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Abstract 

The study of heat and mass transfer in MHD flow of a 

viscous, incompressible, electrically conducting fluid past an 

infinite vertical porous plate is done. The plate is embedded 

with porous medium with time dependent permeability 

{K = K̅0 (1 + ɛ e
int )}  under the oscillatory suction velocity 

normal to the plate. A uniform magnetic field is applied 

normal to the flow and permeability of the porous medium 

fluctuates with time. The discussion is confined to the small 

Eckert number E. 

Keywords: Mass Transfer, MHD Flow, electrically 

conducting, vertical plate, oscillatory, suction velocity 

 

INTRODUCTION: 

The study of heat and mass transfer has been widely done by 

many researchers during last few decades due to application in 

science and technology. Such phenomena are observed in 

many physical conditions like buoyancy induced motions in 

the atmosphere, quasi solid bodies like earth and many more. 

Unsteady oscillatory free convective flow plays an important 

role in the field of chemical engineering, aerospace 

technology etc. such type of flow arise due to unsteady motion 

of a boundary or boundary temperature.  

Several authors have studied free convection and mass 

transfer flow of a viscous fluid through porous medium. In 

these studies the permeability of the medium was considered 

to be constant. But the porosity of a medium not necessarily is 

constant because the porous material containing the fluid is a 

non-homogeneous medium. In this context, Sreekanth et.al. 

have studied the effect of variation of permeability on a free 

convective flow past a vertical wall in a porous medium. Here 

permeability was considered as a function of time. Singh et.al. 

discussed the effect of variation of permeability on MHD free 

convective and mass transfer flow of a viscous fluid. Acharya 

et.al also studied free convection and mass transfer in a steady 

flow through porous medium with constant suction velocity. 

But in these studies, oscillation of the suction velocity was not 

considered. Singh et.al. investigated the effect of permeability 

variation and oscillatory suction velocity on free convective 

and mass transfer flow of a viscous flow past an infinite, 

vertical plate with a uniform transverse magnetic field. This 

study is an extension of the study done by Singh et.al. In this 

study, we try to investigate the effect of permeability variation 

and oscillatory suction velocity on free convective and mass 

transfer flow of a viscous flow in presence of a heat source. 

Here also the plate is assumed to be vertical, porous and 

infinite. The results are represented graphically for numerical 

values of the parameters involved. 

 

MATHEMATICAL FORMULATION: 

We have considered the flow of an incompressible, 

electrically conducting, and viscous fluid past an infinite 

vertical porous plate in a porous medium with variable 

permeability and suction velocity. We have considered the x-

axis along the plate in the direction of the flow and y-axis 

normal to it. A uniform magnetic field has been applied in a 

direction normal to the flow. In this study, we consider the 

Reynolds’ Number R to be very small so that the induced 

magnetic field can be neglected in comparison to the applied 

magnetic field. Also, all the fluid properties are assumed to be 

constant except the density variation with temperature. 

Therefore, the flow is due to the buoyancy force caused by 

temperature difference between wall and the medium. The 

governing equations for momentum, energy and concentration 

are as follows: 

 

∂u̅

∂t̅
− v0 (1 + ɛ eint ) 

∂u̅

∂y ̅
= gβ (T̅ − T̅∞) +  gβ

∗ (C̅ − C̅∞) +  ν 
∂2u̅

∂y̅2
−

νu̅

K̅0(1+ɛ eint )
−

σB0
2u̅

ρ
         (1)  

∂T̅

∂t̅
− v0 (1 + ɛ eint ) 

∂T̅

∂y ̅
= 

λ

ρCp

∂2T̅

∂y̅2
+

ν

Cp
 (
∂u̅

∂y ̅
)
2

−
σB0

2u̅

ρCp
+ Q̅(T̅ − T̅∞)                             (2) 

∂C̅

∂t̅
− v0 (1 + ɛ eint ) 

∂C̅

∂y ̅
=  D

∂2C̅

∂y̅2
                             (3) 

Under boundary conditions: 

At y = 0:   u̅ = 0, T̅ = T̅w + ɛ (T̅w − T̅∞)e
int, C̅ = C̅w + ɛ (C̅w − C̅∞)e

int  

At  y → ∞:  u̅ → 0, T̅ → 0, C̅ → 0   
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We introduce the following non-dimensional quantities: 

 y =
v0

ν
 y̅ , t =  

v0
2

4ν
 t̅, n =

4νn̅

v0
2  , u =  

u̅

v0
, T =

(T̅−T̅∞)

(T̅w−T̅∞)
, C =

(C̅−C̅∞)

(C̅w−C̅∞)
 

Gr =
gνβ(T̅w−T̅∞)

v0
3  , Gm =

gνβ
∗(C̅w−C̅∞)

v0
3   , P =

μCp

λ
 (=

ν

α
)  [Prandtle Number]   

S =
ν

D
 , M =  

σB0
2ν

ρv0
2  , E =  

v0
2

Cp(T̅w−T̅∞)
 [Eckert No. ], S =  

Q̅ν

v0
2  , K0 = 

K̅0v0
2

ν2
      

 

Where u  is the velocity along the x-axis, ν  the kinematic 

coefficient of viscosity, g is the acceleration due to gravity, β 

is the coefficient of volume expansion for heat transfer, 𝛽∗ is 

the volumetric coefficient for expansion with species 

concentration, 𝑇̅ is the fluid temperature, 𝑇̅∞  is the fluid 

temperature at infinity, 𝐶̅  is the species concentration, 𝐶̅∞  is 

the species concentration at infinity, D is the molecular 

diffusivity, 𝐾0 is the constant permeability of the medium, μ is 

the coefficient of viscosity, 𝐶𝑝 is the specific heat at constant 

pressure, n is the frequency of oscillation, t is the time and ρ is 

the density of the medium. 

Using above non-dimensional quantities, the equations (1), (2) 

and (3) becomes: 

 
1

4
 
𝜕𝑢

𝜕𝑡
− (1 + ɛ eint )  

𝜕𝑢

𝜕𝑦
=  Gr𝑇 + Gm 𝐶 +  

∂2u

∂y2
 –

u

K0(1+ɛ eint  )
 − Mu     (4) 

 
1

4
 
𝜕𝑇

𝜕𝑡
− (1 + ɛ eint )  

𝜕𝑇

𝜕𝑦
=  

1

𝑃
 
∂2T

∂y2
 + E (

∂u

∂y
)
2

+  𝑀𝐸𝑢2 +  𝑄𝑇     (5) 

 
1

4
 
𝜕𝐶

𝜕𝑡
− (1 + ɛ eint ) 

𝜕𝐶

𝜕𝑦
= 

1

𝑆𝑐
 
∂2C

∂y2
                                         (6) 

Under boundary conditions: 

At   y = 0:   u = 0, T = (1 + ɛ eint ) , C = (1 + ɛ eint )     
At   y = ∞:  u → 0, T → 0, C → 0                                               

}      (7) 

 

METHOD OF SOLUTION: 

In order to solve the equations (4), (5) and (6) under the 

boundary consitions (7), we put  

𝑢(𝑦, 𝑡) = 𝑢0(𝑦) + ɛ𝑢1(𝑦)e
int

T(𝑦, 𝑡) =  𝑇0(𝑦) + ɛ𝑇1(𝑦)e
int

𝐶(𝑦, 𝑡) = 𝐶0(𝑦) + ɛ𝐶1(𝑦)e
int

               }                             (8) 

Substituting (8) in (4), (5) and (6) and equating harmonic and 

Non-harmonic parts we have 

𝑢0
′′ + 𝑢0

′ − 𝑎0 𝑢0 = −𝐺𝑟 𝑇0 − 𝐺𝑚 𝐶0                                 (9) 

𝑢1
′′ + 𝑢1

′ − 𝑎1 𝑢1 = −𝐺𝑟 𝑇1 − 𝐺𝑚 𝐶1 − 𝑢0
′ −

1

𝐾0
 𝑢0         (10) 

𝑇0
′′ + 𝑃 𝑇0

′ +  𝑃𝑄 𝑇0 = −𝐸𝑃𝑢0
′2 −𝑀𝐸𝑃𝑢0

2                       (11) 

𝑇1
′′ + 𝑃 𝑇1

′ +   𝑃𝑄𝑇1 = −2𝐸𝑃𝑢0
′ 𝑢1

′ − 2𝑀𝐸𝑃𝑢0𝑢1             (12) 

Where  

𝑎0 = 𝑀 +
1

𝐾0
  ;  𝑎1 =  𝑀 +

1

𝐾0
+ 

𝑖𝑛

4
    ;  𝑎2 =  𝑆𝑃 − 

𝑖𝑃𝑛

4
 

 

 

Under boundary conditions: 

   At   y = 0:    u0 = u1 = 0, T0 = T1 = 1, C0 = C1 = 1
when   y → ∞:    u0 → 0, u1 = 0; T0 = T1 → 0, C0 = C1 → 0

   }   (15) 

To solve the equations from (9) to (14), we assume the 

following for E<1 

𝑢0(𝑦) = 𝑢00(𝑦) + 𝐸𝑢01(𝑦)

𝑢1(𝑦) = 𝑢10(𝑦) + 𝐸𝑢11(𝑦)

𝑇0(𝑦) = 𝑇00(𝑦) + 𝐸𝑇01(𝑦)

𝑇1(𝑦) = 𝑇10(𝑦) + 𝐸𝑇11(𝑦)

𝐶0(𝑦) = 𝐶00(𝑦) + 𝐸𝐶01(𝑦)

𝐶1(𝑦) = 𝐶10(𝑦) + 𝐸𝐶11(𝑦)

             

               }
  
 

  
 

                  (16) 

Substituting (15) in equations from (9) to (14) and equating 

the coefficients of E0 and  E1  (neglecting  E2 ), we get the 

following equations: 

u00
′′ + u00

′ − a0 u00 = −Gr T00 − Gm C00                         (17) 

u01
′′ + u01

′ − a0 u01 = −Gr T01 − Gm C01                         (18) 

u10
′′ + u10

′ − a1 u10 = −Gr T10 − Gm C10 − u00
′ −

1

K0
 u00 (19) 

u11
′′ + u11

′ − a1 u11 = −Gr T11 − Gm C11 − u01
′ −

1

K0
 u01 (20) 

T00
′′ + PT00

′ +  PS T00 = 0                                                   (21) 

T01
′′ + PT01

′ +  PS T01 = −Pu00
′2 −MPu00

2                           (22) 

T10
′′ + PT10

′ + a2 T10 = −P T00
′                                           (23) 

T11
′′ + PT11

′ + a2 T11 =  −P T01
′ + 2Pu00

′  u01
′ − 2MPu00u10      (24) 

C00
′′ + Sc C00

′ = 0                                                                 (25) 

C01
′′ + Sc C01

′ = 0                                                                  (26) 

C10
′′ + Sc C10

′ −
in Sc 

4
C10 = −Sc C00

′                                     (27) 

C11
′′ + Sc C11

′ −
in Sc 

4
C11 = −Sc C01

′                                     (28) 

And the boundary conditions (15) become 

At   y = 0:         u00 = u01 = 0;  u10 = u11 = 0, T00 = T10 = 1,
                             T01  = T11  = 0;   C00 = C10 = 1;  C01 = C11 = 0 

   
when   y → ∞:      u00 = u01 → 0;   u10 = u11 → 0, T00 = T10 → 1,
                                T01 = T11 → 0;   C00 = C10 → 1; C01 = C11 → 0

  

}
 
 

 
 

 (29) 

Now solving equations (17) to (28) under boundary conditions 

(29) we have: 

C00 = e
−Sc y                        

C01 = e
−Sc y    
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C10 = (1 −
i4Sc 

n
) e−m1 y + 

i4Sc 

n
 e−Sc y    

C11 = (1 −
i4Sc 

n
) e−m1 y + 

i4Sc 

n
 e−Sc y    

T00 = e
−m2 y  

T01 = S0e
−m2 y + S2e

−2m3 y + S1e
−2m2 y + S3e

−2Sc y + S4e
−(m2+m3) y  

            +S5e
−(m2+Sc)y + S6e

−(m3+Sc)y     

T10 = (1 −
Pm2 

m2
2−mP+a2

) e−m4 y + 
Pm2 

m2
2−mP+a2

 e−m2y  

T11 = R1e
−m2 y + R2e

−m4 y + R3e
−2m2 y + R4e

−2m3 y + R5e
−2Sc y + R6e

−(m1+m3) y +  R7e
−(m1+Sc) y + R8e

−(m2+m4) y +

R9e
−(m2+m5) y + R10e

−(m2+Sc) y + R11e
−(m3+m4) y +  R12e

−(m3+m5) y + R13e
−(m3+Sc) y  

u00 = (a3 + a4)e
−m3 y −  a3e

−m2 y − a4e
−Sc y  

u01 = A1e
−m3 y + A2e

−m2 y+ A3e
−2m2 y + A4e

−2m3 y + A5e
−2Sc y + A6e

−(m2+m3) y +   A7e
−(m2+Sc)y + A8e

−(m3+Sc)y + A9e
−Sc y  

u10 = B1e
−m1 y + B2e

−m2 y+ B3e
−m3 y + B4e

−m4 y + B5e
−m5 y + B6e

−Sc y  

u11 = M1e
−m1 y +M2e

−m2 y +M3e
−m3 y +M4e

−m4 y +M5e
−m6 y +M6e

−Sc y +M7e
−2m2 y +M8e

−2m3 y +M9e
−2Sc y

+M10e
−(m1+Sc) y +M11e

−(m2+Sc) y +M12e
−(m3+Sc) y +M13e

−(m4+Sc) y +M14e
−(m5+Sc) y +M15e

−(m1+m3) y

+M16e
−(m1+m5) y +M17e

−(m2+m3) y +M18e
−(m2+m4) y +M19e

−(m2+m5) y +M20e
−(m3+m4) y 

Where  

m1 =
1

2
[Sc +√Sc

2 + inSc] = C1 + iD1, m2 =
P+√P2−4PS

2
,  m3 =

1+√1+4a0

2
, 

m4 =
P+√P2−4a2

2
= C2 + iD2,  m5 =

1+√1+4a1

2
= C3 + iD3 

a3 =
−Gr

m2
2−m2+a0

,   a4 =
−Gr

Sc
2−Sc+a0 

,     S1 =
−Pa3

2(m2
2+M)

4m2
2−2m2P+PS

 ,  S2 =
−P(a3+a4)

2(m3
2+M)

4m3
2−2m3P+PS

,  

S3 =
−Pa4

2(Sc
2+M)

4Sc
2−2ScP+PS

,    S4 =
2P(a3+a4)a3(m2m3+M)

(m2+m3)
2−(m2+m3)P+PS

,   S5 =
−2Pa3a4(m2Sc+M)

(m2+Sc)
2−(m2+Sc)P+PS

 ,  

S6 =
2P(a3+a4)a4(m3Sc+M)

(m3+Sc)
2−(m3+Sc)P+PS

,   S0 = S1 + S2 + S3 + S4 + S5 + S6  

R1 =
PT1m2

m2
2−Pm2+a2

 ,    R2 =
2PT3m2−2PB4m2

2

4m2
2−2Pm2+a2

,              R3 =
2PT2m3+2MPB3(a3+a4)+2PB3(a3+a4)m3

2

4m3
2−2Pm3+a2

, 

R4 =
2PT4−2MPa4B6−2Pa4B6Sc

2

4Sc
2−2PSc+a2

,    R5 =
2MPB1(a3+a4)−2PB1m3m5(a3+a4)

(m3+m5)
2−(m3+m5)P+a2

,  

R6 =
2MPB2(a3+a4)−2PB1m3m5(a3+a4)

(m3+m5)
2−(m3+m5)P+a2

 ,  R7 =
2MPB4(a3+a4)−2MPB3a3−2PB3m3m2+2PB4m3m2(a3+a4)

(m2+m3)
2−(m2+m3)P+a2

  

R8 =
−2MPB2a3−2PB2m2m4a3

(m2+m4)
2−(m2+m4)P+a2

 , R9 =
−2PB1m2m5a3

(m2+m5)
2−(m2+m5)P+a2

,  

R10 =
2MPB5(a3+a4)+2PB5m1m3(a3+a4)

(m1+m3)
2−(m1+m3)P+a2

, R11 =
−2PB5m1m2a3

(m1+m5)
2−(m1+m5)P+a2

,  

R12 =
−2MPB5a4−2PB5Scm1m4

(m1+Sc)
2−(m1+Sc)P+a2

, R13 =
−2MPB1a3−2MPB4a4−2PB6m2a3Sc+PT5(m2+m3)+PT6(m2+Sc)

(m2+Sc)
2−(m2+Sc)P+a2

 

R14 =
−2MPB3a4−2PB3m3a4Sc+2PB6m2a3Sc+2PMB6+PT7(m3+Sc)

(m3+Sc)
2−(m3+Sc)P+a2

 ,  

R15 =
−2PB1m4Sca4

(m4+Sc)
2−(m4+Sc)P+a2

 ,  R16 =
−2PB5m1m2a3

(m5+Sc)
2−(m5+Sc)P+a2

  

R17 = R1 + R2 + R3 + R4 + R5 + R6 + R7 + R8 + R9 + R10 + R11 + R12 + R13 + R14 + R15 + R16  

A1 =
−GrS1

m2
2−m2−a0

, A2 =
−GrS2

4m2
2−2m2−a0

,  A3 =
−GrS3

4m3
2−2m3−a0

, A4 =
−GrS4

4Sc
2−2Sc−a0

 

A5 =
−GrS5

4(m2+m3)
2−2(m2+m3)−a0

 , A6 =
−GrS6

4(m2+Sc)
2−2(m2+Sc)−a0

, A7 =
−GrS5

4(m3+Sc)
2−2(m3+Sc)−a0

 

A8 =
−Gm

Sc
2−Sc−a0

 , A9 = −(A1 + A2 + A3 + A4 + A5 + A7 + A8) 
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B1 =
T1

m1
2+m1−a1

, B2 =
T2

m2
2+m2−a1

, B3 =
T3

m3
2+m3−a1

, B4 =
T4

m4
2+m4−a1

, B5 = B1 + B2 + B3 + B4 , 

B6 =
T5

Sc
2+Sc−a1

 ,  T4 = −Gm (1 −
i4Sc 

n
),  T3 =

Grm2P

m2
2−Pm2+a2

−m2a3 +
a3

K0
 ,  

 T4 = m3(a3 + a4) −
(a3+a4)

K0
 , T1 = −Gr (1 −

Pm2

m2
2−Pm2+a2

), T5 = −
i4GmSc 

n
− Sca4 +

a4

K0
    

M1 =
−Gm(1−

i4Sc 
n
)

m1
2+m1−a1

 ,  M2 =
−GrR2+2m3A4−

A4
K0

m2
2+m2−a1

  ,    M3 =
m3A1−

A1
K0

m3
2+m3−a1

 ,  M4 =
−GrR1

m4
2+m4−a1

  , 

 M5 =
ScA9−

A9
K0

Sc
2+Sc−a1

  , M6 =
−GrR3+2m2A3−

A3
K0

4m2
2+2m2−a1

  , M7 =
−GrR4+2m3A4−

A4
K0

4m3
2+2m3−a1

  , M8 =
−GrR5+2ScA5−

A5
K0

4Sc
2+2Sc−a1

 , M9 =
−GrR12

(m1+Sc)
2+(m1+Sc)−a1

 , M10 =

−GrR10+(m2+Sc)A7−
A7
K0

(m2+Sc)
2+(m2+Sc)−a1

  , M11 =
−GrR8+(m3+Sc)A8−

A8
K0

(m3+Sc)
2+(m3+Sc)−a1

  , 

 M12 = 
−GrR15

(m4+Sc)
2+(m4+Sc)−a1

 , M13 = 
−GrR14

(m5+Sc)
2+(m5+Sc)−a1

 , M14 =
−GrR9

(m1+m3)
2+(m1+m3)−a1

  , 

 M15 =
−GrR16

(m1+m5)
2+(m1+m5)−a1

  , M16 =
(m2+m3)A6−

A6
K0

(m2+m3)
2+(m2+m3)−a1

  , M17 =
−GrR11 

(m2+m4)
2+(m2+m4)−a1

 , M18 =
−GrR13

(m2+m5)
2+(m2+m5)−a1

  , 

M19 =
−GrR7

(m3+m4)
2+(m3+m4)−a1

 , M20 =
−GrR6

(m3+m5)
2+(m3+m5)−a1

  

 

Now with the convection that the real parts of complex 

quantities have physical significance in the problem, the 

velocity and temperature fields can be expressed as follows: 

u(y, t) =  u0(y) + ɛ(urcosnt − uisinnt)                          (30) 

T (y, t) =  T0(y) + ɛ(Trcosnt − Tisinnt)                          (31) 

C (y, t) =  C0(y) + ɛ(Crcosnt − Cisinnt)                          (32) 

Where: 

ur = Re (u1), ui = Im (u1), 

Tr = Re (T1),  Ti = Im (T1),  

Cr = Re (C1),  Ci = Im (C1),  

The expressions for     ur,   ui,  Tr,   Ti , Cr  and Ci  are 

obtained but not presented here for the brevity and transient 

velocity, temperature and concentration field are obtained for 

𝑛𝑡 =
𝜋

2
 

 

1. Skin Friction and Rate of Heat transfer: 

The Skin friction coefficient    (𝜏0) at the plate in terms of 

amplitude and phase is given by  

𝜏0 = (
𝜕𝑢

𝜕𝑦
)
𝑦=0

= 𝑢0
′ (0) + 𝜀𝑒𝑖𝑛𝑡𝑢1

′ (0)                         

Splitting this equation into real and imaginary parts and taking 

the real parts only we get: 

𝜏0 = 𝜏0
0 + 𝜀|𝐵|𝑐𝑜𝑠(𝑛𝑡 + 𝜃)                        

Where          

𝐵 = 𝐵𝑟 + 𝑖𝐵𝑖 = 𝑢1
′ (0)

𝜏0
0 = 𝑢0

′ (0)

|𝐵| = √𝐵𝑖
2 + 𝐵𝑖

2

tan 𝜃 =
𝐵𝑖

𝐵𝑟 }
 
 

 
 

                               (30)       

Also the Heat Transfer coefficient     (𝑁𝑢0)  at the plate in 

terms of the amplitude and phase is given by 

 𝑁𝑢0 = −(
𝜕𝑇

𝜕𝑦
)
𝑦=0

= 𝑇0
′ (0) + 𝜀𝑒𝑖𝑛𝑡𝑇1

′(0)      

Splitting this equation into real and imaginary parts and taking 

the real parts only we have- 

 𝑁𝑢0 = 𝑁𝑢0
0 + 𝜀|𝐻|𝑐𝑜𝑠(𝑛𝑡 + 𝜑) 

Where  

 

𝐻 = 𝐻𝑟 + 𝑖𝐻𝑖 = 𝑇1
′(0)

𝑁𝑢0
0 = 𝑇0

′ (0)

|𝐻| = √𝐻𝑖
2 + 𝐻𝑖

2

tan𝜑 =
𝐻𝑖

𝐻𝑟

     

}
 
 

 
 

           (31)  

The expressions for  are 

obtained but not presented here for the sake of brevity. 

The Mass Transfer coefficient (𝑆ℎ0) at the plate in terms of its 

amplitude and phase is given by  

𝑆ℎ0 = −(
𝜕𝐶

𝜕𝑦
)
𝑦=0

= 𝐶0
′ (0) + 𝜀𝑒𝑖𝑛𝑡𝐶1

′ (0)  

Splitting this equation into real and imaginary parts and taking 

the real parts only we have- 

 𝑆ℎ0 = 𝑆ℎ0
0 + 𝜀|𝐷|𝑐𝑜𝑠(𝑛𝑡 + 𝛿)  

Where  

 

𝐷 = 𝐷𝑟 + 𝑖𝐷𝑖 = 𝐶1
′ (0)

𝑆ℎ0
0 = 𝐶0

′ (0)

|𝐷| = √𝐷𝑖
2 + 𝐷𝑖

2

tan 𝛿 =
𝐷𝑖

𝐷𝑟

     

}
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DISCUSSION AND CONCLUSION: 

In the following section, we have studied the velocity field, 

temperature, concentration field, coefficient of skin-friction, 

rate of heat and mass transfer by assigning numerical values 

to the various parameters involved in the mathematical 

formulation of the problem. 

The values of the different parameters involved are taken as 

follows: 

The values of Prandtl Number (P) are taken for P=0.025 (for 

Mercury), P=0.71 (for Air), P=7.0 (for Water). The values of 

Schmidt Number (𝑆𝑐) are taken as 𝑆𝑐=0.22 (for Hydrogen), 

𝑆𝑐=0.30 (for Helium), 𝑆𝑐=0.6 (for Water Vapor), 𝑆𝑐=0.66 (for 

Oxygen) and 𝑆𝑐=0.78 (for Ammonia). The Grashof Number 

(𝐺𝑟) is considered for two cases-for heating of the plate (𝐺𝑟 <
0) and for cooling of the plate (𝐺𝑟 > 0).  

For transient velocity profile we have considered 𝑆𝑐=0.22, 

0.66, the Magnetic parameter (M) is taken as M=0.5, 1.0, 

permeability parameter 𝐾0=10.0, 20.0, frequency parameter 

n=5.0, Prandtl Number P=0.71, perturbation parameter 

𝜀=0.005 and  𝑛𝑡 =
𝜋

2
. The Grashof Number (𝐺𝑟) are taken to 

be 𝐺𝑟=10.0, 20.0 for cooling of the plate and 𝐺𝑟= -10.0, -20.0 

for heating of the plate. The other parameters are taken as 

shown in the figures and tables. 

Fig. 1 depicts the behaviour of the transient velocity u due to 

change in values of  𝐺𝑟  , 𝐺𝑚, 𝑆𝑐 , M and 𝐾0 at n=5.0, E= 0.04, 

𝜀=0.005, P=0.71,  𝑛𝑡 =
𝜋

2
  for cooling of the plate. Here, it is 

observed that an increase of   𝐺𝑟  or  𝐺𝑚  or 𝐾0  results a 

decrease of the transient velocity while an increase of  𝑆𝑐 or M 

results an increase of it. We also observe that, at the vicinity 

of the plate there is a sudden deplete of the velocity and 

thereafter, it steadily increases. 

 

 

Fig. 1 Velocity Profile due to cooling of plate (n=5.0, E= 0.04, 𝜀=0.005, P=0.71,  𝑛𝑡 =
𝜋

2
) 

 

 

Fig. 2 shows the change of temperature field T due to the 

variation of Prandtl number P for Mercury (P=0.025), Air 

(P=0.71), Water (P=7.0) and Water at 40𝐶  (P=11.4) at n=5.0, 

E= 0.04, 𝜀=0.005 and  𝑛𝑡 =
𝜋

2
 . It has been observed that, an 

increase of the Prandtl number P yields a decrease of the 

temperature and it falls more rapidly for water in comparison 

to air. A very interesting observation is seen in the figure that 

the temperature for mercury remains almost constant from 

which we can conclude that mercury is more useful for 

maintaining temperature difference and it can be easily used 

for laboratory purpose. 
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Fig.2 Temperature with variation of Prandtl Number (n=5.0, E= 0.04, 𝜀=0.005, 𝑛𝑡 =
𝜋

2
 ) 

 

Fig. 3 shows the transient concentration field due to the 

variation of Schmidt Number  𝑆𝑐  for Hydrogen (  𝑆𝑐=0.22), 

Helium (  𝑆𝑐 =0.30), Water Vapour (  𝑆𝑐 =0.60) and Oxygen 

( 𝑆𝑐=0.66) at n=5.0, E= 0.04, 𝜀=0.005, P=0.71 and  𝑛𝑡 =
𝜋

2
. 

Here we notice that the concentration field decreases 

gradually for Hydrogen and Helium, but rapidly for Water 

Vapour and Oxygen. 

 

 

Figure 3. Variation of Concentration with Schmidt Number 𝑆𝑐 (n=5.0, E= 0.04, 𝜀=0.005, 𝑛𝑡 =
𝜋

2
 ) 

 

Table I and II represent the numerical values of the Skin-friction 𝜏0 in terms of the amplitude |B| and phase tan 𝜃 for different 

values of  Gr, Gm , E, Sc, M, P, K0 and n corresponding to cooling of the plate and heating of the plate respectively.  
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TABLE I 

Values of amplitude |B| and phase  tan𝜃 of Skin-friction due to cooling of the plate 

Gr Gm E Sc M K0 n P |B| tan𝜃 

10.0 4.0 0.004 0.22 0.5 10.0 5.0 0.71 46.2315 -0.26958 

20.0 4.0 0.004 0.22 0.5 10.0 5.0 0.71 77.2569 -0.31582 

10.0 6.0 0.004 0.22 0.5 10.0 5.0 0.71 49.2231 -0.36124 

10.0 4.0 0.004 0.66 0.5 10.0 5.0 0.71 25.3695 -0.25631 

10.0 4.0 0.004 0.22 1.0 10.0 5.0 0.71 10.2365 -0.14783 

10.0 4.0 0.004 0.22 0.5 20.0 5.0 0.71 78.2584 -0.27369 

10.0 4.0 0.004 0.22 0.5 10.0 10.0 0.71 37.0025 -0.33125 

10.0 4.0 0.004 0.22 0.5 10.0 5.0 7.00 09.2350 -0.19333 

 

In Table I, we have seen that with the increase of   Gr , Gm 

or   K0 , there is moderate increase of the values of the 

amplitude  |B|, whereas an increase of the values of  Sc, M, P 

or n results a decrease in the values of  |B|.  The values of  

tan 𝜃  decrease with the increase of   Gr ,   K0  or n while it 

increases with the increase of  Gm,  Sc, M or P. 

 

TABLE II 

Values of amplitude |B| and phase tan𝜃 Skin-friction due to heating of the plate 

Gr Gm E Sc M K0 n P |B| tan𝜃 

-10.0 -4.0 0.004 0.22 0.5 10.0 5.0 0.71 51.0236 -0.29415 

-20.0 -4.0 0.004 0.22 0.5 10.0 5.0 0.71 79.2589 -0.12567 

-10.0 -6.0 0.004 0.22 0.5 10.0 5.0 0.71 49.1256 -0.53678 

-10.0 -4.0 0.004 0.66 0.5 10.0 5.0 0.71 23.4780 -0.22665 

-10.0 -4.0 0.004 0.22 1.0 10.0 5.0 0.71 08.2376 -0.47890 

-10.0 -4.0 0.004 0.22 0.5 20.0 5.0 0.71 66.9865 -0.33749 

-10.0 -4.0 0.004 0.22 0.5 10.0 10.0 0.71 30.2891 -0.29731 

-10.0 -4.0 0.004 0.22 0.5 10.0 5.0 7.00 12.0037 -0.99858 

 

In Table II, we observe that, the amplitude   |B| , 
increases with the increase of  Gr, Gm or K0 while an increase 

of  Sc, M, n or P leads to decrease of the values of  |B|. Also 

we see that the values of the phase  tan 𝜃 decreases due to the 

increase of  Gr , K0 or n but it increases with the increase of 

Gm,  Sc, M or P. 

 

TABLE III 

Values of amplitude |H| and phase tan𝜑 of Heat Transfer Coefficient (𝑁𝑢0) for 𝜀 = 0.005 and 𝑛𝑡 =
𝜋

2
 

E n P |H| tan𝜑 𝑁𝑢0 

0.004 5.0 0.025 01.2026 0.6258 00.0347 

0.004 5.0 0.710 05.4485 0.3152 00.3654 

0.004 5.0 7.000 13.2991 0.1036 05.1490 

0.004 5.0 11.40 23.3279 0.0631 13.3505 

0.004 10.0 0.710 05.4690 0.4783 00.3344 
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Table III represents the numerical values of the amplitude |H| 
and phase  tan𝜑 and the Heat Transfer Coefficient (𝑁𝑢0) due 

to the variation of Prandtl Number (P) and frequency n.  Here 

we have noticed that values of |H|  and 𝑁𝑢0  are least for 

P=0.025 (Mercury) but these are highest for P=11.40 (Water 

at   40𝐶 ) but we see the opposite trend in case of the 

phase  tan𝜑. Also, an increase of the frequency n results an 

increase of the |H| and  tan𝜑  but decrease in the values of  

𝑁𝑢0 

TABLE IV 

Values of amplitude |D| and phase  tan δ of Mass Transfer 

Coefficient (𝑆ℎ0 ) for 𝜀 = 0.005 and 𝑛𝑡 =
𝜋

2
 

E n Sc |D| tan δ 𝑆ℎ0  

0.004 5.0 0.22 01.2026 0.6258 0.3265 

0.004 5.0 0.30 01.4015 0.6123 0.3452 

0.004 5.0 0.60 01.5129 0.5907 0.3946 

0.004 5.0 0.78 01.6203 0.5877 0.4268 

0.004 10.0 0.22 01.3690 0.7780 0.3112 

 

Table IV gives the variation of the numerical values of the 

amplitude |D| and the phase tan δ of the rate of mass transfer 

coefficient  𝑆ℎ0  with Schmidt Number Sc  and frequency n 

corresponding to 𝜀 = 0.005  and   𝑛𝑡 =
𝜋

2
. Here, we observe 

that the values of  |D| and 𝑆ℎ0 increase but   tan δ decreases 

with the increase of  Sc. An increase of n leads to an increase 

in the values of |D|  and tan δ  but decrease in the values 

of  𝑆ℎ0. 
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