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Abstract 

Gabor filters have been proved to be powerful for texture 

analysis. Gabor filters are constructed as a filter bank in order 

to capture local textural properties characterized by different 

frequencies and spatial orientations. Conventionally, the set of 

power spectrum obtained by Gabor filters are used as texture 

features. This simple approach has drawbacks that, among 

others, fine tuning of parameters is required for optimal setting 

and good performance, and Gabor filter itself does not provide 

rotation-invariant texture classification scheme.  In this paper, 

we propose a rotation-invariant texture classification method in 

which texture features are obtained with two processing stages: 

first, Gabor features are computed in a conventional way, and 

then Fourier transform is applied to the Gabor features to obtain 

rotation-invariant texture features. The resulting texture 

features allow for researchers to select outstanding components 

of textures and to visually inspect textural characteristics. The 

proposed method was compared with other methods and 

showed superior classification results. 

Keywords: texture classification, rotation-invariant texture 

descriptor, Gabor filter, Fourier descriptor 

 

INTRODUCTION  

Texture analysis has played an important role in a lot of 

computer vision and image processing applications [1]. 

Methods of texture analysis can be divided into four categories: 

statistical, geometrical, model-based and signal processing 

types [2].  

Statistical methods consider local features from the spatial 

distribution of gray level intensities and compute a number of 

statistics from the distributions of the local features. According 

to the number of pixels defining the local features, statistics are 

further divided into first-order (one pixel), second-order (two 

pixels) and higher-order (three or more pixels) statistics [3]. 

First-order statistics include average and variance, and thus 

compute properties of individual pixels and ignore the spatial 

relationship between pixels. Second- order and higher-order 

statistics consider correlative properties of two or more pixels 

occurring at specific locations.  

Statistical methods include cooccurrence matrix [4], gray level 

differences [5], signed differences of grey-level intensities [6], 

and the Local Binary Pattern (LBP) operator [7]. LBP operator 

has shown superior performance in texture classification and 

face recognition [8] by combining statistical and structural 

properties within local areas.  

Geometrical methods try to describe texture as a collection of 

texture primitives called textons and find the rules governing 

the spatial arrangement of the texture primitives. The texture 

primitives can be obtained by edge detection with a Laplacian-

of-Gaussian filter [9] or by adaptive region extraction [10]. The 

texture primitives typically include intensity, area, elongation, 

and orientation. With these primitives, the texture analysis 

proceeds to compute statistics of the primitives. The structure 

and organization of the texture primitives can be considered 

using Voronoi tessellations [11].  

Model-based methods attempt to hypothesize the underlying 

texture process by use of generative image model and 

stochastic model [12]. The parameters of the image model are 

estimated and then used as texture features. Stochastic spatial 

interaction models consider the intensity generation process as 

a stochastic process where the observed intensity is modeled as 

a linear combination of intensities and additive noise. 

Depending on different neighborhood systems and noise 

sources, various models can be constructed. Autoregressive 

(AR), moving-average (MA), and autoregressive-moving-

average (ARMA) models represent statistical relationships of 

pixels along raster scanning direction. Random field models 

consider the spatial correlations of pixels in 2-D space. Global 

random field models view the entire image as a realization of a 

random field, while local random field models consider local 

relationships of pixels in local neighborhoods. A Gibbs random 

field model is a representative example of the global model [13], 

and Markov random field model [14] is the representative local 

random field model.  

Signal processing methods are focused on the frequency 

domain properties of textures. Spatial domain filters include 

Laws masks [15], local linear transforms [16], and various edge 

detection masks [17].  Authentic frequency analysis can be 

conducted by the Fourier transform (FT) because FT is able to 

describe the global frequency content of the texture as a set of 

filter coefficients. However, FT does not consider localization 

of frequency content in the spatial domain, and hence result in 

poor performance for some applications. In order to remedy 

this drawback, a window function can be imposed on the input 

signal to form the short-time Fourier transform. Wavelet 

transform can achieve multi-resolution analysis of textures by 

changing widow width as the frequency changes [18]. If the 

Gaussian function is employed as the window function, the 

transform is called the Gabor transform [19]. A 2-D Gabor filter 

consists of filter bank each of which is sensitive to a particular 

frequency and orientation. Texture features are obtained by 

filtering the texture with a bank of Gabor filters, each filter 
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having a specific frequency and orientation. Typically a lot of 

scales and orientations are involved, and hence Gabor filtering 

results in high-dimensional texture features. Dimension 

reduction method can be applied by taking only those bands 

with high energy [20], or by optimizing filter design to cover 

the desired frequency range [21].  

In this paper, we first employ a Gabor filter to extract the spatial 

frequency domain property of the input textures and to form 

texture features. Then, Fourier transform is applied to the 

texture features to obtain the rotation-invariant features of the 

input texture. The coefficients of the Fourier transform are 

called Fourier descriptors, and rotation invariance property is 

achieved by ignoring the phase information and by taking only 

the magnitude values of the Fourier descriptors. The overall 

process of the proposed method can be summarized as 

illustrated in Figure 1. 

 

Figure 1. System flow of the proposed method 

 

GABOR FILTER BANK 

Gabor filters are motivated by the mathematical and the 

biological properties of Gaussian functions and useful for 

texture features extraction. The Gabor functions form a 

complete, non-orthogonal basis which allows any given 

function to be expanded in terms of these basis functions. 

Daugman expanded the Gabor function to 2-D form to model 

the receptive-field profiles of simple cells in the striate cortex 

[22]. A Gabor function in the spatial domain is a sinusoidal-

modulated Gaussian function. The real impulse response of the 

2-D Gabor filter is given by, 

G(x, y) =
1

2𝜋𝜎𝑥𝜎𝑦
𝑒 {

−1

2
[

𝑥2

𝜎𝑥
2 +

𝑦2

𝜎𝑦
2]} ∙cos(2 𝜋𝜇0𝑥)  (1) 

where σx and σy are the spreads in the x and y directions, 

respectively, and μ0 is a modulating frequency. The 2-D Gabor 

impulse response function is illustrated in Figure 2.  

A Gabor filter bank is constructed with varying values of 

frequency 𝜇0 and rotation angle θ of the impulse response 

function, which define the center location of the filter in the 

spatial frequency domain. We can obtain arbitrary Gabor filter 

by tuning frequency 𝜇0 and rotation angle θ so that the resulting 

filters cover the spatial-frequency domain.  

 

 

Figure 2. Real part of impulse response functions of a Gabor 

filter bank. Numbers refer to scale, orientation, and frequency, 

respectively. 

 

In addition to the frequency and rotation angle, fine tuning of a 

Gabor filter involves an optimal setting of the frequency 

bandwidth 𝐵𝐹 and the orientation bandwidth 𝐵𝜃. As 2-D Gabor 

functions formulated as models of the receptive fields of simple 

cells, neurophysiological research has reported that the half-

response spatial-frequency bandwidths of simple cells fall in 

the range of 0.4 to 2.6 octaves for mammals [23]. In practice, a 

frequency bandwidth from frequency f1 to f2 is set to one octave 

which is defined as log2(f1/f2) so that the frequency bandwidth 

increases in a logarithmic fashion. For the orientation angle, a 

bandwidth of 30o is recommended for good performance [24], 

while other researchers proposed 45o [20]. Finer quantization 

of orientation angle expectedly results in better performance 

with sacrifice of computational time.  Figure 3 shows the 

spatial-frequency domain covered by the Gabor filters which 

are apart with 45o angular orientation from each other and with 

one octave of radial frequency. Texture features can be defined 

as the magnitude of the energy computed by convolving Gabor 

filter with texture patch, 

𝐸𝜃,𝜔 = ||𝐺(𝜃, 𝜔) ∗ 𝐼||                      (2) 

where 𝜃 refers to angular orientation and 𝜔 radial frequency. 

 

Figure 3. Spatial-frequency domain covered by Gabor filters 

with 45o apart in angular orientation and radial frequencies 1 

octave apart. 
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SHAPE SIGNATURE 

Before processing shapes, the shape at hand first needs to be 

represented as a 1-D function, called a shape signature which 

describes the boundary of the shape. Among many different 

shape signatures, the most popular ones include centroid 

distance, complex coordinates, curvature function, and 

cumulative angles [25].  

1. Centroid distance  

The centroid distance is measured by a function of the distance 

between the boundary points and the centroid (xc, yc) of the 

shape, 

𝑠(𝑡) = √(𝑥(𝑡) − 𝑥𝑐)2 + (𝑦(𝑡) − 𝑦𝑐)2     (3) 

The advantage of the centroid distance signature is that the 

Fourier descriptors computed from the distance are robust 

against noise [26]. 

 

2. Complex coordinates  

Complex coordinates refer to the complex numbers generated 

from the boundary points, 

𝑧(𝑡) = 𝑥(𝑡) + 𝑖𝑦(𝑡)                    (4) 

This representation is dependent on the starting point on the 

boundary, and hence it needs to eliminate the effect, the 

following shifted coordinates are used to achieve translation 

invariance,  

𝑧(𝑡) = [𝑥(𝑡) − 𝑥𝑐] + 𝑖[𝑦(𝑡) − 𝑦𝑐]            (5) 

where (xc, yc) is the centroid of the shape. 

 

3. Curvature signature  

Curvature is the second derivative of the boundary function, or 

the first derivative of the boundary tangent function. The 

curvature function is defined as the differentiation of 

successive angles calculated in a window w, 

𝑘(𝑡) = 𝜃(𝑡) − 𝜃(𝑡 − 1)               (6) 

where  

𝜃(𝑡) = 𝑡𝑎𝑛−1  
𝑦(𝑡)−𝑦(𝑡−𝑤)

𝑥(𝑡)−𝑥(𝑡−𝑤)    
             (7)  

 

4. Cumulative angular function  

The cumulative angular function at a boundary point is defined 

as the amount of angular change from the starting position. 

Angular change is defined as the derivative of the angular 

function φ(t), which is actually the curvature described in 

Equation (6) above. Because the angular change function, a 

cumulative angular function is introduced to overcome the 

problem. The cumulative angular function is defined as, 

𝛾(𝑡) = ∫ 𝜅(𝑟)𝑑𝑟 −  𝜅(0)
𝑡

0
           (8) 

where parameter t takes values from 0 to the length L of the 

boundary curve. The cumulative angular function still has 

problems: it suffers the discontinuity problem at the boundary, 

and its value depends on the length of the curve. These 

problems can be addressed by introducing normalized function 

𝛾∗(𝑡), 

𝛾∗(𝑡) = 𝛾 (
𝐿

2𝜋
𝑡) + 𝑡                 (9) 

where t takes values from 0 to 2π. The factor  𝐿/2𝜋 normalizes 

the angular function in such a way that its value does not change 

when the curve is scaled. 

 

FOURIER DESCRIPTOR  

Fourier descriptor (FD) has been widely used for shape 

signatures [27] as a kind of remedy of the weak discrimination 

capability of the moment-based descriptors. FD aims to capture 

global shape features in low frequency terms, and finer features 

of the shape with higher frequency terms. Advantages of FD-

based method include easy normalization and rotation invariant 

property. Although wavelet descriptors achieve localization in 

both spatial and frequency domains and hence have several 

advantages over FD for feature extraction, they lack rotation 

invariance property.  

Once shape signature has been computed, Fourier transform is 

applied to the shape signature. Hence continuous form of shape 

boundary needs to be first sampled at fixed number of points. 

As shapes have different sizes, the normalization process is 

employed so that the shape signature must be sampled to have 

the same number of data points. Moreover, applying the fast 

Fourier transform (FFT) requires the number of sampled points 

to be power-of-two integer. 

Suppose shape signature s(t) has been computed for normalized 

points  t=0,1, ..., L.  The discrete Fourier transform of s(t) is 

expressed by, 

𝑍(𝑘) =  
1

𝑁 
∑ 𝑠(𝑡)exp (

−𝑗2𝜋𝑘𝑡

𝑁
)𝑁−1

𝑡=1 , 𝑘 = 0,1, … , 𝑁 − 1         (10) 

The coefficient Z(k) are called Fourier descriptors of the shape 

analyzed. For the sake of simplicity and clarity of notation, 

Fourier descriptors are denoted by FDk instead of Z(k) for k=0, 

1,..., N-1. As aforementioned, rotation invariance property by 

FDs is achieved by ignoring the phase information and by 

taking only the magnitude values of the FDs.  

 

1. FDs for complex coordinate signature 

For the complex coordinate signature, the DC component is 

usually discarded because its value depends on the position of 

the shape, and the remaining FDs are used in describing the 

shape. Scale normalization is accomplished by dividing the 

magnitude of FDs by the magnitude of the second FD to obtain 

the rotation-invariant features, 

𝑓𝐹𝐷 = (
|𝐹𝐷2|

|𝐹𝐷1|
,

|𝐹𝐷3|

|𝐹𝐷1|
, … ,

|𝐹𝐷𝑁−1|

|𝐹𝐷1|
)            (11) 
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2. FDs for centroid distance and curvature signature 

Centroid distance signature and curvature signature have only 

real values, so that Fourier transform takes only N/2 different 

frequencies, and therefore, only half of the FDs are needed to 

represent the shape. Scale invariance is achieved by dividing 

the magnitude of the first half of FDs by the DC component, 

𝑓𝐹𝐷 = (
|𝐹𝐷1|

|𝐹𝐷0|
,

|𝐹𝐷2|

|𝐹𝐷0|
, … ,

|𝐹𝐷𝑁/2|

|𝐹𝐷0|
)             (12) 

This feature vector is invariant under scales, translations, and 

rotations. 

 

EXPERIMENTS AND CONCLUSIONS 

We evaluated the proposed method by classifying 30 texture 

classes from the Brodatz image database as shown in Figure  5.  

 

Figure 5. Test images obtained from the Brodatz  database. 

 

For each image, non-overlapping sub-images were cropped and 

then rotated by a number of angles to construct the training and 

test set. The training set comprised of textures rotated by 0o, 30o, 

45o, and 60o, and the test set comprised of textures rotated by 

20o, 70o, 90o, 120o, and 135o.  Consequently, the training set 

consists of 600 samples (30 classesⅹ4 anglesⅹ5 samples) and 

the test set of 750 samples (30 classesⅹ5 anglesⅹ5 samples). 

Gabor filter bank is constructed with four radial frequencies (4, 

8, 16, and 32 cycles per patch width) and 12 orientations (0o, 

30o, 60o, ..., 270o, 300o, and 330o). The reason why we 

employed more orientations than typical setting is that Gabor 

filter energy values are used as the input to the Fourier 

transforms, which results in the rotation-invariant features. For 

each texture patch in the training and test dataset, we applied 

Gabor filters and obtained energy of each Gabor filter. Figure 

6 shows the magnitude of Gabor energy at the 12 orientations 

with radial frequency of 32 cycles for corresponding texture in 

Figure 5.  

 

Figure 6. Magnitude of Gabor energy at 12 orientations with 

radial frequency of 32 cycles for textures in Figure 5. 

 

In Figure 6, one can see that Gabor features are excellent 

indicators for discriminating different texture patterns. These 

features well preserve for varying scales as illustrated in Figure 

7 which shows the magnitude of Gabor energy at the 12 

orientations with radial frequency of 16 cycles for 

corresponding texture in Figure 5. 

 

 

Figure 7. Magnitude of Gabor energy at 12 orientations with 

radial frequency of 16 cycles for textures in Figure 5. 

 

The rotation-invariant features that characterize each texture 

class are obtained by applying the Fourier transform to the 

Gabor energy magnitudes and collecting the FDs. 

Classification tests have been conducted on the FDs using the 

multiclass SVM classifier [28]. Table I shows the experimental 

results for 10-fold tests with various size of Gabor functions. 

One can see that Gabor filter plus FD based method 

consistently outperforms over the plain Gabor filter based 

texture classification for rotation-invariant classification 

problem.  

 



International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 6 (2018) pp. 3321-3326 

© Research India Publications.  http://www.ripublication.com 

3325 

Table I: Texture classification results (correct classification 

rates) of 10-fold experiments on the 30 textures of the Brodatz 

database 

Filter 

Size 

Features Mean (%) Std. 

16 ⅹ 16 Gabor + FD 82.43 ±1.12 

Gabor 80.12 ±1.64 

32 ⅹ 32 Gabor + FD 82.61 ±0.98 

Gabor 81.89 ±1.55 

64 ⅹ 64 Gabor + FD 83.27 ±0.91 

Gabor 82.58 ±1.27 
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