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Abstract 

A comparison between Galerkin-type of weighted residual 

technique (WRT) and regular perturbation technique (RPT) 

for studied the effects of internal heat generation and magnetic 

field dependent (MFD) on the onset of Rayleigh–Bénard–

Marangoni ferroconvection subjected to constant heat flux 

conditions. The lower rigid and upper free boundary at which 

the temperature-dependent surface tension effect is considered 

is non-deformable. The eigenvalue problem is solved 

numerically by Galerkin technique and analytically by regular 

perturbation technique. It is noted that the combined effect of 

magnetic Rayleigh number and dimensionless internal heat 

source strength is to reinforce together and to suppress the 

onset of Bénard–Marangoni ferroconvection. The onset of 

ferroconvection is augment with an increase in MFD viscosity 

parameter. In addition, nonlinearity of fluid magnetization is 

found to have no influence on the onset of ferroconvection.  

Keywords: Bénard-Marangoni ferroconvection, Weighted 

residual  technique, Regular perturbation technique, Internal 

heat generation, MFD viscosity, Insulated boundaries 

 

INTRODUCTION  

Ferrofluids are colloidal suspensions of magnetic 

nanoparticles in a carrier fluid such as water, hydrocarbon 

(mineral oil or kerosene) or fluorocarbon. The nanoparticles 

typically have sizes of about 100 Å or 10 nm and they are 

coated with surfactants in order to prevent the coagulation. 

Usually, these fluids do not conduct electric current and 

exhibit a nonlinear paramagnetic behavior. The variety of 

formulations available for ferrofluids permits a great number 

of applications, from medical to satellite and vacuum 

technologies (Rosensweig(1985)), Halbreich et al. (1998), 

Odenbech ((2002a, 2002b), Kim and Park(2010)). The first 

macroscopic description of magnetic fluids was given 

(Neuringer and Rosensweig (1964)). The convective 

instability of a magnetic fluid layer heated from below in the 

presence of a uniform vertical magnetic field was discussed 

later (Finlayson(1970)). Other works in ferrofluid convection 

can be found in Refs. (Lalas and Carmi  (1971),  Gotoh and 

Yamada  (1982), Stiles and Kagan  (1990), Siddheshwar  

(1995), Kaloni and Lou  (2004), Sunil and Mahajan (2008), 

Nanjundappa and Shivakumara  (2008), Nanjundappa et al. 

(2009), Singh and Bajaj  (2011), Shivakumara et al. (2012)). 

Recently, Sekhar et al. (2017) have studied the effect of 

variable viscosity on thermal convection in Newtonian 

ferromagnetic liquid by different forms of boundary 

conditions.  

On the other hand, if the surface of a ferrofluid layer is free 

and open to the atmosphere, then ferroconvection can also be 

induced by temperature dependent surface tension forces at 

the free surface known as Marangoni ferroconvection. In view 

of the fact that heat transfer is greatly enhanced due to 

ferroconvection, Marangoni ferroconvection offers new 

possibilities for application in cooling of motors in space, 

loudspeakers, transmission lines and other equipments in 

micro-gravity environment where magnetic field is already 

present. In most of the cases, the combined effect of buoyancy 

and surface tension forces on convective instability in a 

ferrofluid layer also becomes important. Realizing these 

aspects, a limited number of studies have addressed the effect 

of surface tension forces on ferroconvection in a horizontal 

ferrofluid layer. Linear and non-linear stability of combined 

buoyancy–surface tension effects in a ferrofluid layer heated 

from below has been analyzed (Qin and Kaloni (1994)). 

Odenbech (1995) was carried out experimentally the sounding 

rockets and at the drop tower on thermomagnetic convection 

in magneticfluids. The Bénard–Marangoni convection 

problems of ferrofluid layer heated from below under various 

assumptions is studied by many authors (Weilepp and Brand 

(2001), Shivakumara et al. (2002), Hennenberg et al. (2005), 

Shivakumara and Nanjundappa (2006), Bozhko and Putin 

(2009), Nanjundappa et al. (2010), Nanjundappa et al. (2013) 

have investigated the linear stability analysis of penetrative 

Bénard–Marangoni convection in a horizontal ferromagnetic 

fluid layer via an internal heating model. The linear stability 

of the onset of Bénard–Marangoni convection in a horizontal 

ferromagnetic fluid layer with internal heat source effect and 

temperature dependent viscosity effect (Nanjundappa et al. 

(2014)) have been examined. Nanjundappa et al. (2015)  have 

investigated the combined effect of rotation and MFD 

viscosity on Bénard-Marangoni ferroconvection.   

In the present study, we have considered the problem of 

combined buoyancy and surface tension driven convection in 

a horizontal ferromagnetic fluid layer subjected to the 

magnetic field dependent viscosity including the additional 

effect of internal heat generation. Such a study helps in 

understanding control of Bénard–Marangoni ferroconvection 

due to non-uniform temperature gradient arising due to 

internal heating, which is important in the applications of 

ferrofluid technology. The lower rigid and upper free 
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boundary at which the temperature-dependent surface tension 

forces are accounted for are considered to be perfectly 

insulated to temperature perturbations. The resulting 

eigenvalue problem is solved numerically using the Galerkin 

technique. Besides, an analytical formula is obtained for the 

critical Rayleigh/Marangoni number by regular perturbation 

technique with wave number as a perturbation parameter. The 

results obtained from both numerical and analytical methods 

are found to complement with each other suggesting the 

analytical results obtained are exact.  

 

MATHEMATICAL FORMULATION 

We consider a horizontal layer of an electrically non-

conducting Boussinesq ferromagnetic fluid of thickness d with 

a uniformly distributed volumetric heat generation. An 

external uniform magnetic field 
0( ,0,0)H H

 
is applied 

perpendicular to the ferrofluid layer. The temperatures at the 

lower-rigid ( 0z  ) and upper-free ( z d ) boundaries are 

kept at lT  and ( )u lT T , respectively. A Cartesian co-

ordinate system (x, y, z) is used with the origin at the bottom 

of the surface and the z-axis vertically upward. Gravity acts in 

the negative z-direction, ˆg g k  , where k̂  is the unit 

vector in the z-direction. At the upper free surface, the surface 

tension   is assumed to vary linearly with temperature in the 

form  

0 0( )T T T                                       (1) 

where, 0  is the unperturbed value and T  is the rate of 

change of surface tension with temperature T . The continuity 

equation for an incompressible Boussinesq fluid is   

0V                                          (2) 

where, ( , , )V u v w  is the velocity vector.  

The momentum equation for an incompressible ferrofluid is   

0

0

[ ( ) ] p 2 [  ]

( )

V V V g D
t

M H

  




      



 

      (3) 

where, p  is the pressure, t the time,  0 ( )aT   the 

density of fluid at the average temperature 

( ) / 2a u lT T T  , B  the magnetic induction field, H  the 

magnetic field,  M  the magnetization, the coefficient 
7 1

0 4 10 Henrym      the magnetic constant and 

[ ( ) ]/ 2TD V V     the rate of strain tensor. The last 

term in Eq. (3) describes a ponderomotive force which acts on 

a magnetized fluid in a non-uniform magnetic field (i.e., 

magnetized fluid tends to move in the direction of increasing 

magnetic field). The fluid is assumed to be incompressible 

having variable viscosity. Experimentally, it has been 

demonstrated that the magnetic viscosity has got exponential 

variation with respect to magnetic field (Rosenswieg (1966)). 

As a first approximation for small field variation, linear 

variation of magnetic viscosity has been used in the form 

0(1 )B     , where   is the variation coefficient of 

magnetic field dependent viscosity and is considered to be 

isotropic (Vaidayanathan et al. (2000)), 0  is taken as 

viscosity of the fluid when the applied magnetic field is 

absent.  

The energy equation for an incompressible fluid which obeys 

Fourier’s law is 

0 , 0

,

2

0 1

,

V H
V H

V H

M DTC H
T Dt

M DHT k T Q
T Dt

 



  
   

   

 
     

 

             

(4) 

where, 1k  is the (constant) overall thermal conductivity, Q 

the overall uniformly distributed effective volumetric internal 

heat generation, 
,V HC  the specific heat at constant volume 

and magnetic field, H the magnitude of H  H H , M  

the magnitude of M  M M  and 

2 2 2 2 2 2 2/ / /x y z       
 
the Laplacian operator. 

The variation in fluid density   with temperature T is 

accounted for only in the buoyancy term and is approximated 

linearly as 

 0 1 ( )t aT T                           (5) 

where, t  is the coefficient of thermal expansion coefficient.  

Maxwell’s equations, simplified for a non-conducting fluid 

with no displacement currents, become 

0 B


, 0H 


 or H      (6a,b) 

where,   is the magnetic scalar potential. 

The magnetic field H , magnetization M , and the magnetic 

induction B  are related by 

 0B M H                     (7) 

where  

 ,
HM M H T
H

 .           (8) 

The magnetic equation of state is linearized about the 

magnetic field, 0H , and the average temperature, aT  to 

becomes 
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0 0( ) ( )aM M H H K T T              (9) 

where,  
,

0

/
H Ta

K M T    is the pyromagnetic co-

efficient, ,
0

( / )H Ta
M H    is the magnetic 

susceptibility and 0 0( , )aM M H T  is the constant mean 

value of magnetization.  

The basic state is quiescent and is given by   

 0bV            (10) 

3 2 2

0 0 0

1 1

2
0 0

1 1

2 2 4 3 2
0

2 2
11 1

( )
6 4 2

1 2 2

(2 )
4 2(1 ) 8 2

b t
Q z Q d z zp z p g z g

k k

M K Q z Q d z z
k k

K Q z Q z Q d zQ d
kk k


  







 



 
     

 

 
   

  

  
      

    

       (11) 

2

1 1

( )
2 2

b a
Q z Q d zT z z T

k k
                            (12) 

2

0

1 1

ˆ( )
1 2 2

b
K Q z Q d zH z H z k

k k




  
     

   

     (13) 

2

0

1 1

ˆ( )
1 2 2

b
K Q z Q d zM z M z k

k k




  
     

   

     (14) 

where, ( ) / /l uT T d T d      and the subscript b 

denotes the basic state. It may be noted that ( )bT z , ( )bH z  

and ( )bM z are distributed parabolically with the fluid layer 

height due to the presence of internal heat generation. 

However, for 0Q   (i.e. in the absence of internal heat 

generation) the basic state distributions are linear in z.   

To study the stability of the system, the basic state is 

perturbed in the form  

b b

b b

b

V V p p z p z

T T z T H H z H

M M z M

      

    

 

, ( ) ', ( ) ',

( ) , ( ) ,

( ) ,

 (15) 

where the primed quantities represent the perturbed variables. 

Substituting Eq. (15) into Eq. (7), using Eq. (8), we get (after 

dropping the primes):     

 0 01 /x x xH M M H H   ,  

 0 01 /y y yH M M H H   ,                               

  TKHMH zzz   1   ,                                   (16) 

where,  zyx HHH ,,  and  zyx MMM ,,  are the 

),,( zyx  components of the magnetic field intensity and 

magnetization, respectively. In obtaining the above equations 

it is assumed that      01  K d H   and 

2
0 12(1 )K Qd H k  . 

Substituting Eq. (15) in Eq. (3), linearizing, eliminating the 

pressure by operating curl twice, and retaining the z-

component of the resulting equation, we obtain (after 

dropping the primes):  

 

 

2 2
0 0 0 0 0

2
0

1 1

2
2 20

0

1 1

1 ( )

2

1 2

h

t h h

M H w
t

Q z Q dK
k k t

K Q z Q dg T T
k k

   

  


  



 
       

  
     

 

 
       

  

       (17) 

where, 
2 2 2 2 2/ /h x y       is the horizontal Laplacian 

operator. Equation (4), after using Eq. (15), and linearizing, 

takes the form (after dropping the primes):    

2
0 0 0 0 1

2
0 0

1 1

1
1 2

TC T K k T
t t z

T K Q z Q d w
k k


 






   
   

   

   
      

   

                  (18) 

where, 0 0 0 , 0 0V HC C H K      and we have assumed 

0d T  . Equation (6a,b),  after substituting Eq. (15) and 

using Eq. (16), may be written as (after dropping the 

primes)  
2

2
0

2
0

1  1 0h
M TK
H z z


 

   
      

  
    (19) 

The normal mode expansion of the dependent variables is 

assumed in the form   

     tmyxizzzWTw   )(exp)(),(),(,,      (20) 

where,   and m are wave numbers in the x and y directions, 

respectively and   is the growth rate with is complex. On 

substituting Eq. (20) into Eqs.(17)-(19) and non-

dimensionalizing the variables by setting  

 

 
2

2

0 02

*, *, * , , ,   * ,  

1  
* , *  ,

* , * , * (1 )

x y z dx y z W W
d d d

v d v d
dt t H

d



 

 


    



 
  
 


     



    

   (21) 
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where, 0 0/v    is the kinematic viscosity and 

1 0 0/k C   is the thermal diffusivity, we obtain (after 

ignoring the asterisks) 

 

2 2 2 2

2 2

(1 )( ) ( )

(1 2 ) 1 ( )m S t

D a D a W

R a N z D R a

     
 

     

     (22) 

 2 2
2

2

Pr Pr

[ (1 2 ) 1](1 )S

D a M

N z M W

     

  
             (23) 

 2 2
3D M a D                          (24) 

Here, dz/dD   is the differential operator, 

22 ma    the horizontal wave number, 

2 2 4
1 0 /(1 )m tR R M K d       the magnetic 

Rayleigh number, 
2

1 0 0/(1 ) tM K g     
 

the 

magnetic number, 
4 /t tR g d     the gravity thermal 

Rayleigh number, / 2sN Qd    the dimensionless heat 

source strength, Pr /   the Prandtl number, 
2

2 0 0 0 1/(1 ) ( )M T K C   
 

the magnetic parameter, 

3 0 0(1 / ) /(1 )M M H     the measure of nonlinearity 

of the magnetization, 0 0 0( )M H     the non 

dimensional magnetic filed dependent viscosity parameter and 

  is the growth rate. Moreover, the typical value of 2M  for 

magnetic fluids with different carrier liquids is of the order of 
610  and hence its effect is neglected as compared to unity. 

Equations (22)-(24), after noting the above facts, now become    

 

2 2 2

2 2

(1 ) ( )

(1 2 ) 1 ( )m S t

D a W

R a N z D R a

  

     
        (25) 

2 2( ) [ (1 2 ) 1]SD a N z W                           (26) 

2 2
3( )D M a D                          (27) 

It is considered that the lower boundary is rigid- 

ferromagnetic, while the upper free boundary at which the 

surface tension effects are accounted for is taken to be non-

deformable and flat. In addition, both the boundaries are 

assumed to be perfectly insulated to temperature 

perturbations. The boundary conditions are then given by 

0 0W DW D at z                                 (28) 

2 2(1 ) 0aW D W M a D D           at   

1z                                                                                     (29) 

where, /TMa T d    is the Marangoni number.  

METHOD OF SOLUTION 

Equations (25)–(27) together with the boundary conditions 

constitute an eigenvalue problem with mR  or tR  or Ma  as 

an eigenvalue. The eigenvalue problem is solved both 

numerically using the Galerkin-type of WRT as well as 

analytically using a RPT with wave number as a perturbation 

parameter.  

 

1. Numerical Solution by Galerkin-type of WRT 

The Galerkin method is used to solve the eigenvalue problem. 

In this method, the test (weighted) functions are the same as 

the base (trial) functions. Accordingly, W ,   and   are 

written as 

1 1

1

( ) ( ), ( )  ( ),

( )  ( )

n n

i i i i
i i
n

i i
i

W z A W z z B z

z C z

 



   

  

 



                    (30) 

where, iA , iB  and iC  are unknown constants to be 

determined. The base functions )(zWi , ( )i z  and ( )i z  

are generally chosen such that they satisfy the corresponding 

boundary conditions but not the differential equations. We 

select the trial functions as 

4 3 2

15 2 3 2 *
i iW z - z / z / T     ,    

11 2 *
i iz( z / )T    , 

2

11 2 3 *
i iz ( z / )T                                                      (31) 

where, 
* 'iT s   are the modified Chebyshev polynomials. The 

above trial functions satisfy all the boundary conditions 

except the natural one, namely 

2 2(1 ) 0aD W M a     at 1z   but the residual 

from this condition is included as residual from the 

differential equation. Substituting Eq. (30) into Eqs.(25)-(27), 

multiplying momentum Eq. (25) by ( )jW z , energy Eq. (26) 

by ( )j z  and magnetization Eq. (27) by ( )j z ; 

performing the integration by parts with respect to z between 

z = 0 and z = 1 and using the boundary conditions, we obtain 

a system of linear homogeneous algebraic equations in iA , 

iB  and iC . A nontrivial solution to the system requires the 

characteristic determinant of the coefficient matrix must 

vanish and this leads to a relation involving the 

parameters ,tR  ,Ma mR , 1M ,  3M ,  , sN  and a in the 

form  

1 3( , , , , , , , ) 0t m sf R Ma R M M N a                  (32) 
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The critical values of tcR or cMa   are found as a function of 

wave number a  for various values of physical parameters. It 

is observed that the convergence is achieved with six terms in 

the series expansion of Eq. (30). 

 

2. Analytical solution by RPT 

Since the critical wave number is negligibly small when the 

boundaries are perfectly insulated to temperature 

perturbations (i.e., 0D  at 0, 1z  ), the eigenvalue 

problem is also solved analytically using regular perturbation 

technique with wave number a as a perturbation parameter. 

Accordingly, the variables ,W   and   are expanded in 

powers of a2 as  

2
0 0 0 1 1 1( , , ) ( , , ) ( , , )W W a W          (33) 

Substituting Eq.(33) into Eqs.(25)-(27) and also in the 

boundary conditions, and collecting the terms of zero-th order,  

we obtain 

4
0(1 ) 0D W         (34a) 

2
0 0D W              (34b) 

2

0 0D D            (34c)  

 

with the boundary conditions  

0 0 0 00W DW D       at 0z                       (35a) 

2

0 0 0 0(1 ) 0W D W D D       at 1z        (35b) 

The solution to the zero-th order equations is found to be  

0 00, 1W     and 0 0                         (36) 

The first order equations are then  

 4
1(1 ) (1 2 ) 1t m sD W R R N z                      (37a) 

 2
1 11 (1 2 ) 1sD W N z                        (37b) 

2

1 1D D                              (37c) 

with the boundary conditions  

1 1 1 1 0W DW D      at  0z                      (38a) 

2
1 1 1 1(1 ) 0W D W Ma D D          at  1z  . (38b) 

The general solution of Eq. (36a) is given by  

2 3 4
1 1 2 3 4

5 [ (5 2 ) 5]

120(1 )

t m sR R N zW c c z c z c z z
   

      
 

     (39) 

where,   

1 20c c  , 

3

15 (40 ) 60

240(1 )

t m sR R N Mac   



, 

3

25 2 (7 25) 60

240(1 )

t m sR R N Mac    



. 

From Eq. (37b), after using the condition that 1 0D   at  z 

= 0 and z = 1, it follows that  

1

1

0

1 [1 (1 2 )]sN z W dz   .        (40) 

Substituting for 1W  from Eq.( 39) into Eq.(40) and carrying 

out the integration leads to an expression of  the form     

      
2

320 48 2880 240

11
1 .

1440 100800

tc m c tc s c s

m s m s

R R Ma R N Ma N

R N R N


  

   

      (41) 

From Eq.(41) it is interesting to note that the parameter 3M  is 

not appearing in the expression and hence the nonlinearity of 

magnetization has no effect on the onset of Bénard-Marangoni 

ferroconvection. Since at the onset of convection 0ca   

(very large wave length), one would expect that 3M  has no 

effect on the stability of the system. Besides, it can be seen 

that the parameters 1( )m tR R M  and 3M  have no influence 

on the onset of pure Marangoni ferroconvection ( 0tR  ) in 

the absence of internal heat generation ( 0sN  ). The 

numerical calculations carried out in the previous section also 

reflected the same behavior.  

It is interesting to check Eq.(41) under the limiting conditions. 

In the absence of magnetic field (i.e., 0mR  ), internal heat 

source strength (i.e., 0sN  ) and when 0  ; Eq. (41) 

gives 

1
320 48

tc cR Ma
                                 (42) 

known result for ordinary viscous fluid layer (Garcia-Ybarra 

et al. (1987), Yang and Yang (1990)). When we set 0tcR  , 

0mR   and 0  , Eq. (41) reduces to  

 
240

5
c

s
Ma

N



                           (43) 

which corresponds to the result obtained (Wilson (1997)). 

When 0sN  , Eq. (43) simply reduces to 48cMa   and 

this is the known exact value for the clear viscous fluid layer 

(Pearson (1958)).  
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RESULTS AND DISCUSSION 

The linear stability analysis is carried out to investigate the 

combined effect of internal heat generation and MFD 

viscosity on the onset of coupled Bénard-Marangoni 

convection in a horizontal ferrofluid layer in the presence of a 

uniform vertical magnetic field. The lower rigid and the upper 

horizontal free boundaries are assumed to be perfectly 

insulated to temperature perturbations. The presence of 

internal heating makes the basic temperature, magnetic field 

and magnetization distributions to deviate from linear to 

nonlinear which in turn have significant influence on the 

stability of the system. To assess the impact of internal heat 

source strength sN  on the criterion for the onset of 

thermomagnetic convection, the distributions of 

dimensionless basic temperature, ( )bT z , magnetic field 

intensity, ( )bH z  and magnetization, ( )bM z  are exhibited 

graphically in Fig.1 for different values of sN . From the 

figure it is observed that increase in the internal heat source 

strength amounts to large deviations in these distributions 

which in turn enhance the disturbances in the ferrofluid layer 

and thus reinforce instability on the system. 

The critical stability parameters, cMa  or tcR  and the 

corresponding critical wave number ca  are computed 

numerically by the Galerkin technique as well as analytically 

by employing a regular perturbation technique for different 

values of 1M , mR ,   and sN . The salient characteristics 

of these parameters on the stability of the system are exhibited 

graphically in Figures 2-6. In these figures, the results 

obtained from the above two techniques are compared. In 

general, it is seen that the results obtained by regular 

perturbation technique coincide exactly with those obtained 

numerically and thus provides a justification for the use of 

regular perturbation technique in solving the eigenvalue 

problem when the boundaries are insulating to temperature 

perturbations. In the present context, we affirm that the 

analytical results obtained for the present case are exact.    

The presence of internal heating makes the basic temperature, 

magnetic field and magnetization distributions to deviate from 

linear to nonlinear which in turn have significant influence on 

the stability of the system. To assess the impact of internal 

heat source strength sN  on the criterion for the onset of 

thermomagnetic convection, the distributions of 

dimensionless basic temperature, ( )bT z , magnetic field 

intensity, ( )bH z  and magnetization, ( )bM z  are exhibited 

graphically in Figure 1 for different values of sN . From the 

figure it is observed that increase in the internal heat source 

strength amounts to large deviations in these distributions 

which in turn enhance the disturbances in the ferrofluid layer 

and thus reinforce instability on the system.   

We note that three different types of forces are influencing the 

stability characteristics of the system namely, the buoyancy, 

the surface tension and the magnetic forces. To know the 

impact of these forces on the onset when they are acting alone 

and simultaneously, the results are discussed separately for the 

following cases:  

(i) Bénard ferroconvection (buoyancy and magnetic 

forces) 

(ii) Marangoni ferroconvection (surface tension and 

magnetic forces), and  

(iii) Bénard-Marangoni ferroconvection (buoyancy, surface 

tension and magnetic forces). 

 

1. Bénard ferroconvection 

Here, we consider the absence of surface tension forces 

(i.e., 0Ma  ) and this case corresponds to pure Bénard 

ferroconvection. Figure 2 shows the variation of critical 

thermal Rayleigh number tcR  as a function of dimensionless 

internal heat source strength sN for different values of 

magnetic Rayleigh number mR  when MFD parameter 

0.2  . This case corresponds to convective instability 

only due to buoyancy forces. The figure clearly indicates that 

tcR  decreases monotonically with sN  indicating the effect 

of increasing internal heating is to destabilize the system. This 

is because increasing sN  amounts to large deviation in the 

basic temperature distribution of the parabolic type which in 

turn enhances the thermal disturbances in the fluid layer. The 

curve of 0mR   (i.e. absence of magnetic force) corresponds 

to the case of ordinary viscous fluid and it lies above all other 

curves of different ( 0)mR  . It is observed that 

tcR decreases with an increase in the value of magnetic 

Rayleigh number mR  and thus the effect of magnetic forces 

to advance the onset of ferroconvection. In other words, 

ferromagnetic fluids carry heat more efficiently than ordinary 

viscous fluids. Besides, it may be noted that the difference in 

the critical Rayleigh numbers among different values of mR  

diminishes as the value of mR increases and also at lower 

values of .sN  Moreover, with increasing ,sN tcR  decreases 

slowly in the absence of magnetic force (i.e., 0mR  ) but 

quite rapidly with an increase in the strength of magnetic 

forces (i.e., 0mR  ).  

Figure 3 represents the variation of critical thermal Rayleigh 

number tcR  as a function of dimensionless internal heat 

source strength sN for different values of magnetic field 

dependent (MFD) viscosity parameter   when 10mR  . 

The critical thermal Rayleigh number tcR  increase with an 

increase in  MFD viscosity parameter  and thus it has a 

stabilizing effect on the system. That is, the effect of 

increasing   is to delay the onset of Bénard ferroconvection.  
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2. Marangoni ferroconvection 

In the absence of buoyancy forces (i.e., 0tR  ) and this case 

corresponds to pure Marangoni ferroconvection. This type of 

convection offers new possibilities for applications in 

microgravity environments. As in the previous case, effect of 

various physical parameters on the onset of Marangoni 

ferroconvection is analyzed and the results are presented in 

Figures 4 and 5. The variation of cMa  shown as a function of 

sN for different values of mR on the stability of the 

Marangoni ferroconvection in the case of 0.2   is shown 

in Figure 4. The results for 0mR   (i.e. absence of magnetic 

force) correspond to the case of ordinary viscous fluids and it 

is observed that higher heating is required to have instability 

in that case. However, Thus, magnetic Rayleigh number mR  

increases, the critical Marangoni number cMa  decreases and 

this is due to an increase in the destabilizing magnetic force 

which favors the ferrofluid to flow more easily. Figure 5 

shows the plot of cMa  as a function of sN for different 

values of MFD viscosity parameter   when 10mR  . As 

MFD viscosity parameter  increases, cMa increases and 

hence its effect is to delay the onset of Marangoni 

ferroconvection. 

 

3. Bénard–Marangoni ferroconvection 

We look into the simultaneous presence of thermal buoyancy 

and surface tension forces on the stability of the system. A 

plot of critical thermal Rayleigh number tcR  as a function 

critical Marangoni number cMa  is shown in Figure 6 for 

different values of 1M  with 2sN    and 0.02  . From 

the figures it is obvious that there is a strong coupling between 

the critical Rayleigh and the Marangoni numbers. That is, 

when the buoyancy force is predominant the surface tension 

force becomes negligible and vice-versa. From Figure.6 it is 

seen that an increase in the value of 1M  is to decrease the 

value of tcR  and thus its effect is to hasten the onset of 

ferroconvection. This is attributed to the increase in 

destabilizing magnetic force. Nonetheless, the curves of 

different 1M  converge to the same value 34cMa   

when 0tcR   indicating that it has no effect on Marangoni 

ferroconvection. Figure 7 shows that increase in the value of 

sN  is to decrease both cMa  and tcR . Thus the non-linear 

temperature distributions arising due to volumetric 

distribution of heat sources is to advance the onset of 

ferroconvection. It is further observed that the critical 

Rayleigh/Marangoni numbers are independent of the 

nonlinearity of fluid magnetization parameter 3M  and the 

analytically obtained results also confirm this finding (see Eq. 

39). 

Figure 8 shows the locus of the critical Marangoni number 

cMa  and the thermal Rayleigh number tcR  for different 

values of MFD viscosity parameter   for 2sN   and 

0.02  . From the Figure 8, it is seen that the critical 

Rayleigh  tcR  and Marangoni numbers  cMa  increase 

with an increase in the MFD viscosity parameter    and 

thus it has a stabilizing effect on the system. That is, the effect 

of increasing   is to delay the onset of Bénard–Marangoni 

ferroconvection. 

The perturbed vertical velocity eigenfunction ( )W z for 

different boundary combinations are presented in Figures 9–

11 for different values of ,  sN  and mR , respectively. As 

can be seen, increase in the value of MFD viscosity ,  (see 

Figure 9), decrease in dimensionless internal heat source 

strength sN  (see Figure 10) and magnetic Rayleigh number 

mR   (see Figure 11) are to decrease the velocity and hence 

their effect is to delay the onset of ferroconvection in a 

ferrofluid layer. 

 

CONCLUSIONS 

The onset of penetrative Bénard–Marangoni ferroconvection 

in a ferrofluid layer is investigated theoretically via internal 

heating with magnetic field dependent viscosity. The lower 

rigid and the upper horizontal free boundaries are considered 

to be perfectly insulated to temperature perturbations. The 

combined effect of internal heat source strength measured 

through the parameter sN  and MFD viscosity parameter   

on the stability characteristics of the system is analyzed in 

detail and the following conclusions can be drawn from the 

present study: 

(i) The effect of increase in the value of magnetic field 

dependent viscosity parameter  is to      delay the 

onset of Bénard-Marangoni ferroconvection, while 

increase in the value of magnetic     Rayleigh number 

mR  and dimensionless internal heat source strength 

sN  is to reinforce together and to hasten the onset of 

coupled Bénard-Marangoni ferroconvection. Thus 

magnetic field dependent viscosity plays a crucial 

role in controlling Bénard-Marangoni 

ferroconvection. 

(ii) The nonlinearity of fluid magnetization parameter 

3M  has no effect on the onset of ferroonvection. 

(iii) The buoyancy and surface tension forces 

complement with each other and it is always found 

that c tcMa R ; a result in accordance with ordinary 

viscous fluids.  

(iv) The critical eigenvalues obtained analytically by 

RPT and numerically by the Galerkin-type of WRT 
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complement with each other indicating the analytical 

solutions obtained are exact. 
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