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Abstract: 

Optimum selection of machining conditions significantly 

results in the increase of productivity and the reduction of costs. 

So, the present research paper focusses on an Artificial Neural 

Network (ANN) based approach to optimize the HSS drill flank 

wear by simulating the machining parameters in the drilling of 

GFRP composite laminates. The present research paper is also 

focused on comparison of different ANN algorithms to predict 

the drill flank wear while machining. ANN is trained with the 

data collected from the experimentation. The experimental data 

is generated by performing drilling operation on CNC machine 

using different machining factors and levels. Further 

optimization of the ANN structure is done through performance 

evaluation of the selected algorithms by changing its structural 

parameters. This optimized ANN can measure drill flank wear 

under the specified work material, tool material and machining 

conditions efficiently. 

Keywords: Artificial Neural Network, GFRP composites, 

cutting speed, drill diameter, cutting feed rate, drill flank wear. 

 

INTRODUCTION 

The properties of composite materials are superior to those of 

their individual material constituents. Composite materials take 

the benefit of the strength to weight ratio and weight to stiffness 

ratio. Basically there are three different types of composites: 

Metal Matrix Composites, Ceramic Matrix Composites and 

Polymer Matrix Composite. Recently, due to light weight, ease 

of fabrication, less cost, high weight-stiffness ratio and because 

of aesthetic aspects etc., polymer matrix composites are finding 

increased engineering applications in aerospace, automotive, 

marine and civil infrastructure industries. 

In the present scenario, almost all the mechanical and 

manufacturing industries are aiming at higher productivity, 

quality and overall economy to compete and to face the 

challenges in their respective industrial sectors. To meet these 

challenges the manufacturing industries that are into 

machining, demand cutting tools that produce higher Material 

Removal Rate (MRR), longer life and stable. But high 

production machining with the increased level of machining or 

cutting parameters (i.e., high cutting speed and feed) results in 

large amount of thermal intensity at the chip-tool interface zone 

which leads to reduction in the tool life because of tool wear. 

So, the tool wear is one of the parameters which needs to be 

controlled at an optimum level to achieve longer tool life, better 

surface finish and to ensure overall machining economy. 

In the past few years, analytical tools were extensively used to 

predict the mechanical properties and machining behavior of 

polymer based composites. Most widely used analytical tools 

were Taguchi’s Orthogonal Array (OA) tool for the 

experimentation and Artificial Intelligence (AI) tool for the 

analysis [1,2]. These two tools became popular since they 

consume less time and optimize 4M’s (Material, Machine, 

Manpower and Money). Moreover these statistical based tools 

help the researchers to evaluate the behavior of the material 

accurately before the fabrication of composite. Out of a number 

of AI techniques, Artificial Neural Network (ANN) became 

popular due to its capability to handle multivariable non-linear 

modeling for which an accurate analytical solution is difficult 

to obtain. 

Artificial Neural networks are one of the most powerful 

Artificial Intelligence (AI) techniques and are currently being 

implemented in many engineering fields for modeling complex 

relationships between the variables, which are difficult to 

describe with analytical or physical models. Due to this, the 

application of ANN model to predict the mechanical behavior 

of machined materials and behavior of cutting tools became 

popular in the recent days. An Artificial Neural Network 

(ANN) is an information processing paradigm that functions in 

the similar lines in which the biological nervous systems, such 

as the brain, functions [3]. The key element of this model is the 

structure of the information processing system. The ANN 

structure combines a large number of highly interconnected 

processing elements or neurons working in agreement to solve 

specific problems. 

Zhang and Fedrich [4] in their work applied ANN in predicting 

fatigue life, wear and dynamic loading behavior of Polymer 

Matrix Composite (PMC) and conclude that ANN tool could 

be efficiently used for predicting the mechanical behavior of 

PMC’s because of its likeness with the biological neurons. 

Hany El kadi and Yousuf Al Assaf [5] used a number of ANN 

models to forecast the fatigue life of unidirectional GFRE 

(glass fiber/epoxy) composite. Their analysis come out with a 

conclusion that the performance of modular network is better 

in predicting the fatigue life compared to feed forward network 

and radial basis function network. Hany El Kadi [6] in his 

research work made an attempt to review different work carried 

out on mechanical modeling of fiber composites using ANN. 

The work concluded that by fine tuning the ANN architecture, 
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number of hidden layers and number of neuron in each layer, 

the accuracy of the result could be improved. Al-Assadi et al. 

[7] applied ANN to predict the fatigue life of different fiber 

materials like glass, carbon, kevlar which were used with 

polyester/epoxy matrix materials. The result showed that there 

is no unique ANN architecture or the training method which 

can produce the best result for all the materials eventhough the 

parameters used for manufacturing the composite remain the 

same. Junhui Jia, Julio F. Davalos [8] considered bonded FRP-

wood composite as the study material and used ANN for 

forecasting the fatigue and observed that the developed ANN 

model had predicted the fatigue life data effectively and 

efficiently in comparison with experimental data. Zhenyu Jiang 

et al. [9] used ANN technique to predict the mechanical and 

wear behavior of short fiber reinforced polyamide composites. 

Two different sets of data were used (101 experimental data 

from wear test and 93 experimental data from impact, tension 

and bending test) to train the ANN model. The study concluded 

that the prediction quality improves with the increase in the 

number of neurons but then it decreases when the neuron 

number exceeds the saturation value. Wei Sha [10] investigated 

the machinability of non-reinforced and reinforced PEEK 

composite using ANN. Kranik [11] studied the effect of 

specific cutting pressure and the power on PEEK composite 

(unreinforced and carbon reinforced) using multilayer feed 

forward network. The outcome of the research inferred a 

nonlinear relationship between response parameter and input 

parameter (cutting conditions). Zhang et al. [12] has used back 

propagation multilayer perceptron neural network training 

algorithm for predicting the coefficient of friction and specific 

wear rate of polymer composite and come out with the results 

informing that the ANN can be effectively and efficiently used 

as a mathematical tool in material design, process parameter 

study and characterization analysis of polymer matrix 

composites. 

 

2. Materials and Methods 

2.1 GFRP Material Fabrication: 

The GFRP composite laminate was fabricated using hand lay-

up process (Figure 1). A fiber weight fraction of 33% was 

considered by taking Isophthalic polyester as resin and 

structural glass fiber with random orientation as the fiber 

material. Poly Ether Ether Ketone was added as the hardener 

material during the processing of the GFRP composite. Each 

laminate measuring a volume of 600×600×10 mm3 was 

fabricated. The laminate was hardened under atmospheric 

temperature and pressure conditions for a period of 24 hours. 

The GFRP laminate thickness was maintained at 10mm and 

was used for machining operation. 

 

Figure 1:  Schematic of hand lay-up technique and fabricated 

GFRP  

 

The wear data is collected from the experimental work by 

considering drilling process parameters and their different 

levels [19]. In order to maintain accuracy and data reliability, 

the dry drilling operation on the GFRP composite was carried 

out using Computer Numerically Controlled (CNC) Vertical 

Machining Center (VMC) (Figure 2).  

 

Figure 2: CNC Vertical Machining Centre 

 

 

Figure 3: Holes drilled on the work piece for each 

experimental run 

 

The machining was carried out by drilling 80 holes (Figure 3) 

on the GFRP composite laminate using 3 machining factors and 

3 levels of each factor as shown in Table1. Taguchi’s Design 

of Experiments (DoE) was applied and 81 experimental runs 

(L27 orthogonal array with 3 trials for each run to maintain the 

accuracy) were planned by considering these factors and levels. 

The drilled holes were spaced on the GFRP laminate as per the 
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drill hole specifications and standards for fasteners. Figure 3 

shows the 80 holes drilled on the GFRP composite laminate 

[20]. 

Table 1: Machining Factors and levels 

Symbol Factors               No. of Levels 

Level 1 Level 2 Level 3 

A Speed (rpm) 1200 1500 1800 

B Feed (mm/rev) 0.1 0.2 0.3 

C Drill diameter (mm) 6 8 10 

 

 

Dataset preparation and data collection for Artificial 

Neural Network (ANN) 

The ANN network structure of input and output parameters for 

training and testing the flank wear prediction is shown in Figure 

4. The data set containing 81 observations was split into 

training and testing sets. Approximately 75% of the total 

observations (i.e., 60 observations) were used for ANN training 

and 25% of the total observations (i.e., 21 observations) were 

used for testing the ANN model. The data sets were designed 

for fixed data method (i.e., considering first 60 data for training 

and the next 21 for testing).  

 

 

Figure 4. ANN network structure of input and output 

parameters for the flank wear prediction. 

 

The optimum training method was selected based on the R2 

value, number of neurons in the hidden layer, training and 

testing accuracy, mean square error and minimum number of 

epochs required to converge the network.  

For almost all the ANN simulation models some amount of pre-

processing is always carried out on the input and output raw 

data in order to normalize and make it suitable for the network. 

The dataset used in the present study was normalized using 

column normalization in MATLAB software.  

Each experimental run was executed with a fresh GFRP 

composite laminate and a fresh drill bit. 80 holes were drilled 

on the laminate by considering the optimum GFRP material 

consumption using CATIA software. The drill flank wear was 

calculated by measuring the difference in the drill land width 

before and after the machining. The calculated flank wear 

values for each experimental run and for training and testing 

the ANN are shown in Table 2. 

Table 2. Experimental  Flank wear data used for training and 

testing ANN 

Expt. 

No. 

Spindle 

Speed            

( rpm) 

Drill Feed 

(mm/rev) 

Drill 

Diameter 

(mm) 

Flank wear 

(Experimental) 

(mm) 

1 1800 0.1 6 0.312 

2 1800 0.1 8 0.319 

3 1500 0.2 10 0.296 

4 1200 0.2 8 0.238 

5 1200 0.1 8 0.284 

6 1500 0.3 6 0.225 

7 1500 0.3 10 0.292 

8 1800 0.2 8 0.31 

9 1200 0.2 10 0.298 

10 1200 0.2 6 0.256 

11 1500 0.1 8 0.311 

12 1800 0.1 10 0.365 

13 1500 0.2 8 0.284 

14 1500 0.1 10 0.314 

15 1200 0.3 6 0.218 

16 1800 0.2 10 0.323 

17 1200 0.1 10 0.272 

18 1200 0.1 6 0.316 

19 1500 0.1 6 0.273 

20 1800 0.3 8 0.304 

21 1500 0.2 6 0.254 

22 1200 0.3 8 0.222 

23 1200 0.3 10 0.271 

24 1800 0.3 6 0.233 

25 1800 0.2 6 0.281 

26 1500 0.3 8 0.248 

27 1800 0.3 10 0.306 

28 1800 0.1 6 0.323 

29 1800 0.1 8 0.318 

30 1500 0.2 10 0.287 

31 1200 0.2 8 0.241 

32 1200 0.1 8 0.274 

33 1500 0.3 6 0.226 

34 1500 0.3 10 0.286 

35 1800 0.2 8 0.336 

36 1200 0.2 10 0.275 

37 1200 0.2 6 0.233 

38 1500 0.1 8 0.29 

39 1800 0.1 10 0.34 
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Expt. 

No. 

Spindle 

Speed            

( rpm) 

Drill Feed 

(mm/rev) 

Drill 

Diameter 

(mm) 

Flank wear 

(Experimental) 

(mm) 

40 1500 0.2 8 0.261 

41 1500 0.1 10 0.302 

42 1200 0.3 6 0.216 

43 1800 0.2 10 0.334 

44 1200 0.1 10 0.263 

45 1200 0.1 6 0.287 

46 1500 0.1 6 0.296 

47 1800 0.3 8 0.29 

48 1500 0.2 6 0.252 

49 1200 0.3 8 0.219 

50 1200 0.3 10 0.234 

51 1800 0.3 6 0.238 

52 1800 0.2 6 0.302 

53 1500 0.3 8 0.259 

54 1800 0.3 10 0.318 

55 1800 0.1 6 0.325 

56 1800 0.1 8 0.31 

57 1500 0.2 10 0.301 

58 1200 0.2 8 0.268 

59 1200 0.1 8 0.246 

60 1500 0.3 6 0.212 

61 1500 0.3 10 0.274 

62 1800 0.2 8 0.286 

63 1200 0.2 10 0.261 

64 1200 0.2 6 0.246 

65 1500 0.1 8 0.29 

66 1800 0.1 10 0.336 

67 1500 0.2 8 0.268 

68 1500 0.1 10 0.287 

69 1200 0.3 6 0.214 

70 1800 0.2 10 0.336 

71 1200 0.1 10 0.269 

72 1200 0.1 6 0.301 

73 1500 0.1 6 0.304 

74 1800 0.3 8 0.26 

75 1500 0.2 6 0.256 

76 1200 0.3 8 0.213 

77 1200 0.3 10 0.263 

78 1800 0.3 6 0.225 

79 1800 0.2 6 0.291 

80 1500 0.3 8 0.251 

81 1800 0.3 10 0.322 

Table 2 Continued… 

 

 

Drill flank wear simulation using different ANN algorithms 

Seven different ANN back propagation algorithms were used 

for the simulation and each algorithm took the data collected 

from experimental flank wear (Table 2) to simulate the flank 

wear model. The algorithms selected for flank wear simulation 

are  

1. Resilient back propagation (RP) 

2. Gradient descent back propagation (GD) 

3. Scaled conjugate gradient back propagation (SCG) 

4. BFGS quasi-Newton back propagation (BFG) 

5. Conjugate gradient back propagation with Polak-

Ribiére updates (CGP) 

6. Gradient descent with adaptive learning rate back 

propagation (GDA) 

7. Levenberg-Marquardt back propagation (LM)  

Neural Network Toolbox of MATLAB software was used for 

all the above training algorithms. The learning function could 

be applied to individual weights and biases within the network. 

All these network training functions update weight and bias 

values according to the respective algorithm methods. Learning 

functions were used to adapt networks and the present research 

had used Gradient Descent with Momentum weight and bias 

LEARNing function (LEARNGDM) for learning and TANgent 

SIGmoid (TANSIG) as the transfer function for the network 

designed. 

In the training stage, in order to obtain the output (drill flank 

tool wear) precisely and to design the best network architecture, 

each algorithm was tested with the sigmoid transfer function 

and the number of neurons in the hidden layer was varied from 

2–9. Thus all the seven neural network structures were 

examined by changing the number of neurons in the hidden 

layer from 2 to 9. Thus the neural networks with architecture 3-

2-1, 3-3-1, 3-4-1, 3-5-1, 3-6-1, 3-7-1, 3-8-1 and 3-9-1 were 

considered for simulation and optimization of the drill flank 

wear.  

The artificial neural network thus developed was trained by 

setting the training epochs (cycles) to 1,000 for each network 

architecture. The objective of the training was to minimize the 

Mean Square Error (MSE). For this, a computer program was 

developed in MATLAB software to predict the flank tool wear 

in the machining of GFRP composites using HSS drill.  

Gradient Descent Method (GDM) was used to minimize the 

mean squared error between the network output and the actual 

error rate. The training error continued to decrease as the 

number of epoch’s increased. Repeated runs were performed to 

get the neural network converged. Weights were initialized to 

random values and networks are run until at least one of the 

following termination conditions was satisfied: 

1. Maximum Epoch 

2. Minimum Gradient 

3. Performance Goal 

Training and learning functions are the mathematical 

procedures used to automatically adjust the network's weights 

and biases. The training function dictates a global algorithm 

that affects all the weights and biases of a given network. For 
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testing, the input data was presented to the ANN without weight 

adjustment. The output of the ANN was compared with the 

existing output of the datasets. The different statistical 

parameters for the comparison of ANN model for all the 

training algorithms are given in Table 3. The efficiency of the 

network was measured by taking one of the following 

parameters into account: 

1. R2 value 

2. Number of epochs taken to converge the network. 

3. The Mean Square Error (MSE) calculated. 

Table 3: Results of the Simulation of flank wear using different ANN algorithm 

Algorithm Nu Epochs MSE Cl_Ac_Trg Cl_Ac_Tst MRE_Trg MRE_Tst R2 

 

 

 

RP 

2 1000 0.0125 61.67 52.38 4.926 5.94 0.99596 

3 1000 0.0078 71.67 80.95 3.77 4.06 0.99762 

4 1000 0.0085 66.67 61.90 4.12 4.69 0.99727 

5 1000 0.0126 60.00 52.38 5.00 5.92 0.99594 

6 1000 0.0125 60.00 52.38 4.97 6.01 0.99597 

7 1000 0.0125 60.00 52.38 4.996 5.98 0.99597 

8 1000 0.0062 76.67 76.19 3.43 3.77 0.99799 

9 1000 0.0125 60.00 52.38 4.999 5.95 0.99596 

 

 

 

GD 

2 1000 0.0135 56.67 47.62 5.349 6.07 0.99515 

3 1000 0.0134 51.67 52.38 5.396 6.08 0.99575 

4 1000 0.0125 56.67 52.38 4.959 5.84 0.99597 

5 1000 0.0126 58.33 52.38 4.968 5.942 0.99594 

6 1000 0.0125 60.00 52.38 4.984 5.94 0.99597 

7 1000 0.0125 60.00 52.38 5.008 5.91 0.99594 

8 1000 0.0125 60.00 52.38 5.002 5.96 0.99596 

9 1000 0.0125 61.67 52.38 5.006 5.93 0.99596 

 

 

 

SCG 

2 343 0.008 70.00 57.14 3.78 4.51 0.99749 

3 1000 0.0058 78.33 80.95 3.26 3.76 0.99810 

4 1000 0.0044 83.33 71.43 3.03 4.17 0.99827 

5 1000 0.0041 86.67 66.67 2.98 4.28 0.99829 

6 1000 0.0039 90.00 71.43 2.88 4.21 0.99833 

7 1000 0.0038 90.00 71.43 2.87 4.234 0.99832 

8 1000 0.0039 90.00 71.43 2.86 4.20 0.99832 

9 765 0.0038 90.00 71.43 2.872 4.235 0.99832 

 

 

 

BFG  

2 116 0.0080 70.00 57.14 3.78 4.50 0.99748 

3 1000 0.0068 71.67 76.19 3.55 3.36 0.99814 

4 1000 0.0056 76.67 80.95 3.10 3.93 0.99812 

5 1000 0.0048 81.67 71.43 3.17 3.57 0.99826 

6 1000 0.0040 83.33 76.19 2.86 6.16 0.99832 

7 1000 0.0052 90.00 76.19 2.87 4.18 0.99835 

8 1000 0.0049 88.33 76.19 2.871 4.21 0.99831 

9 1000 0.0052 90.00 71.43 2.874 4.23 0.99832 

 

 

 

CGP 

2 165 0.0080 70.00 57.14 3.78 4.50 0.99748 

3 337 0.0061 73.33 76.17 3.42 3.672 0.99804 

4 1000 0.0053 78.33 71.43 3.17 3.673 0.99828 

5 1000 0.0047 86.67 71.43 2.98 3.95 0.99824 

6 1000 0.0039 88.33 71.43 2.91 4.13 0.99834 

7 612 0.0038 90.00 71.43 2.872 4.234 0.99833 

8 738 0.0038 90.00 71.43 2.875 4.235 0.99833 

9 414 0.0038 90.00 71.43 2.873 4.237 0.99832 

 

 

2 759 0.0079 73.33 71.43 3.71 4.06 0.99755 

3 976 0.0065 73.33 76.19 3.51 3.813 0.99797 
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GDM 

4 985 0.0071 71.67 76.19 3.61 3.815 0.99784 

5 987 0.0067 70.00 76.19 3.602 3.998 0.99792 

6 983 0.0075 73.33 71.43 3.604 3.980 0.99766 

7 999 0.0066 75.00 76.19 3.61 3.86 0.99793 

8 954 0.0077 73.33 71.43 3.70 4.08 0.99761 

9 996 0.0075 73.33 71.43 3.603 3.984 0.99765 

 

 

 

LM 

2 1000 0.0077 76.67 57.14 3.72 4.66 0.99749 

3 218 0.0057 80.00 80.95 3.25 3.79 0.99811 

4 225 0.0042 86.67 71.43 2.93 4.05 0.99827 

5 37 0.0038 91.67 71.43 2.870 4.22 0.99834 

6 60 0.0039 90.00 71.43 2.874 4.24 0.99832 

7 1000 0.0039 90.00 71.43 2.873 4.20 0.99833 

8 60 0.0038 90.00 71.43 2.874 4.23 0.99832 

9 1000 0.0038 90.00 71.43 2.874 4.24 0.99832 

 

From Table 3 it was evident that the statistical parametric 

results of Levenberg Marquardt algorithm (LM algorithm) 

were the best ones compared to other algorithms.  TrainLM was 

a network training function that updated weight and bias values 

according to Levenberg-Marquardt optimization. TrainLM was 

found as the fastest back propagation algorithm in the toolbox, 

and was highly recommended as a first-choice supervised 

algorithm, although it does require more memory than other 

algorithms. Because of these reasons, is considered as the best 

ANN algorithm for the simulation of HSS drill flank wear 

simulation while machining GFRP composites for the specified 

experimental conditions.  

The training stops when any of these condition occurs: 

The maximum number of epochs (repetitions) is reached. 

The maximum amount of time is exceeded. 

Performance is minimized to the goal. 

 

 Model summary of Levenberg-Marquardt Algorithm  

Table 4 shows the detailed summary of the LM-ANN 

algorithm. 

Table 4: Summary of the LM ANN algorithm 

Object modeled Drill Flank wear 

Input Neuron Spindle speed, Drill feed and Drill 

diameter 

Network Structure 

Network Type Feed forward back Propagation 

Transfer Function Tansig 

Training Function Network training function that updates 

weight and  

bias values 

Learning Function Gradient descent with momentum back 

propagation  

Method 

Learning Conditions 

Learning Scheme Supervised learning 

Learning Rule Gradient descent rule 

Input Neuron Four 

Output Neuron One 

Sample pattern vector 60 (For training), 21(for testing) 

Number of hidden layer  01 

Neurons in hidden layer  02 - 09 

Learning rate  0.1 

Minimum performance 

Gradient   

1e-10 

Maximum mu 1e10 

Performance goal/Error 

goal 

1e-10 

Maximum epochs(cycles) 

set 

1000 

R2 at the end of the training  0.99843 

MRE at the end of the 

training 

0.0038 

Number of Epochs 37 

 

 

Figure 5. Graphical representation of ANN performance 
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RESULTS AND DISCUSSION 

In this research work, a computer program was developed in 

MATLAB platform to predict the drill flank wear. The input 

parameters of the network were spindle speed, drill feed and 

drill diameter whereas its output parameter was drill flank 

wear. The network algorithms and statistical parameters of 

ANN model for the learning algorithms were given in Table 4. 

It was apparent from Table 2 that, the prediction performances 

for both training and testing sets of the tool wear showed a quite 

satisfactory accuracy        (error < 5%). The R2 values of the 

learning algorithms for both training and testing sets were 

higher than 0.99 (0.9983). The LM learning algorithm reached 

to optimal solutions with smaller number of neurons (5) in 

hidden layer and with minimum number of epochs (37) when 

compared to other learning algorithms. Also from the results of 

the simulation (Table 3), it was evident that the performance of 

LM algorithm in simulating the process parameters for 

predicting drill flank wear was better even with respect to other 

parameters. Another remarkable point in Table 3, was that the 

best results were obtained with 3-5-1 network configuration 

(with Training Accuracy = 91.67%) of Lavenberg Marquedt 

(LM) algorithm, which itself indicates the optimal network 

structure for predicting the drill flank wear. 

So, from all the above observations, findings and results it can 

be concluded that Lavenberg Marquedt algorithm can perform 

better compare to other ANN algorithms in simulating the drill 

process parameters for predicting the drill flank wear for the 

identified work material, tool material and machining 

conditions  

 

CONCLUSIONS 

In this work, ANN simulation of Flank tool wear of the drill 

was carried out for the machining of GFRP composite material 

for different combinations of cutting parameters. This study 

also deals with selection of best ANN algorithm for the 

prediction of drill flank wear. An ANN model for predicting 

the drill tool wear was developed using experimental values. 

Then, the performance of the ANN model were evaluated by 

comparing the performance of different back propagation 

algorithms. After training it was concluded that, out of the 

seven learning algorithms compared, the best and fastest ANN 

results were obtained by the Lavenberg Marquedt (LM) 

learning algorithm with the following findings: 

1. Best results were obtained with 3-5-1 network 

structure configuration and with a Training Accuracy 

of 91.67% using Levenberg-Marquardt (LM) 

algorithm. 

2. It was observed that the R2 value for all the flank wear 

data simulation using LM algorithm was found to be 

0.998324 which was learned to be very satisfactory.  

Therefore, instead of expensive and time-consuming 

experiments, it was highly recommended the usage of ANN in 

predicting the tool flank wear in the drilling of GFRP 

composite materials using HSS tools. 
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