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Abstract 

M-test which was first presented by Box (1949) is used to test 

the equality of several covariance matrices and very sensitive 

to departures from normality distribution. It is difficult to meet 

the assumption with the presence of outliers in data set. Since 

the estimation of sample mean vector and sample variance-

covariance matrix will be inaccurate. Therefore, a modification 

of M-test that resolve the problem is required because not all 

kinds of data are competent to handle the inflexible of M-test 

assumptions. Hence, to overcome these drawbacks, we 

improved M-test by integrating the geometric median 

covariance for producing a new robust covariance equality test 

in the presence of outliers. It is known as MGMed-test. 

Furthermore, we investigate the Type I error rate values for 

performance evaluation based on 5,000 simulation study. 

Several difference dimension: small, medium and large 

variables in relations to various sample sizes with conditions of 

rho, variance, epsilon, and kappa are used in estimating the 

performance of  M-test and MGMed-test in terms of Type I error 

rate values. Moreover, important results from this analysis are 

highlighted. Based on Type I error rate the performance of 

MGMed-test is better than M-test. 

Keywords: M-test, Covariance matrix, Type I error rate, 

Robust estimator and Outliers 

 

INTRODUCTION 

In multivariate analysis setting, collected data are contaminated 

by errors, with failure to fulfil the normality assumption can 

distort the Type I error rates [1]. This make distributional 

performance totally fails if the normality assumption is not 

completely met [2]. One problem that contribute to non-

normality distribution is outliers. Outliers or contaminants are 

observations that are inconsistent in a data set [3, 4, 5,]. The 

presence of outliers usually can cause and harm the normality 

assumption [6].  

Additionally, classical test rely on assumption that the data is 

normally distributed. If the assumption is violate, then the 

statistical result may not be appropriate. This test is highly 

sensitive to the presence of outliers which make the results 

inaccurate. It has damaging effects on statistical analysis, 

increasing the variance of error and reducing statistical test 

power [7, 8].  

The method in which covariance matrix is estimated with the 

presence of outliers is key to multivariate analysis.  

Hence, the desired method to overcome the problem is by using 

robust scale and location estimator instead of the classical 

variance-covariance estimator.  

Furthermore, variance-covariance matrix is compulsory in 

computing M-test. The M-test which was first presented by Box 

(1949) is used to test equality of several variance-covariance 

matrices. Conversely, M-test fails to incorporate outliers in the 

data sets. 

As a result, robust estimators has been established as essential 

tools in analysing data that contain contaminated observation 

[9]. It can be used to identify outliers and provide resistant 

results when the presence of outliers.  

Nevertheless, several types of robust estimators have been 

introduced and discussed in the past research.  

Some of robust estimators multivariate location and dispersion 

are M-estimators [10], S-estimator [11], minimum covariance 

determinant (MCD), and minimum volume ellipsoid (MVE) 

[12], and MM-estimator [13]. More importantly, these 

estimators are resistance to outliers and it will produce the same 

result as the classical analysis, since it called for combination 

of high robustness and high efficiency values [14]. Therefore, 

a robust procedure that attempt to provide a good results will 

be used in this research work. 

The early robust estimator for geometric median vector and 

sample covariance matrix was long presented in 1937, 

Weiszfeld introduced three proofs concerning the uniqueness 

of the geometric median in which one of the proofs provide an 

algorithm for its computations which is based on a strict 

convexity argument.  

Recently, Efteliogu 2015, introduced the geometric median as 

a robust location estimator in statistics that can be applied to 

key domains such as, facility location 

problem in strategic planning which aims to minimize the cost 

of transportation, in spatial economics where the land values 

are determined by the bid rent theory, and in biology and health 

domains where the outliers in high dimensional data are needed 

to be eliminated. The robustness properties of GMed are 

summarized under three important features, breakdown point, 

uniqueness and equivariance [15]. 

Moreover, GMed is an important concept in statistics where the 

location of the data sets is required regardless of the outliers 

present with 50% breakdown point, it is equivariant under 

Euclidean similarity transformations and it is unique under the 

condition that the points are not collinear, and the number of 

points in the set is odd [16].  
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In this study, the issue of outliers call for a modification of the 

existing statistical methods [17].  

A new statistical test that able to solve the problems is required 

because not all kind of data competent to handle the inflexible 

of M-test assumptions. Therefore, we modify the M-test by 

integrating the geometric median covariance for developing a 

new robust covariance equality test in the presence of outliers. 

 

METHODOLOGY 

M-test is among the well-known test especially to the applied 

researchers. Mathematically, the original test [18] is given as 

follows, 

M = ϒ ∑ (𝑛𝑖 − 1)log│𝑆𝑢𝑖
−1 𝑆𝑢│𝑚

𝑖=1    (1.1) 

    where, 

i. ϒ =1- 
2𝑝2−3𝑝−1

6(𝑝+1)(𝑚−1)
 (∑

1

𝑛𝑖−1

𝑚
𝑖=1  - 

1

𝑛−𝑚
 ) 

ii. 𝑆 =
( 𝑛1 𝑠1+ 𝑛2 𝑠2 )

𝑛
 

iii. 𝑆𝑢 = 
𝑛

𝑛−𝑚
 𝑆 

iv. 𝑆𝑢𝑖 = 
𝑛𝑖

𝑛𝑖−1
𝑆𝑖 

where, 𝑺𝒖 and 𝑺𝒖𝒊 are the unbiased estimators of population 

covariance.  

 In order to develop robust M-test denoted by M𝐺𝑀𝑒𝑑-test the 

variance-covariance of geometric median, 𝑆𝐺𝑀𝑒𝑑(𝑖) where 𝑖 =

1, 2, … , 𝑚 is substituted into equation 1.1.  

Thus, the test now turn into the following equation, 

M𝐺𝑀𝑒𝑑 = ϒ ∑ (𝑛𝑖 − 1)𝑙𝑜𝑔│𝑆𝑀𝐺𝑀𝑒𝑑(𝑖)

−1 𝑆𝑀𝐺𝑀𝑒𝑑
│𝑚

𝑖=1  (1.2) 

where, 

ϒ = 1 −
2𝑝2 + 3𝑝 − 1

6(𝑝 + 1)(𝑚 − 1)
(∑

1

𝑛𝑖 − 1

𝑚

𝑖=1

−
1

𝑛 − 𝑚
) 

𝑆𝑀𝐺𝑀𝑒𝑑(𝑖)
 and  𝑆𝑀𝐺𝑀𝑒𝑑

 are the 𝑖-th unbiased sample geometric 

median covariance estimator and the pooled population 

geometric median covariance matrix respectively with, 

𝑆𝑀𝐺𝑀𝑒𝑑
=

∑ (𝑛𝑖 − 1)𝑆𝑀𝐺𝑀𝑒𝑑(𝑖)

𝑚
𝑖=1

𝑛 − 𝑚
 

𝑚 is the number of subgroup where the stability of matrices is 

hypothesized. 

𝑛𝑖 = 𝑖-th sample size. The measure of evaluation that is 

performed in M-test is the Type I error rate based on equation 

1.1 and 1.2, are evaluated by using Type I error (𝛼) rate with 

5,000 simulation study. 

 

RESULTS AND DISCUSSIONS 

The major finding is on a new robust covariance equality test 

in the presence of outliers. We compared original M-test and 

modified MGMed-test, in terms of Type I error rate values. For 

each of the test 4 types of data contamination are considered to 

examine the strength and weakness of the tests. Besides that, 

all these tests have been exposed to various conditions which 

are number of variables (𝑝), sample sizes (𝑛), percentages of 

outliers (epsilon) and probability used (Kappa). The 

comparisons are summarized in form of tables. The first 

column in each table shows the percentage of outliers (epsilon) 

and followed by shift of the mean (Kappa). The following six 

columns recorded the Type I error rate values of MGMed-test 

and  M-test,  are investigated in the study. This conditions is 

repeated for different sample sizes.  

The values that is closest to the significance level and within 

the 0.025 and 0.075 are shaded in the tables with yellow and 

blue colours, whereas, red colours denotes results cannot be 

produced. Additionally, Table 3.1 to 3.9 recorded the Type I 

error rate values for each condition are arranged based on the 

ascending number of variables, i.e. small (𝑝 = 3, 5 and 8), 

medium (𝑝 = 10, 15 and 20) and large number variable (𝑝 =
25, 30 and 50) with 𝛼 = 0.05.  

 

Type I error for Small Number of Variables (𝒑 = 𝟑, 𝟓 𝒂𝒏𝒅 𝟖) 

In Table 3.1 and 3.3 the Type I error rate of MGMed-test and M-

test, are recorded. The overall results show that MGMed-test is 

more robust compared to M-test.  

All the values of Type I error rate of MGMed-test, fall within the 

interval [0.025, 0.075] in yellow colour when, 𝑛 =
10, 20, 30, and 50, at epsilon 0.1 and kappa, 5, except for the 

condition of 𝑛 = 100, epsilon 0.05 and kappa, 2. On the other 

hand, we focus on M-test, in blue colour when, 𝑛 =
10, 20, 30, 50, and 100, perform well when epsilon 0.05 and 

kappa 2. From the result, it shows that M-test, still perform 

where only 61 out of 180 are robust and a total of 119 out of 

180 are non-robust. Interestingly, the new statistical tests: 

 MGMed-test, performed very well more than twice the number, 

where 121 out of 180 are robust.  

Additionally, Table 3.3 presented to show the Type I error of 

𝑝 = 8. The overall results shows that, MGMed-test, is more 

robust with, 35 out of 60 are robust compared to M-test, where 

37 out of 60 is non-robust. All the values of Type I error rates 

of MGMed-test fall within the robustness range for, 𝑛 = 10, 

except that 1 out of 10 conditions is non-robust. Moreover, the 

result of MGMed-test, when, p = 8 is poor as compared to, p =
3 and 5. 

In summary, there are 360 conditions involved in evaluating the 

robustness of test for small number of variables (𝑝 = 3,
5 and 8). There are 121 out of 360 conditions of MGMed-test, 

and 61 conditions of M-test, fall within the robust interval.  

Conversely, 𝑝 = 3 and 5 there are 86 and 42 corresponding 

conditions of MGMed-test, 19 and 19 corresponding to M-test, 

fall within the robust interval. In addition, when, 𝑝 = 8, there 

are 58 out of 120 robust Type I error rate within the interval. 

As a conclusion, the Type I error rate for small number of 

variables show that MGMed-test, is more robust when, 𝑝 =
3 and 5 than, 𝑝 = 8. 
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Table 3.1: Type I error rate for variable, p = 3 

𝒔𝒂𝒎𝒑𝒍𝒆 (𝒏) n=10 n=20 n=30 n=40 n=50 n=100 

𝒆𝒑𝒔𝒊𝒍𝒐𝒏 𝒌𝒂𝒑𝒑𝒂 𝑀𝐺𝑀𝑒𝑑 𝑀 𝑀𝐺𝑀𝑒𝑑 𝑀 𝑀𝐺𝑀𝑒𝑑 𝑀 𝑀𝐺𝑀𝑒𝑑 𝑀 𝑀𝐺𝑀𝑒𝑑 𝑀 𝑀𝐺𝑀𝑒𝑑 𝑀 

0 1 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 

0.05 2 0.047 0.054 0.053 0.060 0.042 0.055 0.040 0.050 0.039 0.055 0.034 0.060 

 5 0.054 0.074 0.062 0.116 0.053 0.133 0.044 0.138 0.041 0.160 0.028 0.245 

 10 0.064 0.113 0.074 0.229 0.065 0.310 0.056 0.364 0.053 0.409 0.040 0.629 

0.1 2 0.049 0.058 0.051 0.068 0.037 0.068 0.033 0.061 0.031 0.067 0.023 0.086 

 5 0.063 0.098 0.067 0.187 0.056 0.244 0.043 0.283 0.037 0.334 0.023 0.554 

 10 0.085 0.187 0.092 0.402 0.082 0.559 0.070 0.646 0.067 0.724 0.054 0.929 

0.2 2 0.050 0.061 0.049 0.087 0.030 0.094 0.024 0.092 0.019 0.109 0.010 0.185 

 5 0.084 0.145 0.093 0.347 0.072 0.498 0.056 0.595 0.054 0.687 0.028 0.941 

 10 0.132 0.330 0.152 0.690 0.133 0.863 0.120 0.922 0.118 0.967 0.096 0.999 

 

Table 3.2: Type I error rate for variable, p = 5 

𝒔𝒂𝒎𝒑𝒍𝒆 (𝒏) n=10 n=20 n=30 n=40 n=50 n=100 

𝒆𝒑𝒔𝒊𝒍𝒐𝒏 𝒌𝒂𝒑𝒑𝒂 𝑀𝐺𝑀𝑒𝑑 𝑀 𝑀𝐺𝑀𝑒𝑑 𝑀 𝑀𝐺𝑀𝑒𝑑 𝑀 𝑀𝐺𝑀𝑒𝑑 𝑀 𝑀𝐺𝑀𝑒𝑑 𝑀 𝑀𝐺𝑀𝑒𝑑 𝑀 

0 1 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 

0.05 2 0.047 0.054 0.046 0.049 0.041 0.058 0.049 0.060 0.041 0.058 0.031 0.059 

 5 0.053 0.070 0.059 0.101 0.050 0.142 0.060 0.339 0.051 0.184 0.031 0.291 

 10 0.064 0.105 0.073 0.233 0.065 0.345 0.073 0.438 0.067 0.499 0.045 0.740 

0.1 2 0.049 0.057 0.046 0.534 0.036 0.067 0.039 0.071 0.032 0.070 0.019 0.082 

 5 0.064 0.098 0.073 0.180 0.061 0.267 0.064 0.339 0.052 0.390 0.029 0.651 

 10 0.086 0.173 0.103 0.428 0.092 0.606 0.094 0.725 0.088 0.811 0.064 0.964 

0.2 2 0.051 0.063 0.042 0.070 0.036 0.094 0.030 0.111 0.023 0.111 0.008 0.192 

 5 0.076 0.138 0.107 0.345 0.100 0.547 0.090 0.673 0.079 0.780 0.047 0.973 

 10 0.126 0.305 0.173 0.726 0.171 0.902 0.163 0.963 0.154 0.988 0.126 0.999 

 

Table 3.3. Type I error rate for variable, p = 8 

𝒔𝒂𝒎𝒑𝒍𝒆 (𝒏) n=10 n=20 n=30 n=40 n=50 n=100 

𝒆𝒑𝒔𝒊𝒍𝒐𝒏 𝒌𝒂𝒑𝒑𝒂 𝑀𝐺𝑀𝑒𝑑 𝑀 𝑀𝐺𝑀𝑒𝑑 𝑀 𝑀𝐺𝑀𝑒𝑑 𝑀 𝑀𝐺𝑀𝑒𝑑 𝑀 𝑀𝐺𝑀𝑒𝑑 𝑀 𝑀𝐺𝑀𝑒𝑑 𝑀 

0 1 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 

0.05 2 0.047 0.049 0.062 0.059 0.045 0.054 0.046 0.062 0.044 0.059 0.037 0.070 

 5 0.052 0.056 0.078 0.115 0.062 0.143 0.065 0.205 0.063 0.225 0.051 0.388 

 10 0.057 0.069 0.097 0.248 0.079 0.370 0.083 0.510 0.081 0.572 0.072 0.832 

0.1 2 0.048 0.050 0.060 0.062 0.045 0.063 0.042 0.075 0.041 0.075 0.025 0.105 

 5 0.059 0.068 0.091 0.186 0.082 0.280 0.080 0.394 0.076 0.464 0.056 0.764 

 10 0.070 0.098 0.131 0.444 0.118 0.662 0.118 0.800 0.116 0.869 0.100 0.991 

0.2 2 0.052 0.052 0.056 0.444 0.045 0.087 0.035 0.109 0.032 0.075 0.014 0.234 

 5 0.069 0.091 0.129 0.071 0.126 0.586 0.126 0.751 0.124 0.854 0.090 0.993 

 10 0.095 0.160 0.219 0.749 0.209 0.930 0.214 0.980 0.208 0.995 0.178 1.000 

Shaded region indicate Type I error within [0.025, 0.075] 

 

 

 

Type I error for Medium Number of Variables (𝒑 =
𝟏𝟎, 𝟏𝟓 𝒂𝒏𝒅 𝟐𝟎) 

Table 3.4, 3.5 and 3.6 display Type I error rate for medium 

number of variables. Based on the results presented in three 
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tables, the pattern of performance for MGMed-test, when p =
10, and 15 are equal there are both 52 out of 120 are robust, 

except when 𝑝 = 20 there are 21 out of 120 are robust when 

𝑛 = 10, 20, 30, 50 and 100 with 5% contamination and kappa 

5 at least Type I error rate values. 

From the simulation study, these three tables demonstrate that 

MGMed-test, is robust for at least all the sample sizes excluding 

10% and 20% of data contamination. When 𝑛 =
10, 20, 30, and 50 with, 𝑝 = 10, 15 and 20, M-test, is robust 

at 0% and 5% of data contamination with kappa 2.  Meanwhile, 

when, 𝑛 = 100, M-test, is robust at only 0% of data 

contamination under ideal condition (no contamination), but 

𝑛 = 100 failed when involved with large percentage of data 

contamination, 5%, 10% and 20%. Interestingly, M-test and 

MGMed completely failed at all percentages of 0%, 5%, 10%, 

and 20% of data contamination, when, 𝑛 = 10, 𝑝 = 10; 𝑛 =
10, 𝑝 = 15; and 𝑛 = 10 and 20, 𝑝 = 20. 

The simulation study for M-test, indicates that the values of 

Type I error fall within the robust interval under ideal condition 

(no contamination) only. When sample size increase, the 

number of condition that fall within the robust interval is 

decrease. At, 𝑛 = 100, there are 2 conditions, and when sample 

size increase to 100, there are only 1 condition.  

Meanwhile, for medium number of variables in all the sample 

sizes under consideration, all values of the Type I error rate for 

MGMed-test, for, 𝑝 = 10, 15 and 20 are differ. For, 𝑝 = 10, all 

the values are robust under 5% of data contamination at kappa 

5.  

 

For, 𝑝 = 15, the number of condition that fall within the robust 

interval decreased whereas M-test, is robust under 5% 

contamination at kappa 2.  

In summary, there are 360 conditions involved in evaluating the 

robustness of the test for medium number of variables (𝑝 =
10, 15 and 20). There are 73 out of 360 conditions of MGMed-

test, and 38 conditions M-test, of that fall within the robust 

interval. Therefore, we concluded that MGMed-test, is more 

robust compared to all other tests. 

 

Table 3.4. Type I error rate for variable, p = 10 

𝒔𝒂𝒎𝒑𝒍𝒆 (𝒏) n=10 n=20 n=30 n=40 n=50 n=100 

𝒆𝒑𝒔𝒊𝒍𝒐𝒏 𝒌𝒂𝒑𝒑𝒂 𝑀𝐺𝑀𝑒𝑑 𝑀 𝑀𝐺𝑀𝑒𝑑 𝑀 𝑀𝐺𝑀𝑒𝑑 𝑀 𝑀𝐺𝑀𝑒𝑑 𝑀 𝑀𝐺𝑀𝑒𝑑 𝑀 𝑀𝐺𝑀𝑒𝑑 𝑀 

0 1   0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 

0.05 2   0.056 0.060 0.049 0.064 0.042 0.057 0.042 0.062 0.036 0.069 

 5   0.069 0.107 0.066 0.160 0.065 0.073 0.061 0.249 0.049 0.416 

 10   0.089 0.210 0.089 0.401 0.085 0.492 0.082 0.598 0.068 0.857 

0.1 2   0.054 0.062 0.051 0.069 0.043 0.198 0.041 0.079 0.025 0.100 

 5   0.082 0.175 0.090 0.305 0.083 0.407 0.818 0.498 0.061 0.791 

 10   0.124 0.397 0.133 0.677 0.126 0.806 0.125 0.889 0.104 0.994 

0.2 2   0.056 0.075 0.050 0.097 0.041 0.110 0.036 0.129 0.016 0.234 

 5   0.120 0.338 0.137 0.611 0.141 0.771 0.129 0.869 0.113 0.993 

 10   0.215 0.707 0.228 0.940 0.227 0.986 0.219 0.995 0.204 1.000 

 

Table 3.5: Type I error rate for variable, p = 15 

𝒔𝒂𝒎𝒑𝒍𝒆 (𝒏) n=10 n=20 n=30 n=40 n=50 n=100 

𝒆𝒑𝒔𝒊𝒍𝒐𝒏 𝒌𝒂𝒑𝒑𝒂 𝑀𝐺𝑀𝑒𝑑 𝑀 𝑀𝐺𝑀𝑒𝑑 𝑀 𝑀𝐺𝑀𝑒𝑑 𝑀 𝑀𝐺𝑀𝑒𝑑 𝑀 𝑀𝐺𝑀𝑒𝑑 𝑀 𝑀𝐺𝑀𝑒𝑑 𝑀 

0 1   0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 

0.05 2   0.047 0.048 0.050 0.061 0.050 0.061 0.048 0.068 0.040 0.076 

 5   0.053 0.078 0.068 0.145 0.068 0.205 0.069 0.267 0.059 0.495 

 10   0.073 0.137 0.093 0.345 0.092 0.495 0.090 0.626 0.078 0.907 

0.1 2   0.049 0.053 0.053 0.073 0.051 0.075 0.045 0.082 0.033 0.115 

 5   0.066 0.120 0.090 0.290 0.093 0.413 0.091 0.544 0.078 0.858 

 10   0.105 0.264 0.140 0.630 0.140 0.809 0.138 0.908 0.118 0.996 

0.2 2   0.051 0.060 0.058 0.097 0.048 0.108 0.053 0.137 0.028 0.254 

 5   0.090 0.225 0.147 0.582 0.157 0.787 0.169 0.901 0.159 0.998 

 10   0.173 0.264 0.256 0.927 0.255 0.985 0.263 0.997 0.255 1.000 

 



International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 6 (2018) pp. 4299-4305 

© Research India Publications.  http://www.ripublication.com 

4303 

Table 3.6: Type I error rate for variable, p = 20 

𝒔𝒂𝒎𝒑𝒍𝒆 (𝒏) n=10 n=20 n=30 n=40 n=50 n=100 

𝒆𝒑𝒔𝒊𝒍𝒐𝒏 𝒌𝒂𝒑𝒑𝒂 𝑀𝐺𝑀𝑒𝑑 𝑀 𝑀𝐺𝑀𝑒𝑑 𝑀 𝑀𝐺𝑀𝑒𝑑 𝑀 𝑀𝐺𝑀𝑒𝑑 𝑀 𝑀𝐺𝑀𝑒𝑑 𝑀 𝑀𝐺𝑀𝑒𝑑 𝑀 

0 1     0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 

0.05 2     0.035 0.038 0.052 0.065 0.050 0.067 0.044 0.070 

 5     0.046 0.095 0.072 0.203 0.071 0.277 0.065 0.515 

 10     0.071 0.232 0.102 0.480 0.095 0.616 0.084 0.913 

0.1 2     0.038 0.044 0.054 0.079 0.053 0.083 0.041 0.112 

 5     0.060 0.195 0.096 0.417 0.099 0.557 0.092 0.879 

 10     0.108 0.499 0.146 0.799 0.144 0.903 0.131 0.998 

0.2 2     0.043 0.068 0.065 0.122 0.057 0.138 0.049 0.260 

 5     0.108 0.456 0.174 0.778 0.173 0.903 0.199 0.998 

 10     0.209 0.862 0.278 0.983 0.272 0.999 0.281 1.000 

Shaded region indicate Type I error within [0.025, 0.075] 

 

Type I error rate for Large Number of Variables (𝒑 =
𝟐𝟓, 𝟑𝟎 𝒂𝒏𝒅 𝟓𝟎) 

Type I error rate of M-test, and MGMed-test, for large number of 

variables are presented in Table 3.7, 3.8 and 3.9. Based on the 

three tables, for all combination of sample sizes, MGMed-test, is 

robust under ideal condition (no contamination) and 5% of data 

contamination.  

Meanwhile, for M-test, the Type I error fall within the robust 

interval for under ideal condition (no contamination) only as 

the sample sizes increase from, 𝑛 = 40, 50 and 100. Overall, 

when, 𝑝 = 25, 30 and 50, MGMed-test, has 21, 13 and 3 out of 

360 conditions that fall within robust interval, correspondingly. 

Therefore, we summarized that MGMed-test, is more powerfully 

robust in large number of variables. 

 

Table 3.7: Type I error rate for variable, p = 25 

𝒔𝒂𝒎𝒑𝒍𝒆 (𝒏) n=10 n=20 n=30 n=40 n=50 n=100 

𝒆𝒑𝒔𝒊𝒍𝒐𝒏 𝒌𝒂𝒑𝒑𝒂 𝑀𝐺𝑀𝑒𝑑 𝑀 𝑀𝐺𝑀𝑒𝑑 𝑀 𝑀𝐺𝑀𝑒𝑑 𝑀 𝑀𝐺𝑀𝑒𝑑 𝑀 𝑀𝐺𝑀𝑒𝑑 𝑀 𝑀𝐺𝑀𝑒𝑑 𝑀 

0 1     0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 

0.05 2     0.054 0.061 0.051 0.063 0.048 0.068 0.043 0.075 

 5     0.063 0.108 0.063 0.183 0.067 0.251 0.069 0.550 

 10     0.082 0.206 0.090 0.412 0.092 0.577 0.088 0.919 

0.1 2     0.056 0.067 0.054 0.079 0.049 0.087 0.042 0.116 

 5     0.075 0.188 0.088 0.374 0.087 0.529 0.144 0.900 

 10     0.114 0.400 0.141 0.738 0.139 0.892 0.305 1.000 

0.2 2     0.059 0.076 0.059 0.108 0.058 0.133 0.054 0.265 

 5     0.108 0.369 0.143 0.752 0.165 0.898 0.305 1.000 

 10     0.205 0.761 0.253 0.976 0.272 0.999 0.305 1.000 
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Table 3.8: Type I error rate for variable, p = 30 

𝒔𝒂𝒎𝒑𝒍𝒆 (𝒏) n=10 n=20 n=30 n=40 n=50 n=100 

𝒆𝒑𝒔𝒊𝒍𝒐𝒏 𝒌𝒂𝒑𝒑𝒂 𝑀𝐺𝑀𝑒𝑑 𝑀 𝑀𝐺𝑀𝑒𝑑 𝑀 𝑀𝐺𝑀𝑒𝑑 𝑀 𝑀𝐺𝑀𝑒𝑑 𝑀 𝑀𝐺𝑀𝑒𝑑 𝑀 𝑀𝐺𝑀𝑒𝑑 𝑀 

0 1       0.050 0.050 0.050 0.050 0.05 0.050 

0.05 2       0.049 0.061 0.060 0.074 0.052 0.085 

 5       0.061 0.160 0.077 0.240 0.081 0.579 

 10       0.087 0.343 0.104 0.534 0.100 0.924 

0.1 2       0.054 0.075 0.059 0.087 0.053 0.133 

 5       0.080 0.321 0.092 0.497 0.124 0.919 

 10       0.133 0.660 0.149 0.865 0.165 0.998 

0.2 2       0.063 0.105 0.071 0.135 0.067 0.288 

 5       0.131 0.649 0.168 0.870 0.250 1.000 

 10       0.248 0.951 0.279 0.997 0.333 1.000 

 

Table 3.9: Type I error rate for variable, p = 50 

𝒔𝒂𝒎𝒑𝒍𝒆 (𝒏) n=10 n=20 n=30 n=40 n=50 n=100 

𝒆𝒑𝒔𝒊𝒍𝒐𝒏 𝒌𝒂𝒑𝒑𝒂 𝑀𝐺𝑀𝑒𝑑 𝑀 𝑀𝐺𝑀𝑒𝑑 𝑀 𝑀𝐺𝑀𝑒𝑑 𝑀 𝑀𝐺𝑀𝑒𝑑 𝑀 𝑀𝐺𝑀𝑒𝑑 𝑀 𝑀𝐺𝑀𝑒𝑑 𝑀 

0 1         0.050   0.050 

0.05 2         0.044   0.942 

 5         0.088   0.590 

 10         0.095   0.907 

0.1 2         0.041   0.152 

 5         0.153   0.929 

 10         0.179   0.998 

0.2 2         0.083   0.314 

 5         0.440   1.000 

 10         0.534   1.000 

Shaded region indicate Type I error within [0.025, 0.075] 

 

CONCLUSION 

The ultimate goal of this study is to develop a new robust 

method of M-test in testing and applying the new statistical 

covariance equality test in the presence of outliers. In achieving 

the objective, the integration of the M-test into robust location 

estimators of M-geometric median test by using M-estimator 

and M𝐺𝑀𝑒𝑑-estimator. The test is use to handle the problem of 

outliers. Moreover, the Type I error rate value is conducted to 

evaluate the performance of   M-test and MGMed-test using 

simulated data. Generally, the results showed that, MGMed-test 

dominated M-test for every different number of variables 

except when 𝑝 = 5. The robustness of M-test differs among 

small, medium and large number of variables. In small variable, 

when the sample sizes increase, the performance of M-test 

becomes worst in condition of high percentage (10%, 15% and 

20%) of data contamination. While, medium variable, 𝑛 =
20, 30 and 40, M-test is robust under idea condition (no 

contamination) and 5% of data contamination. From the results 

it showed that M-test performed well in medium variable and 

worst at 20%. Meanwhile, M-test, the Type I error fall within 

the robust interval for under ideal condition (no contamination) 

only.  
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