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Abstract

Fuzzy differential equations are suggested as a way of
modeling uncertain and incompletely specified systems.

Runge-Kutta algorithms for solving fuzzy ordinary differential
equations are considered. A theorem of convergence for the
solution is stated and proved.
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INTRODUCTION

In this paper we consider the first — order initial value problem
() = gtx), tel0,T]

x(to) to € [0,T] ,for someT > 0, @Y

Where, x, is a fuzzy number, x is a fuzzy function of t, g (¢, x)
is a fuzzy function of the crisp variable t and fuzzy variablex,
and x is the fuzzy derivative of [2].

= xO’

Sufficient conditions for the existence of a unique solution to
Equation (1) are that g is continuous and satisfy Lipschitz
condition [2]

lgt,x) — g(t,z)| < L|x —2z|, L>0 (2)
Kaleva’s definition for fuzzy numbers [1] will be adopted here.

Definition 1 4 fuzzy number u is a pair of functions (u;,u,) of
Junctions u, (@), u,(a); a € [0, 1], which satisfy:

1. u; (@) is a bounded monotonic increasing left continuous function.
2. uy(a) is a bounded monotonic decreasing left continuous function.
3. w (@) < uy(a),a €10,1]

The set of all fuzzy numbers is denoted by E’. The fuzzy
number space £’ as in [7] can be embedded into the Banach
space B = C[0,1] x C[0,1] where the metric is usually
defined as,

e, vl = max { sup fu(@)], sup [v(@)} 3)

O<a<1 O<a<1

By [2] we may replace Equation (1) by the equivalent system

%, (6) = min{g(t,w),w € [xy,x,]}

=Gy (t,x1,%3), x1(to) = Xo1
'722(1:) = max{g(t, W)'W € [Xl,xz]}
= G,(t, %1 ,X3), x2(to) = Xo2 €))
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which has a unique solution (x,,x,) € B,

which is a fuzzy function, where [x,(t; ), x,(t; @)] € E*.
The parametric form of Equation (4) following [3] is given by
X (G a) = Gl(t,xl(t; a), x,(t; a)), x1(tg; @) = xp1(a)

%6 a) = Gy(t, %1 (6 ), x,(6 @), x5(tp; @) = xp2(a)  (5)

Fora € [0, 1]. A solution to Equation (5) must solve Equation
(4), since equality between two fuzzy numbers in B yields a
pointwise equality because we use the sup norm.

In very few cases fuzzy initial value problems are solved
analytically; however in general, numerical algorithms are
needed and some of these algorithms have been developed by
using the standard Euler method [4, 5] and the Taylor method
[6]. In the following we will develop an algorithm based on
Runge-Kutta Methods.

RUNGE-KUTTA METHOD

The Rung-Kutta class of numerical solutions is one-step
method which can be constructed of any order of accuracy and
without the need of evaluating higher order derivatives.
We will approximate the exact solution(Y;(t; a),Y,(¢t; @))
by [y, (t; a), y,(t; @)]. The t-axis is discretized over the finite
interval [t,, T] . The subdivision points #,, n=0,..., N, are often
chosen equally spaced; that is #,=t)+nh, where the step size 4
ish=""" The exact and approximate solutions at
t, 0 <n<N,are denoted by [Yin(), Yy, ()]
and[y; , (@), 2 (a)], respectively.

To obtain a p — stage Runge-Kutta Method (p function
evaluation per step) for the fuzzy initial problem (1) we let

Yin(@) + h@,(a, h),
y2,n (CZ) + hll}n (a' h), (6)

Vin+1 () =

J’2,n+1(05)
Where,

Q

P
@(a,h) = Q)(tnyl,n' Yo, &; h) = Z w;k;(a) ™

i=1

p
Y@h) = Pt invem@h) = ) vili(@  (©)
i=1

i-1 i-1
ki@ = Gyt + hag Yon +h Y Mgk, yan +h ) k)
=1 =1
©)
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li(a) = Gy(ty, + hb;, ¥y, + hZ;’-;ll &ijliyyon + h2§-_=11 &ijli),
(10)

Wlth Zipzlwi = 1,2?:1 v = 1, a, = b1 = 0and a;, birnijr fu,l =
1,..,p,j=1,..,i—1 ,arereal numbersto be chosen,

where the initial conditions are

Y10 (@) =x01 (@), y20 (@) = xg2(a).

The polygon Curves

it ha) = {[toyo@] [tny11(@)], - [tn, v, @]},

v,(t; h; a) = {[to,yz‘o(a)], [t1,)’z,1(06)], [tN,yz,N , (a)]}
(11)

are the Runge-Kutta approximates to Yy (t; )and Y, (t; ) ,
respectively, over the interval t, <t <ty.

Note that when p = 1, we have Euler method. But the most
powerful method is the Classical 4™ Order Runge-Kutta
Method, where the approximate fuzzy solutions are defined by

Yine1(@) = y1n(@) += (ky(@) + 2ky(a) + 2ks(a) +
k4(a))h,

Yoms1(@) = yyn(@) + < (L(@) + 2L,(@) + 2U5(a) +
Ly(a))h, (12)
Where,

ki (@) = Gi (tn, yin (@), Y20 (@),

k2 (@)= Gp (ta + 0.5k, Y10 (@) + 0.5k; () b, y2. () + 0.5 k1 (a)h),
ks (0)= Gy (ta + 0.5h, yiu (@)+ 0.5k> (@) b, Y2 (@) + 0.5k2(a)h),
ki (@) = G1 (ta + h, yin (@) + ks (@) h, 20 (@) + ks (@) ),

li(@) = G2 (tu, yin (@), y2n (@),

I (@)= G2 (ta + 0.5h, Y10 (0)+ 0.51; (@) h, y2n (o) + 0.5 11(a) h),
I3 (0)= G2 (t, + 0.5h, 1., (0) + 0.51> (@) h, y2., () + 0.5 (@) h),
li(@) =G (ta+ N yin (o) v (@) h, you (o) + 15 () h).
Lemma 1. Let a sequence of numbers {W,}V,- satisfies,
(W1l < AW, | + B, 0<sn<N-1,

for some given positive constants A and B, then

W, | < A"[Wy| +B (A" —-1)/A—-1, 0<n<N-1.
Proof. Straightforward.

Lemma 2. Let the sequences of numbers {W,}Nu=o , {Va} n=0

satisfy
Whial < W] + Amax{|W,|, [V,1} + B,
Vi1l < Vol + Amax{|W,|, [V,|} + B,

for some given positive constants A and B, and denote
Up = [Wol + Val, 0<n<N.

Then

U, <A™U, + B*(A™ —1) /A" — 1 0<n<N

where A* =1+24 and B*=2B

Proof. We have,

(Whitl + Vil S WLl + Vol + 2A0W, | + Vo) + 2B=
1+ 24) (W, | + IV.D + 2B

By applying lemmal for U,, ,0 < n < N. We conclude the
result.

Now we will introduce the convergence theorem for the Runge-
Kutta method.

The domain of @ (tu,v), w(tu,v), Gi(t, u, v) and G,(t, u, v) is
K={@tuv) t)<t<T,-0o<y<ow, -0<y<vyl

Theorem 1 Let G (¢, u, v) and v (t, u, v) belong to C'(K) and
each satisfies a Liptchiz condition in u and v. Assume @ (a,h),
v (o,h) satisfy the consistency condition

61 (tw Y1n(@),720(@) = 8(a,0),

G2 (tny10(@),720(@)) = (@, 0),

Then the Runge-Kutta approximates of (11) converge to the
exact solutions

Yita), V> (t;a).
Proof. It is sufficient to prove that
}Li_% yin(tha) =Y (T, a),and (13)
}li_f}g Yan (& h @) =Y (T, ).
Let
Wi = y1,n+1(ti a)— Y1,n+1(t; a),
Vii1 = Yone1 (G @) — yona (6 a),
Wiir = Yinp1(6 @) = Y041 (G @)

tn + O Yy (L, + 6h),>>

=Vi.(t;a) + h <G1 ( Yz,n((tn + 6h); a; h)

—YVin (t;a) — ho (tn Vi Yon @ h).
Then
(Wil < W] +

tn + OR, Yy, (t, + 6h),
hdl< ;

— O(tn, ;azh
Y2,n((tn+9h)i a;h)) Q)(n yl,n,yz,n a )l)

We can write the part in the parentheses as:
| (tn + 0h, Y, ,(t, + 6h),
1

= 0(ty, ;azh)|=
Yzyn((tn+6h);a;h)> Q)(n yl,n,yz,n a )l

| Gy(t, + 6h, Y, , (t, + 6R), Y, (L, + 6R); a; h)
=G, (t' YinYon; a) + Q)(tn' Yin Yousa; 0) -
O(tn, Yin; Yon ;& h) + B(tn, Yin, Yoma; h) —

o(tn'yl,n »YVoni & h) |
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Let
x1(h) =

t + Ok, Y,(t, + Oh),

e Y,(t + 6h); a; h)

te[to,T] l Gl (
0€[0,1]

) —G(t, Yy, Y5 a) |

And
& (h) = tgﬂ[t%’)%]w(t: Y1Yp;a;0) — @(t, Yy, Yo a; h)|.

Since @(t, Y, Y2, ;5 a; ) is continuous and satisfies a Lipchitz
condition, then

|®(tn, YinYon; o h) - Q)(tnﬁyl,n' Y2 o;h) | =
2L maX{anlﬂ |Vn|} !

Thus
[Wiia| < IWL| + h(x1 () + &(R))

+ 2hL max {|W,|, [V,[}. (14)
Similarly
Vis1 = Vo1 (6 @) — Yot (t @)
tn + 6h Y (¢, + 6h),
=Y,,(ta) +h (Gz ( Vo (b + 61); a5 1)
- yZ,n(t; (X) - hlp(tn: Yin Yon &; h) (15)
So,
Vi1l < Vol +

t + Oh, Yy (tn + 61),
YZ,n((tn + 6h); a; h)

d

g

) = Y(tn Yin Yon & h)|)
(16)

We can write the part in the parentheses as:
G tn +60h Y, (t, + 6h),
@\ ¥, + ORY; a3 1)
t, + 0h,Y; ,(t, + Oh),
G ‘ - G t, Y B Y ;
G < Yy ((t, + 6R); a; ) 2(6 Y10, Yo s @) +
w(tn, Yl,n: YZ,n; &; O) - lp(tn’ Yl,n i YZ,n ; h)

) —P(tn, Vi Yo & h)‘

+Il}(tn' Yl,n' a; h) - I»b(tn' Yin,Yon & h) | 17)
Let
_ t+0hY,(t, + Qh),)
e®= max 16y "o
06€l0,1]

_GZ (t! Yl: YZ: a) I

4612

And
§(h) = max [P(t, Y, Yo a;0) — (L, Yy, Yy a; R
telto,T]

Since Y(t, Y1, Yo a;h)is continuous and satisfies a
Lipchitz condition, then

|lp(tnr Yl,n Yoms a; h) —y¥(t, yYinoYon & h)l
< 2L max{|Wy|, |V, 1}.
Thus

Vasal < Vol + h(){z(h) + Szz(h))
+ 2hL max{|W,|, [V,[}-

(18)
Applying Lemma 2 on (14) and (18) we have
Wal < (1 + 4hL)"|Uo|

+2h[

Vol < (1 4 4hL)™|Up|
on (1+4hL)" — 1
4hL

(1+4hL)" —1

Ahl ] (x1(h) + fl(h)),

] (xz(h) + Szz(h)),

In particular
Wyl < (1 + 4hL)V|U,|

[ Tty -
(14+4hL)y ™ —1
+2h i () + &™),
[Vyl < (1 + 4hL)N|Ujl
_ Tty -
(1+4hL)y ™ —1
+2h T (22 (h) + £(h)),
Since Wy =V, =0, we have
etL(T=t)) _q
Wyl <2 4L ] (x1(h) + 51(]1)),
4L(T-tgy) _ 1
[Vnl 32[ 4L ](xz(h)+fz(h));

s0 taking the limit as h —0, we have Wy —0, V'xy—0, and the
proof is completed.
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Ilustration: Consider the fuzzy differential equation
x(t) =x(¢),
x (0) = (0.75 + 0.25a, 1.125 — 0.125q). (19)
Using Equation (5) this is equivalent to the system
%t a) = x, (6 a), x(0;a) =0.75+ 0.25«
%t a) = x, (), x,(0;a) =1.125 - 0.125a (20)
where the exact solution at ¢ =1, is given by

Y = e[0.75 + 0.25a, 1.125 — 0.125q]

The approximate solution at ¢+ =1 for the Classical 4" Order
Runge-Kutta Method using # = 0.10 is

- 0102  010%  0.10%]%°
yi = (0.75+0.250) [1+0.10 + 225 + =5 4 0]
0102 | 010% | 0.10%7%°
Y, = (1125 - 0.125a) [1 + 010 + 2= + 225 4 222]
That is

y = 2.71818746 [0.75 + 0.25a,1.125 — 0.125 «],
which is more accurate than the Euler solution given by
y = 2.59374246 [0.75 + 0.25 @, 1.125 — 0.125 a].
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