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Abstract 

In this paper we introduce a novel and efficient soft decoding 

algorithm for linear block codes. It is known that this 

decoding is a NP-hard problem where exhaustive search 

methods become almost impossible in large problem space. 

After the emergence of metaheuristic approaches, several 

algorithms were proposed based on these technics and show 

good performance results comparing to computational 

resources cost. In this context we present a new soft decoding 

decision algorithm, based on Ant Colony Optimization, this 

approach has proven its efficiency in optimization problems. 

In contrast to existing decoders, the proposed Dual Ant 

Colony Optimization Soft Decoder (DACOSD) operates on 

the dual code instead of the code itself. Hence we can 

optimize our decoder for codes with high rates. This algorithm 

was simulated over an AWGN channel, then we proceed by 

tuning of our algorithm parameters, after that, we compare the 

obtained performances with competitor decoding algorithms. 

In fact, the proposed decoder is on the top of the most recent 

soft decoders such DDGA, CGAD-M and CGAD-HSP 

algorithms. Besides, we discussed the complexity of the 

proposed algorithm compared to the most known decoders. 

Keywords: Ant Colony Optimization, Soft Decoding, Error 

Correcting Codes, Linear Codes, Dual Code, BCH, QR, RS 

 

INTRODUCTION 

Coding theory is interested in finding the best way to transmit 

information accurately from a source to a destination over 

different kinds of channels. In real world, the channel is 

generally perturbed by a noise dependent on environment 

conditions, hence information reliability is lost. Trying to 

slightly improve communication performance using classical 

approaches either by extending hardware capacity or using 

better material quality, is highly expensive. However, contrary 

to what was generally believed, Shannon proved in 1948, that 

there exist a coding scheme which permits transmission that 

nears the channel capacity with arbitrarily small errors [1]. 

Thus, software optimization can reduce such cost, actually 

several algorithms were proposed to enhance communication 

reliability, with remarkable performance in order to achieve 

Shannon limit. 

To simplify the study, scientists use the model in Fig.1, which 

depicts different transmission chain components. In fact 

spotlight was put on decoder part where significant efforts 

were made in order to find coding/decoding models that 

approach channel capacity, especially using AWGN channel 

model. Decoding schemes are classified into two classes, hard 

and soft decision algorithms. The first approach makes hard 

decision on the received digital message, thus works only on 

binary vectors. While Soft-decoding algorithms use digital 

signal information received directly from demodulation and 

use real numbers associated with each codeword symbol. 

Therefore this decoding is capable of correcting more errors. 

Soft-decoding is classified as a NP-hard problem [2], where 

classical algorithms search would not be effective and almost 

impossible. To tackle this problem, several works were 

proposed; G.Forney designed a soft decoding algorithm, 

called “Generalized Minimum Distance Decoding” GMD [3]. 

OSD Algorithm was also used to implement a soft decision 

decoder [4]. Nowadays, Artificial Intelligence (AI) and 

metaheuristic methods were introduced in this field, after their 

success on optimization problems, several researches were 

published of decoders based on neural networks and Genetic 

Algorithms (GA). In fact Maini et al. was the first to introduce 

a GA decoder [5], and then several GA-Based Decision Soft 

decoders came after [6-10]. In other side, other algorithms 

were proposed using dual code [11-13], then recently also 

Maini was extended to DDGA decoder[14] and two dual soft 

decoders based on compact GA were proposed in 2017 [15]. 

Using dual code for high rate codes, seems to reduce 

considerably the execution time, thus, taking advantage from 

this simple idea we propose in this paper, a novel soft decoder 

based on Ant Colony Optimization (DACOSD), as far as we 

know, this approach has not been previously used to decode 

linear codes.The remainder of this article will be organized as 

follow: in section2, we will describe the Ant Colony 

Optimization method, then in section3 we will explain our 

DACOSD algorithm. In the section 4 we will discuss the 

parameter tuning of our decoder then use some famous codes 

samples base to compare with competitor decoders. Finally 

we finish our paper by summary of this work and the future 

trends. 

 

 

Figure 1. Communication system model 
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ANT COLONYOPTIMIZATION (ACO) 

Ant Colony Optimization algorithms were inspired from ant’s 

behavior when searching food near the nest, they are 

considered among metaheuristic methods. Dorigo et al. were 

the first to propose an algorithm using this technic to find the 

shortest path within a given graph [16]. In fact, biologists 

have discovered that ants use a chemical substance called 

pheromone, these ants drop the pheromone on their way, 

when arriving to some junction, the ants make a probabilistic 

choice based on pheromone quantity on each possible path, 

therefore after several walks, the concentration of pheromone 

grows on some optimal path.  However this mechanism alone 

can glorify sub optimal or blocked ways, that’s why the 

evaporation of the pheromone trails, takes place by weakening 

the “nasty paths”. 

The first ACO algorithm called Ant System (AS) was 

designed to solve the famous Travelling Salesman Problem 

(TSP) [16]. The problem is to find the shortest path visiting n 

cities, each city must be visited only once.This mechanism is 

modelled by a graph G where the cities are the vertices and 

the edges are formed by paths between cities.In the AS 

algorithm there is a set of iterations 𝑦 (1 ≤ 𝑦 ≤ 𝑦𝑚𝑎𝑥), every 

ant 𝑥 (1 ≤ 𝑥 ≤ 𝑚), scans the graph and build a complete path 

of n cities, for each ant the relative path between city i and 

city j depends on several conditions: 

1)  The set of cities already visited by ant 𝑥 which is on city 

i, noted by 𝑱𝒊
𝒙 

2)   ƞ𝒊𝒋 The visibility of city j to i, it is a measure which let 

the ants to choose the near city rather than the far ones. 

Often ƞ𝒊𝒋  is a decreasing function of the d𝒊𝒋 the distance 

between city i and city j (for example (ƞ𝒊𝒋 =
𝟏

𝒅𝒊𝒋
). 

3)  The pheromone quantity dropped on the path between 2 

cities i and j at iteration 𝑦, called intensity and noted 

𝛕𝐢𝐣(𝐲) which define the global attractiveness of parts of 

the whole path and continually updated by the ants. 

Arriving to city i the ant 𝑥 makes a choice based on the 

following formula which defines the probability to walk to 

city j: 

𝑷𝒊𝒋
𝒙 (𝒚) = {

(𝝉𝒊𝒋(𝒚))
𝜶

(ƞ𝒊𝒋)
𝜷

∑ (𝝉𝒊𝒍(𝒚))
𝜶

(ƞ𝒊𝒍)𝜷
𝒍∈𝐉𝐢

𝐱

𝟎

𝒋 ∈ 𝑱𝒊
𝒙    (1) 

α and β are 2 parameters which control the relative role of the 

intensity  𝜏𝑖𝑗(𝑦) of pheromone and the visibility ƞ𝑖𝑗, a tradeoff 

should be done to play on diversification and intensification of 

the algorithm behavior 

After each iteration 𝑦 every ant 𝑥 drops a quantity of 

pheromone over the walked path, depending on solution 

quality 

∆𝝉𝒊𝒋
𝒙 (𝒚) = {

𝑸

𝑳𝒙(𝒚)
(𝒊, 𝒋) ∈ 𝑻𝒙(𝒚)

𝟎, 𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆
  (2) 

 

Where the  𝑇𝑥(𝑦) is the path done by ant 𝑥 on iteration 𝑦, 

𝐿𝑥(𝑦) is its length and Q is a fixed parameter. 

 The evaporation mechanism comes to complete the 

algorithm, the pheromone intensity decreases on bad paths 

based on the following rule: 

𝛕𝐢𝐣(𝐲 + 𝟏) = (𝟏 − 𝛒)𝛕𝐢𝐣(𝐲)  + ∑ ∆𝝉𝒊𝒋
𝒙 (𝒚)𝐦

𝐤=𝟏     (3) 

Where m is the size of ant colony and ρ is the evaporation 

ratio. 

 The Algorithm can be briefly summarized in the next pseudo 

code: 

 

 

DACOSD Algorithm 

We note C (n, k, d) a linear code of length n, dimension k and 

minimum distance d over the field 𝑭𝟐. This code can be 

described by a k×n matrix G called Generator matrix, a 

message 𝒎 = {𝒎𝒊}𝒌
𝟏 can be then encoded to a codeword 𝒄 =

{𝒄𝒊}𝒏
𝟏  using the equation: 

𝒄 = 𝒎𝑮      (4) 

We define also a parity check (n-k) ×n matrix noted 𝑯 which 

satisfies the following property: 

∀ 𝒗 ∈  𝑭𝟐
𝒏 , 𝒗  𝐢𝐬 𝐜𝐨𝐝𝐞𝐰𝐨𝐫𝐝 <=> 𝑯𝒗𝒕 = 𝟎    (5) 

Suppose we transmit the codeword 𝒄 = {𝒄𝒊}𝒏
𝟏 using BPSK 

modulation and let 𝒛 = {𝒛𝒊}𝒏
𝟏  be the modulated signal over a 

Gaussian channel with noise 𝒏 = {𝒏𝒊}𝒏
𝟏, where 𝒛 =

{𝒛𝒊}𝒏 
𝟏 and  𝒏 = {𝒏𝒊}𝒏

𝟏 are independent sequences, 

 𝒏𝒊~𝑵 (𝟎,
𝑵𝟎

𝟐
)  and N0 is the noise power spectral density. 

The received signal 𝒓 = {𝒓𝒊}𝒏
𝟏 is such that 𝒓 = 𝒛 + 𝒏. We 

note 𝒗 = {𝒗𝒊}𝒏 
𝟏  the hard decision of  𝒓 = {𝒓𝒊}𝒏

𝟏, the error 

syndrome  𝒔 = {𝒔𝒊}𝒏−𝒌
𝟏  could be then expressed as follows: 

𝒔 = 𝒗𝑯𝒕   (6) 

When the syndrome 𝒔 is zero, that means, the hard decision is 

a codeword and there was no error in transmission. But when 

we have an error in transmission, our decoder tries to find the 

codeword 𝑐̂ which maximizes the probability 𝒑(𝒄|𝒓)  over the 

code space, known as maximum likelihood decoding (MLD). 

Using the noise distribution and Bayes theorem, the MLD is 

equivalent to the following equation: 

 

  For each iteration y=1… ymax 

         For each ant x=1… m 

                Select randomly a city i0 

                For each non visited city i 

                       Select a city j from Ji
xusing equation (1) 

                End For 

         Deposit pheromone∆𝜏𝑖𝑗  
𝑥 (𝑦) on the path  𝑇𝑥  (𝑦) 

         using equation (2) 

    End For 

   Vaporization of the paths using equation (3) 

  End For 
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𝒇𝒓/𝒛 =
𝟏

(𝝅𝑵𝟎)𝒏/𝟐  𝐞𝐱𝐩 (∑
−(𝒓𝒊−𝒛𝒊)𝟐

𝑵𝟎

𝒏
𝒊=𝟏 )   (7) 

From the above equation we can conclude that MLD is 

equivalent to the minimum euclidean distance, before any 

hard decision. Hence our fitness function will be: 

𝒇(𝒄) = ∑ (𝒓𝒊 − 𝒛𝒊)
𝟐𝒏

𝒊=𝟏  , where 𝒄 = {𝒄𝒊}𝒏
𝟏  

 and 𝒛𝒊 = (−𝟏)𝒄𝒊    (8) 

Rather than working on code space, we will try to find the 

error 𝒆 which was added to our signal, then we can deduct the 

sent, using the following: 

𝒄 = 𝒗 + 𝒆       (9) 

We will try to find how to construct error e by heuristic 

method using dual property, let’s suppose that the parity 

matrix has the form  𝑯 = [𝑨𝑰𝒏−𝒌]. In this case we have: 

(𝒗 + 𝒆)𝑯𝒕 = 𝟎 <=> 𝒆𝑯𝒕 = 𝒔   (10) 

We define reliable information set as the set of most k reliable 

positions within the received signal  𝒓 = {𝒓𝒊}𝒏
𝟏 . Using the 

reliability information set, error could be then written 𝒆 =
(𝒆𝑰, 𝒆𝑱)  where I is the reliable information set and J= {1... n}\ 

I, thus equation (10) becomes: 

(𝒆𝑰, 𝒆𝑱) (
𝑨𝒕

𝑰𝒏−𝒌
) = 𝒔 <=> 𝒆𝑰 = 𝒆𝑱𝑨𝒕 + 𝒔  (11) 

The above equation allow us to reduce complexity and search 

space to 𝑭𝟐
𝒏−𝒌 to generate the error part 𝒆𝑱 then using (11) 

generate 𝒆𝑰 and then 𝒄 = 𝒗 + (𝒆𝑰, 𝒆𝑱)  

Based on the previous analysis, the steps of our algorithm are 

as follows: 

1. Make a hard decision 𝒗 = {𝒗𝒊}𝒏
𝟏 of  the received signal 

𝒓 = {𝒓𝒊}𝒏
𝟏: 

𝒗𝒊 = {
𝟏, 𝒓𝒊 < 𝟎
𝟎, 𝒓𝒊 ≥ 𝟎

 

2. Calculate the syndrome 𝒔 = 𝒗𝑯𝒕, if 𝒔 = 0 , then output 𝒗 

and exit, otherwise continue 

3. Sort the sequences 𝒓 = {𝒓𝒊}𝒏
𝟏  in decreasing order based 

on reliability (|𝒓𝒊|>|𝒓𝒊+𝟏|) to obtain new sequences 𝒓′ =
{𝒓′𝒊}𝒏

𝟏, let’s note π, the permutation 𝒓′ = 𝝅−𝟏(𝒓), we 

apply π to 𝑯 to obtain 𝑯′ and 𝒛′ = 𝝅−𝟏(𝒛). The most k 

reliable {𝒓′𝒊}𝒌
𝟏 will allow our algorithm to search in the set 

with high probability of errors.  

4. Apply Gaussian elimination to 𝑯′ to obtain a systematic 

matrix. 

5.   We apply the ACO algorithm to obtain the most 

probable errors 𝒆𝑱 = {𝒆𝒊}𝒏
𝒌+𝟏 occurred in positions 

{k+1…n}. This algorithm is detailed afterwards.  

6.   We form the complete error 𝒆 = (𝒆𝑰, 𝒆𝑱)  using equation 

(11) 

7. The code 𝒄′ = 𝒗 + (𝒆𝑰, 𝒆𝑱)   is related to the H’ matrix, 

thus our estimated transmitted codeword is then  

𝒄̂ = 𝝅−𝟏(𝒄′)(12) 

The ACO algorithm is modeled by the following graph (in 

case of n=7 and k=4): 

 

Figure 1. Graph of linear code (n=7,k=4) 

 

The search space will be the field 𝑭𝟐
𝒏−𝒌 represented by the 

above graph in case of n=7 and k=4. 

For ant x at iteration y the probability of setting the bit-i to 1 

is defined as follows: 

𝑷𝒊𝟏
𝒙 (𝒚) =   

(𝝉𝒊𝟏(𝒚))
𝜶

(ƞ𝒊𝟏)𝜷

(𝝉𝒊𝟏(𝒚))
𝜶

(ƞ𝒊𝟏)𝜷+(𝝉𝒊𝟎(𝒚))
𝜶

(ƞ𝒊𝟎)𝜷
      (13) 

The parameters α, β, and ƞ𝒊𝒋  are ACO parameters adapted 

based on simulation results. At the end of ant x walk all bits 𝒆𝒊 

are set and the path is the constructed error  𝒆𝑱 = {𝒆𝒊}𝒏
𝒌+𝟏 , 

after that the solution fitness is measured by euclidean 

distance of 𝒛′ = {𝒛′𝒊}𝒏
𝟏 from 𝒓′ = {𝒓′𝒊}𝒏

𝟏, thus we define the 

pheromone to be dropped by ant x at iteration y as follow: 

∆𝝉𝒊𝒋
𝒙 (𝒚) =

𝑸

∑ (𝒓′𝒊−𝒛′𝒊)𝟐𝒏
𝒊=𝟏

    (14) 

Where the bit-i ( 𝑘 + 1 ≤ 𝑖 ≤ 𝑛) is set to 𝒋 ∈ {0,1} by the 

ant 𝑥, and Q is a parameter defined by parameter tuning 

results. The algorithm could be then summarized as below: 

 

 

 

RESULTS AND DISCUSSION 

1. ACO PARAMETERS SETTINGS 

We run several simulations of performance (BER) expressed 

as function of SNR (Signal to Noise Ratio), with different 

ACO parameters values in order to find the most suitable set to 

Set ACO parameters α, β,ρ, m, Q, ymax 

Initialize pheromone intensity 𝜏𝑖𝑗(0)and visibility ƞ𝑖𝑗 

 

For each iteration y=1… ymax 

      For each ant x=1… m 

             Set randomly the bit-(k+1) to “0” or “1” 

              For each bit-i i=k+2... n 

                     Set the bit-i using equation (13) 

               End For 

              Form the error codeword eusing equation (11) 

              Compute 𝒅𝒆𝒖𝒄 = ∑ (𝒓′𝒊 − 𝒛′𝒊)
𝟐𝒏

𝒊=𝟏  

              Update the most probable error e based on best 𝑑𝑒𝑢𝑐
 

        Deposit pheromone∆𝜏𝑖𝑗  
𝑥 (𝑦) on the path  𝑇𝑥  (𝑦) 

        using equation (14) 

    End For 

    Vaporization of the paths using equation (3) 

End For 
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our decoder. For every parameter tuning we fix the other 

parameters. The remaining parameters were set by default 

according to the below table: 

Table I: Parameters Setting 

Parameter Value 

Default code BCH(63,45,7) 

Channel AWGN 

Modulation BPSK 

Minimum number of bit error 200 

Minimum number of blocs 1000 

 

Figure 3, shows, that the best performance is achieved when 

α=0.1. We can suppose also that the best range for α parameter 

is [0-1]. Intuitively large values of α tends to amplify the initial 

paths choosed by ants. 

From figure 4, β=2.5, is almost the best choice, we can also use 

the range [1-3] as the best set of β values, which is confirmed 

by the recommendation [17]. 

The performance is quite similar as seen in figure 5, we find 

𝜌=0.5 is the most suitable value, which is recommended [17]. 

From the graph in figure 6, there is no visible best value, by 

taking the average over all SNR values, it shows that m=50 is 

the best choice, several simulations prove that it is useless to 

consider m>k, it is recommended to set 𝑚 ≈ 𝑘 [17]. 

In figure 7, The simulations shows that the parameter Q has 

slight impact on performance, taking into account the average 

over all SNR values, we may set Q=100. 

From theoretic view, the ACO algorithm converges when ymax 

is sufficiently large. However, simulations in figure 8 shows 

that for ymax> 500 iterations, there is no visible improvement of 

performance, therefore we could set ymax =500.  

Figure 3. Impact of parameter α  variation on BER. 

Figure 4. Impact of parameter β variation on BER. 

 

Figure 5. Impact of parameter𝜌 variation on BER. 
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Figure 6. Impact of parameter m variation on BER. 

 

 

Figure 7. Impact of parameter Q variation on BER. 

 

Figure 8. Impact of parameter ymaxvariation on BER. 

 

2. BENCHMARKING 

a) BER Performance 

In this subsection, we will show the effectiveness of our 

dual ACO soft decoder with the some concurrent decoders. 

Figure 9. Performance of  OSD-1,Maini,DDGA, 

AutoDAG, SIHO and DACOSD  decoders on  BCH (63, 

45, 7) 
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The figure 9, shows that our algorithm performs better than 

OSD-1, SIHO [8] and AutDAG [10], but over performs 

DDGA [14] and Maini [5] only for medium and low noise 

level 

 

Figure 10. Performance of  Chase-2, SDGA, cGA-HSP, cGA-

M, and DACOSD  decoders on  BCH (63, 45, 7) 

 

In figure 10, we can see the superiority of the DACOSD over 

the Chase-2 [18], SDGA [9], cGA-HSP and cGA-M [15]. The 

gain is 1dB comparing to Chase-2 almost for all BER, at 10-4 

BER the gain is about 0.7dB over the cGA-M. 

Figure 11. Performance of  Maini, DDGA, CGAD  and 

DACOSD  decoders on  BCH (63, 51, 5) 

 

From the figure 11, our decoder performs better than CGAD 

[11], actually we can have a gain of 1.5 dB at 10-4, besides, it is 

slightly better than Maini and DDGA. 

 

Figure 12.  Performance of  Chase-2, SIHO and DACOSD  

decoders on  BCH (63, 51, 7) 

 

In figure 12, the DACOSD has better performance than Chase-

2 and SIHO. In fact at 10-5 BER we have a gain of 1dB 

comparing to Chase-2. 

Figure 13.  Performance of  Chase-2, DSGA and DACOSD  

decoders on  BCH (63, 57, 3) 

 

From the figure 13, DACOSD perform better than slightly 

Chase-2, DSGA [12], the gain is about 0.5dB. 
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Figure 14.  Performance of  Maini, DDGA, OSD-1, and 

DACOSD  decoders on  BCH (63, 57, 3) 

 

The figure 14, show that DACOSD has the same performance 

as Maini, DDGA and OSD-1. 

 

Figure 15.  Performance of  Chase-2, CGAD, SDGA, cGA-

HSP, CGA-M and DACOSD  decoders on  RS (15, 7, 9) 

 

 

Figure 16.  Performance of  GAMD and DACOSD  decoders 

on  LDPC(60, 30) 

 

The above figures 15 and 16, shows that the for RS code, 

DACOSD is indeed better than Chase-2, CGAD, SDGA and 

the most up to date decoders cGA-HSP, cGA-M. M. For 

LDPC code DACOSD is more effective than GAMD [7], we 

can gain about 0.7 dB at 10-3BER. 

 

b) Complexity Analysis 

The below table summarize algorithm complexity of 

differentcompetitor’s decoders: 

Table II: Complexity 

Algorithm Complexity 

Chase-2 𝑂(2𝑡𝑛2𝑙𝑜𝑔2𝑛) 

Maini 𝑂(𝑁𝑖𝑁𝑔[𝑘𝑛 + 𝑙𝑜𝑔𝑁𝑖]) 

DDGA 𝑂(𝑁𝑖𝑁𝑔[𝑘(𝑛 − 𝑘) + 𝑙𝑜𝑔𝑁𝑖]) 

OSD-1 𝑂(𝑛2) 

SDGA  𝑂(2𝑡(𝑁𝑖𝑁𝑔[𝑘𝑛2 + 𝑘𝑛 + log (𝑁𝑖)]) 

CGAD 𝑂(𝑇𝑐𝑘(𝑛 − 𝑘)) 

DACOSD 𝑂(𝑚𝑦𝑚𝑎𝑥(𝑛 − 𝑘)𝑛) 

 

 t=[d-1]/2, the error correcting capability 

 Ni, parameter used is Genetic Algorithm, called 

population size. 

 Ng, parameter used is Genetic Algorithm, called number 

of generations. 

 Tc, parameter used is CGAD algorithm, called average 

number of generations. 

For codes with high rates(𝑘~𝑛), DDGA, CGAD and 

DACOSD have linear complexity with n, while Chase-2, 

Maini, OSD-1 and SDGA have worst complexity, about 

 𝑂(𝑛2) 
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Using simulations setting, for codes with high rates(
𝑘

𝑛
≥ 90%) 

the complexity might be upper bounded for DDGA, CGAD 

and DACOSD as follows 

 

Table III: Complexity in (k, n) 

Algorithm Parameters Setting Complexity 

DDGA 𝑁𝑖 = 300, 𝑁𝑔 = 100 𝑂(3000𝑘n) 

CGAD 𝑇𝑐 = 1000 𝑂(100𝑘n) 

DACOSD 𝑚 ≈ 𝑘, 𝑦𝑚𝑎𝑥 = 500 𝑂(50k𝑛) 

 

From the above table, we can see that for k<200 our algorithm 

has the lowest complexity comparing to its concurrent 

decoders for high rate codes. 

 

CONCLUSION 

This paper has made original contribution in the area of soft 

decoding algorithms by introducing Ant Colony Optimization 

metaheuristic approach, using dual code instead of the code 

itself and taking advantage of the reliability information of the 

received signal, to provide larger coding gain and less 

algorithmic complexity. The performance of this decoder was 

investigated with different codes over an AWGN channel, the 

obtained results confirm that it performs better than its 

competitors. We focus also on algorithm parameter tuning to 

enhance the performance. The proposed algorithm can be used 

for non-cyclic and non-binary codes and on different kind 

channel models, with low implementation changes. 

Although we tested our algorithm on linear block codes, there 

is no reason why not use it for convolutional codes and 

combine this approach with different metaheuristic methods to 

enhance performance. 
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