainder as binary format. 

So log2(M) bits are needed. (Rice code) 

2. If M is not a power of 2, set  𝑏 = ⌈log2 𝑀⌉ 

1. If R < (2b-M) then code R in (b-1) binary Bits 

2. If R>= (2b-M) then code the number R+2b-M in 

binary representation using b bits. 

Figure 23. Golomb & Rice algorithm (Rice, 1979). 

 

 If M is of power 2, code R in binary format, 

so    log2 𝑀  bits are needed (Rice) 

 If R< 2b-M Code R in b-1 binary bits. 

 If R >= 2b-M code the number R+2b-M in binary 

representation using b bits. 

To calculate 𝑏 = ⌈log2 10⌉=4 

If R < (24-10 =6) then code R in (b-1) which is (3) binary Bits 
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If R>= (24-10 =6) then code the number R+24-10 in binary 

representation using b bits. 

 

QUOTIENT  REMAINDER 

Q Output Bits  R Offset Binary Output bit 

Binary 

Note  

0 0  0 0 0000 000 R<6 

Rule 1 

Use 3 bits 

1 10  1 1 0001 001 

2 110  2 2 0010 010 

3 1110  3 3 0011 011 

4 11110  4 4 0100 100 

5 111110  5 5 0101 101 

6 1111110  6 6+6=12 1100 1100 R>=6 

Rule 2 

Use 4 bits & Code R+6  

   7 7+6=13 1101 1101 

N 111..110  8 8+6=14 1110 1110 

   9 9+6=15 1111 1111 

 

For example, if the coded word is 42 then the quotient is 4 and 

the R is 2, hence the coded word is <11110>;<010>.  Notice 

that in the remainder less than 6 the first rule is invoked and the 

R is coded using b-1 bits or if the word is 67, then Q=6 and 

R=7, hence the coded word is <1111110>;<1101>.  Notice that 

since the remainder greater than 6 the second rule is invoked 

and the coded R is the R+24-10 which is the offset =13 in other 

words 7+16-10=13 offset. 

To decode a coded word, say "11111101111" given M=10 we 

do the following? 

 First, we can guess that the Q= 6 since the word started 

with 6 ones.   

 Second, we can calculate b from the given M, which 

is b=4. 

 To reverse the rules 1 and 2 since the R is 4 bits' length 

then the code must have used the second rule.  Hence 

the R+6=15 which is 9.  Hence the coded word is 69. 

 

TUNSTALL CODING 

Tunstall Coding was developed by Brian Parker Tunstall as part 

of his PhD thesis in 1967.  Tunstall coding builds a tree for all 

possible combinations of the symbols used in a text.  The tree 

is built according the frequency of the symbols hence the 

symbol with highest probability is to branch out in the tree.  In 

the next two sections: the algorithm, figure 24 is explained and 

an example that shows the work of the algorithm.  The variable 

u: is an input string.  The D is the constructed dictionary as tree 

probabilities; each branch is associated with a letter from input 

alphabets. 

 

 

The C is upper bound to the size of the dictionary. 

D := tree of |u| leaves, one for each letter in u. 

 While |D|<C: 

   Convert most probable leaf to tree with |u| leaves. 

Figure 24. Tunstall Coding algorithm. 

 

For example, to code the following text "Hello world." using 

Tunstall algorithm the following is to be done:  First, scan the 

text and find the alphabet and calculate the frequency of each 

character, as shown below in table 4: 

Table 4.  Frequency of Tunstall's scan. 

Letter Frequency in text Portability 

H 1 1/12 

E 1 1/12 

L 3 3/12 

0 2 2/12 

W 1 1/12 

R 1 1/12 

d 1 1/12 

Sp 1 1/12 

period 1 1/12 

Second, since there are |u| = 9 then each symbol can be 

represented with log2 9 = 4 bits, and build a tree with one root 

and 9 branches as figure 25: 
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Figure 25. Tree of Tunstall Coding. 

Next, we branch for the leave L since it has the highest 

probability.  We don't stop branching since the number of leave 

16 >28-9.  But the dictionary is as follows: 

H 00000 

E 00001 

LL 00010 

LE 00011 

LH 00100 

LO 00101 

LW 00110 

LR 00111 

LD 01000 

L SP 01001 

L PERIOD 01010 

0 01011 

W 01100 

R 01101 

d 01110 

Sp 01111 

period 10000 

 

Looking back at the text "hello world" of length 12 symbols, 

each symbol must have been coded with 8 bits.  The total coded 

should have been 12*8=96 bits.  Using Tunstall coding each 

symbol was coded with 5bits and the symbol "LL" in the word 

"hello" was also code by 5 bits, hence the total number of bits 

is 5*8+5=45 bits.  The compression ratio is 1-45/96=1-

0.468=53%.   

 

HYBRID TYPES 

Three hybrid compression algorithms are discussed in this 

section: bzip2, deflate, Run-Length Golomb-Rice (RLGR) 

A) bzip2 

Hybrid types are quite common in the compression world.  

Hybrid types are the compression algorithms that use more than 

one method and technique and algorithms to come up with 

software that compresses using the advantage of each 

algorithm.  An example of hybrid types is bzip2.  bzip2 is a mix 

of compression algorithms and methods, bzip2 uses Run-

Length Encoder, Burrows-Wheeler Transform, Move-To-Front 

Transform, and Huffman code.  The steps carried out as follows 

according to Seward (Seward, 2000):  

bzip2 algorithm 

The algorithm or mix of algorithms named bzip2, figure (26): 

 

DEFLATE 

DEFLATE invented in 1993 by Phil Katz.  Deflate is basically 

LZ&& and LZSS and Huffman Code.  Hence, DEFLATE is a 

combination of three compression methods. 

Run-Length Golomb-Rice (RLGR) 

Run-Length Golomb-Rice (ARLGR) developed and used in 

Microsoft research center was a natural development to Rice & 

Golomb coding which is really adding the algorithms together.  

Hence, ARLGR is considered hybrid algorithm.  The ARLGR 

was developed by Malvar in 2006 (Malvar, 2006).   

 

GENEALOGY TREE 

The following tree, figure 27, tells the story of 40 compression 

algorithms.  Starting with Haar Wavelete transform (1910), 

Arithmetic coding of Shannon developed in 1948, then Fano in 

1949.  After Fano's Peter's version was developed and Run 

Length Encoding in 1967.  In 1973 published another version 

named Enumerative Coding.  In 1976 (Rissanen, 1976) 

introduced Last in First Out (LIFO) version of the algorithm.  

In 1976 Pasco (Pasco, 1976) introduced the FIFO version of the 

algorithm.  In 1979 "stream" code was discovered by Rubin 

(Rubin, 1979) as an improvement of Pasco's work.  Martin 

(1979) and Jones (1981) developed P-based FIFO arithmetic 

codes (Jones, 1981) and (Martin, 1979).  In 1977 LZ was first 

developed in 1977 by Jacob Ziv and Abraham Lempel, and was 

name LZ77.  In 1978, both Ziv and Lemple, developed the 

algorithm and named it LZ78.  Many LZ based algorithms were 

developed over the years: in 1981 LZR was developed, in 1982 

LZSS, in1984 LZW, in 1985 LZJ, LZC, and LZZMW; in 1987 

LZB, LZH, LZT.  In 1988 LZAP was developed, in 1991 

LZRW, in 1993 DEFLATE, in 1994 LZS, in 1995 LZP, & 

LZX, in 1996 LZO, in 1998 LZMA & LZJB, in 2006 LZWL in 

2009 LZMA2 and in 2011 LZ4.  Move to Front (MTF) was 

developed in 1980.  MTF was first published by Ryabko and is 

used as an extra step in encoding algorithm to improve the 

performance of entropy encoding techniques of compression.  

Chronologically LZS and Burrows-Wheeler Transform were 

developed.  Also, table 5 recaps the results of researching the 

12 coding algorithms. 

 

CONCLUSION 

This paper presented the pillars of compression algorithms, 

methods and techniques.  The paper counted more than 40 

compression algorithm: Arithmetic Coding - SHANNON 

(1948), Huffman coding (1952), FANO (1949), Run Length 

Encoding (1967), Peter's Version (1963), Enumerative Coding 

(1973), LIFO(1976), FiFO Pasco(1976), LZ77(1977), Move 

To Front (MTF)Transform (1980), LZ78(1978), LZR (1981), 
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LZSS (1982), LZJ (1985), LZC(1985), LZZMW(1985), LZB 

(1987), LZH (1987), LZT (1987), LZAP (1988), LZRW 

(1991)), DEFLATE(1993), LZS(1994), LZP(1995), LZX 

(1995), LZO (1996), LZMA, LZJB, LZWL(2006), 

LZMA2(2009),  

 

First, a Run-Length Encoder is applied to the data.   

Next, the Burrows-Wheeler Transform is applied.   

Then, a Move-To-Front Transform is applied with the intent 

of creating a large number of identical symbols forming runs 

for use in yet another Run-Length Encoder.   

Finally, the result is Huffman coded and wrapped with a 

header  

Figure 26. bzip2 Algorithm (Seward, 2000). 

 

Table 5. The summery table of 12 coding algorithms, where n is length of text. 

Coding Algorithm Year Time complexity Developer Philosophy 

SHANNON–FANO CODE 1948 

1949 

O (n + |symbols| * log| 

symbols |) 

Shannon 

Fano 

Recursive Frequency & 

Tree 

Arithmetic Coding  O(|symbols|+n)  Probability Split 

intervals 

Frequency 

HUFFMAN CODE 1952 O (|symbols| log |symbols|) David A. Huffman Priority list & 

frequency 

Tree 

LZ 1977 O(n) Jacob Ziv and 

Abraham Lempel 

Dictionary  

LZSS 1982  James Storer and 

Thomas 

Szymanski 

Dictionary with 

offset 

 

RUN LENGTH 

ENCODING (RLE) 

1967 O(n)  Count of each 

repeated symbol 

 

BURROWS- WHEELER 

TRANSFORM 

1994 O (n log n) BURROWS- 

WHEELER 

Matrix warp  

MOVE TO FRONT 

(MTF)TRANSFORM 

1980 O(n) Ryabko Queue of 

symbols & their 

order 

 

Haar Wavelete transform 1910 O(n) Haar 2 functions & 2 

unknowns 

Matrix 2X2 

WAVELET TREE 2003 O (n log symbols) R. Grossi and A. 

Gupta 

Binary tree  

DELTA ENCODING  O(n)  Difference 

between two 

symbols 

 

RICE & GOLOMB 

CODING 

1967 

1979 

 Golomb & Rice Mod & 

remainder 

 

TUNSTALL CODING 1967 O (symbols log symbols) Tunstall Tree & 

Maximum 

probability of 

symbol 
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LZ4(2011), Burrows- Wheeler Transform (1994), Haar (1910), 

Wavelet tree (2003), Stream (1979), P-Based FIFO (1981), 

Delta Encoding, Rice & Golomb Coding (1966,1979), Run-

Length Golomb-Rice (RLGR) (2007), Tunstall coding (1967).  

Although each algorithm is an independent in its own right, 

still; these algorithms interrelate genealogically and 

chronologically.  Hence, the major stubs in the developed tree 

of the compression algorithms are 12.  The tree is presented in 

the last section of the paper after presenting the 12 main 

compression algorithms each with a practical example. 

The paper first introduced Shannon–Fano code showing its 

relation to Shannon (1948), Huffman coding (1952), Fano 

(1949), Run Length Encoding (1967), Peter's Version (1963), 

Enumerative Coding (1973), LIFO (1976), FiFO Pasco (1976), 

Stream (1979), P-Based FIFO (1981).  Two examples are 

presented one for Shannon-Fano Code and the other is for 

Arithmetic Coding.  Next, Huffman code was presented with 

simulation example and algorithm.  The third is Lempel-Ziv-

Welch (LZW) Algorithm which hatched more than 24 

algorithms.  The LZW family was presented and a working 

example was given.  The fourth is Run Length Encoding (RLE) 

which essentially codes using frequency and position.  The fifth 

is Burrows-Wheeler Transform.  The sixth is Move-to-Front 

(MTF) Transform.  The seventh is Haar the eighth is wavelet 

tree.  The ninth is the Delta Encoding, and the tenth is Rice & 

Golomb Coding.  The eleventh is Tunstall coding.   The twelfth 

is a hybrid example bzip2 which is a mix of many algorithms 

& DEFLATE algorithm which is also a mix of three algorithms.  

The last example of the hybrid is Run-Length Golomb-Rice 

(RLGR). 

The paper then presented the genealogy tree suggested by the 

paper.  The tree shows the interrelationships between the 40 

algorithms.  Also, the tree showed the chronological order the 

algorithms came to life.  The time relation shows the 

cooperation among the scientific society and how they 

amended each other's work.  Furthermore, novice users of the 

algorithms and researchers can find a reference where they can 

use this research as spring board for future work.  The 

researcher, wanted to accompany each algorithm with a 

classical example to make understanding easier and recalling 

the algorithm much faster with an example rather than an 

algorithm. 
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Figure 27. Genealogy Tree. 
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