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Abstract 

Optimal Reactive Power Dispatch (𝐎𝐑𝐏𝐃) problem is a 

complex, non−linear, non−convex optimisation problem and 

contains equality and inequality constraints. The ORPD is 

famous and essential problems in power system analysis and 

control. This is not all, but added to several other objectives 

such as nonlinearity and minimisation problem of power 

system optimisation. This study concentrates on this part of 

Optimal Load Flow calculation. Particle Swarm Optimization 

(𝐏𝐒𝐎) is better type of intelligent technique of optimization. 

This study employed an improved hybrid algorithm based on 

Chaotic 𝐏𝐒𝐎 (𝐂𝐏𝐒𝐎). The merging of chaotic sequences in 

𝐏𝐒𝐎 algorithm can be an efficient method to slip very easily 

from local minima compared to simple 𝐏𝐒𝐎 algorithm. The 

CPSO algorithm is used for solve economic dispatch problem. 

The simulation results for the IEEE node 𝟏𝟒 and 𝟑𝟎 power 

systems indicate that 𝐂𝐏𝐒𝐎 algorithm has high ability and 

effective in minimizing of transmission line loss and voltage 

profile enhancing of the system compared to simple 𝐏𝐒𝐎. 

Keywords: Optimal Reactive Power Dispatch (ORPD), 

Optimal Load Flow, PSO, chaotic PSO (CPSO) 

 

INTRODUCTION  

Last studies correspond to about 13% of the generated power 

in the present power systems are wasted in distribution 

systems. Because several electrical loads which include 

reactive power, by raising the flow of electrical loads 

specially electrical loads that including reactive power, power 

loss also raising [1]. Many researchers in different studies 

concentrated on the optimal operation of the power system, 

this is because of the requesting for the electrical power has 

been raising vastly. The aim of Optimal Reactive Power 

Dispatch (ORPD) problems include to minimise the loss of 

transmission line in the power system and to keep voltage at 

all buses with an acceptable levels while deals with a number 

of equality and inequality constrains [2]. 

Carpentier J. was introduced calculation of Optimal Power 

Flow (OPF) in (1962s) [3]. Then several researchers have 

been focused on this problem with different methodologies. 

The calculation of economic dispatch optimisation problem is 

really part from calculation of optimal power flow. This 

problem is also consist of many objective functions and 

non−linear problems [4-6]. 

Khazali and Kalantar in (2011) have presented Harmony 

Search (HS) approach in solving (ORPD) optimisation 

problem. In this approach objective functions are handled 

separately and the inequality limits such as reactive power 

generation (𝑄𝑔) and voltages at load buses (𝑉𝑙) are treated by 

penalty factors. The results presented on IEEE node 30 and 

node 57 systems and these results are compared with the 

results calculated by Genetic (GA) and PSO algorithms [7, 8]. 

Other groups of researchers were dealing with a multi 

objective function by a new enhancement Teaching Learning 

Based Optimization (TLBO) technique that is utilized for 

solve economic dispatch optimization problem by reducing 

the objective functions [9-12]. Varadarajan and Swarup in 

(2008) have showed the ORPD as a non-linear optimization 

problem with penalty functions for constraint treating. TLBO 

approach is implemented on IEEE 14 –node, 30 −node and 

118 −node systems [13]. A fuzzy adaptive PSO using for 

voltage security and reactive power have been represented in 

reference [14], Zhao in (2005) has been solved ORPD problem 

using multi-agent-based PSO [15]. And at last a stochastic 

reactive power dispatch problem was purposed by GA in the 

study [16]. 

In this study, to enhance searching ability of the PSO 

technique and to avoid a drop it into the early convergence to 

local minima and to decrease the calculation time, Chaotic 

PSO (CPSO) is used in order to overcome this drawback. This 

hybrid CPSO algorithm helps to slip from the local optima 

due to the special behavior, high ability, and require less time 

compared with simple PSO. The simple PSO and improved 

CPSO are used individually for ORPD problem to assess the 

decreasing active power losses and enhancing voltage of the 

system. Moreover, simulations and results of ORPD problem 

have been implemented for standard IEEE 14 and 30 node 

power systems. 

 

ORPD PROBLEM 

ORPD is a non−linear optimization problem. For achieving 

the reliability and proficiently for the power system, the 

decreasing real power loss and voltage level should be 

handled and satisfying the equality and inequality constrains. 

The multi objective ORPD problems are utilized to optimize 

one objective function or some objective functions and 

satisfying the constraints of the problem [17-21]. 
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Problem Formulation 

Min Ploss = J (x , u)                                    (1) 

Subjected to ∶  eq(x , u)  =  0 

and ieq(x , u)  ≤   0 

from equation (1), (𝐽) is represent the objective function  that 

formulated to minimize (𝑀𝑖𝑛) the total active power loss 
(𝑃𝑙𝑜𝑠𝑠) of the system; (𝑒𝑞, 𝑖𝑒𝑞) the equality and inequality 

constrains, and also they are equations of load flow. Also, the 

control variables vector (𝑢) is contains: 

1. Output real power for any generator (𝑃𝐺) except the 

output real power in slack node (𝑃𝐺−1). 

2. Voltage at generation node (𝑉𝐺). 

3. Transformer tap  (𝑇𝑎𝑝). 

4. Source of 𝑉𝐴𝑅 compensation (capacitor bank    𝑄𝑐). 

and (𝑥) is the dependent variables vector (security constrains) 

and contains: 

1. Output power at a slack node (𝑃𝐺−1). 

2. Voltage at load nodes (𝑉𝑙). 

3. Generated reactive power (𝑄𝐺). 

4. Transmission apparent power flow (𝑆𝐿). 

 

Constrains 

Equality constrains  

These constrains are equations of load flow, as shown below 

[6]. 

𝑃𝐺𝑖 − 𝑃𝐷𝑖 − 𝑉𝑖 ∑ 𝑉𝑗(𝐺𝑖𝑗𝑐𝑜𝑠(ɸ𝑖𝑗) +𝑁𝐵
𝑗=1

                                                    𝐵𝑖𝑗𝑠𝑖𝑛(ɸ𝑖𝑗) = 0      (2)                                 

𝑄𝐺𝑖 − 𝑄𝐷𝑖 − 𝑉𝑖 ∑ 𝑉𝑗(𝐺𝑖𝑗𝑠𝑖𝑛(ɸ𝑖𝑗) −𝑁𝐵
𝑗=1

                                                    𝐵𝑖𝑗𝑐𝑜𝑠(ɸ𝑖𝑗) = 0     (3)                                   

From equation (2) and equation (3),  the number of total 

nodes is 𝑁𝐵, the generated output active power at 𝑖 node is 

𝑃𝐺𝑖 and the generated output reactive power at 𝑖 node is 𝑄𝐺𝑖, 

the load real power at 𝑖 node is  𝑃𝐷𝑖 and the load reactive 

power at 𝑗 node is  𝑄𝐷𝑖, 𝐺𝑖𝑗 is the mutual conductance and 𝐵𝑖𝑗 

is the mutual susceptance among 𝑖 node and 𝑗 node, 𝑉𝑖 is the  

absolute value of voltage value at 𝑖 node  and 𝑉𝑗  is the  

absolute value of voltage in 𝑗 node; ɸ𝑖𝑗 is the difference angle 

for voltage between node 𝑖 and node 𝑗, respectively. 

 

Inequality constrains 

These constrains contain: 

Constrains of generator: These constrains contains of 

generator voltage 𝑉𝐺, active 𝑃𝐺 and reactive 𝑄𝐺 output power 

of all generator and limited by their minimum maximum 

limits. 

𝑉𝐺−𝑖
𝑚𝑖𝑛  ≤  𝑉𝐺−𝑖 ≤  𝑉𝐺−𝑖

𝑚𝑎𝑥 ,    𝑖 = 1, … … . , 𝑁𝐺 (4)                                                                

𝑃𝐺−𝑖
𝑚𝑖𝑛  ≤  𝑃𝐺−𝑖  ≤  𝑃𝐺−𝑖

𝑚𝑎𝑥 ,   𝑖 = 1, … … . , 𝑁𝐺 (5) 

𝑄𝐺−𝑖
𝑚𝑖𝑛 ≤  𝑄𝐺−𝑖 ≤  𝑄𝐺−𝑖

𝑚𝑎𝑥 ,   𝑖 = 1, … … . , 𝑁𝐺 (6) 

Transformer constrains: this constrain contain of transformer 

positions 𝑇𝑖 have lower and upper limits. 

𝑇𝑎𝑝𝑖
𝑚𝑖𝑛 ≤  𝑇𝑎𝑝 𝑖  ≤  𝑇𝑎𝑝 𝑖

𝑚𝑎𝑥, 𝑖 = 1, … … , 𝑁𝑇  (7)  

Source VAR constrains: switchable 𝑉𝐴𝑅 source 𝑄𝐶 is 

bounded as given in equation (8): 

𝑄𝐶−𝑖
𝑚𝑖𝑛  ≤ 𝑄𝐶−𝑖 ≤ 𝑄𝐶−𝑖

𝑚𝑎𝑥,    𝑖 = 1, … … . , 𝑁𝑇    (8) 

Security constrains: these constrains contain the restrictions of 

voltages at load node 𝑉𝑙 and apparent power flow 𝑆𝐿 as shown 

below:  

𝑉𝑙−𝑖
𝑚𝑖𝑛  ≤  𝑉𝑙−𝑖  ≤  𝑉𝑙−𝑖

𝑚𝑎𝑥 , 𝑖 = 1, … … . , 𝑁𝑃𝑄   (9) 

𝑆𝐿−𝑖 ≤ 𝑆𝐿−𝑖
𝑚𝑎𝑥                 𝑖 = 1, … … ., 𝑁𝐿           (10) 

 

Objective Functions 

The dependent variables can be added to equation (1) by using 

penalty factors to constrain. Therefore, equation (1) can be 

represented as shown below [22]: 

 

𝑚𝑖𝑛 𝐽 = 𝑃𝑙𝑜𝑠𝑠 +  𝜆𝑃(𝑝𝐺1 − 𝑝𝐺1
𝑙𝑖𝑚 )2  +

                         𝜆𝑉 ∑ (𝑣𝐿𝑖 − 𝑣𝐿𝑖
𝑙𝑖𝑚 )𝑁𝐿

𝑖=1  2  + 
 𝜆𝑄 ∑ (𝑄𝐺𝑖 − 𝑄𝐺𝑖

𝑙𝑖𝑚 )2𝑁𝐺
𝑖=1  +  𝜆𝑆 ∑ (𝑠𝐿𝑖 − 𝑠𝐿𝑖

𝑙𝑖𝑚 )2𝑁𝐿
𝑖=1          

                                                                            (11) 

 

in equation (11),  𝜆𝑃, 𝜆𝑉, 𝜆𝑄, and 𝜆𝑆  are penalty terms; 𝑋𝑙𝑖𝑚  

is the limit value of inequality constrains; and  𝑃𝑙𝑜𝑠𝑠 is given 

by the following equation: 

 

 𝑃𝑙𝑜𝑠𝑠 = ∑ 𝐺𝐾(𝑉𝑖
2𝑁𝑡𝑙

𝐾=1 + 𝑉𝑗
2 − 2𝑉𝑖𝑉𝑗𝑐𝑜𝑠(ɸ𝑖 −

                            ɸ𝑗))          (12)                                                            

 

from equation (12), 𝑁𝑡𝑙 is the total number of branches, 𝐺𝐾 

is the conductance of line 𝐾, 𝑉𝑖 is the voltage at node 𝑖, 𝑉𝑗 is 

the voltage at node 𝑗, ɸ𝑖 is the angle of voltage at 𝑖 node and 

ɸ𝑗 is the angle of voltage at 𝑗 node. 

 

Concept of Average Voltage 

In this study, a new index of average voltage is proposed to 

manage all voltage nodes (buses) and satisfy most of the 

electrical utility constraints. This index is given in equation 

(13). 

𝑉𝑎𝑣  =  
∑ 𝑉𝑖

𝑁𝑛
𝑖=1

𝑁𝑛
                                                       (13) 

where 𝑉𝑎𝑣 is the average voltage of the system; the voltage  in 

node i  is referred to as 𝑉𝑖, and the total number of  nodes is 

referred to as 𝑁𝑛. 
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PSO ALGORITHM 

PSO algorithm is fast, simple, robust and differs from Genetic 

and some heuristic approach's, which has high flexibility  to 

control the balance among the global 𝑔𝑏𝑒𝑠𝑡 as well as  local 

𝑝𝑏𝑒𝑠𝑡 positions to explore the problem space, and population 

based on the above mentioned algorithm. Eberhart was first 

introduced this approach in (1995s) [15, 23]. It has been 

described the behavior of groups such as flock school fish or 

swarms of birds to adapt with their surrounding environment 

in order to search for abundant food sources and avert the risk 

of predators. PSO is deemed fast and needs less memory due 

to simplicity of this algorithm. The approach starts with 

random positions of swarm population in the problem space. 

Every swarm is considered as a solution of the problem and 

has a fitness value. All agents have a memory and monitor the 

individual best position (𝑝𝑏𝑒𝑠𝑡) as well as the relating fitness 

value. The agent has another best value which is called global 

best position (𝑔𝑏𝑒𝑠𝑡) which is the better value among all 

swarm (𝑝𝑏𝑒𝑠𝑡). The current position for all particles are 

updated based on its local (𝑝𝑏𝑒𝑠𝑡) and global (𝑔𝑏𝑒𝑠𝑡) position. 

The velocity and position can be updated by utilizing equation 

(14) and equation (15), and then the resulting two equations 

can be obtained [24]. 

 

𝑣𝑖
𝑘+1=𝐾*[𝑊*𝑣𝑖

𝑘 + 𝐶1 ∗ 𝑟1*(𝑝𝑏𝑒𝑠𝑡(𝑖)
𝑘 − 𝑥𝑖

𝑘)  +

                             𝐶2𝑟2*(𝑔𝑏𝑒𝑠𝑡(𝑖)
𝑘 − 𝑥𝑖

𝑘)]              (14) 

𝑥𝑖
𝑘+1  = 𝑥𝑖

𝑘 +𝑣𝑖
𝑘+1                                            (15) 

 

from the above equations: 

𝑣𝑖
𝑘+1 : is the velocity of agent at (𝑘 + 1) iteration. 

 𝑤 : is the inertia weight factor. 

𝑣𝑖
𝐾 : is the velocity of agent at current iteration. 

𝐶1,  𝐶2 : are the two positive constants within [0 − 2.05]. 

𝑟1, 𝑟2: are the uniformly distributed positive random numbers 

within limit [0−1]. 

𝑝𝑏𝑒𝑠𝑡(𝑖)
𝑘: is the local best value at ( k ) iteration. 

𝑔𝑏𝑒𝑠𝑡(𝑖)
𝑘: is the global best value at( k )iteration. 

𝑥𝑖
𝑘+1  : is the position at (𝐾 + 1)  iteration. 

𝑥𝑖
𝑘  : is the position at current iteration. 

𝐾: The constriction factor and it is use to guarantee the 

convergence of PSO, it was introduced by Shi indicate that use 

of this factor may be important and can be express as follow 

[25]. 

 

𝐾 =
2

|2−ɸ−√ɸ2−4ɸ |
 ,       ɸ = 𝐶1 + 𝐶2, ɸ ≥ 4    (16) 

Now, (𝑊) is reduced from (0.9 to 0.4) linearly at each 

iteration to achieve efficiently trade-off between capabilities 

of the global exploration and local exploitation as follows: 

 

𝑊 =  𝑊𝑚𝑎𝑥  −  
𝑊𝑚𝑎𝑥 − 𝑊𝑚𝑖𝑛

𝑚𝑎𝑥𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛
∗ 𝑖𝑡𝑒𝑟                    (17) 

from equation (17): 

𝑊𝑚𝑎𝑥 : is the max value of weight. 

𝑊𝑚𝑖𝑛 :  is the min value of  weight. 

𝑖𝑡𝑒𝑟 : is the current iteration. 

𝑚𝑎𝑥𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 : is the max iterations. 

 

CHAOTIC PARTICLE SWARM OPTIMIZATION 

(𝐂𝐏𝐒𝐎) 

The simple PSO algorithm mainly relies on its parameters, and 

this made it difficult and sometimes unable to reach the 

accurate solution criteria in some cases, especially when the 

number of parameters of the optimization problem is 

relatively large. A chaos theory merged with a PSO algorithm 

to form a hybrid algorithm CPSO and this way helped the 

CPSO algorithm to slip from the local optima due to the 

special behaviour and high ability of the chaos [26]. In this 

study, the logistic sequence equation adopted for establishing 

the hybrid CPSO algorithm is described by the following 

equation [27].  

 

𝛽𝑘+1 = µ𝛽𝑘((1 − 𝛽𝑘)),        0 ≤ 𝛽1 ≤ 1           (18) 

 

From equation (18), the control parameter µ is set within a 

range [0.0−4.0], 𝑘 is the number of the iterations. The 

magnitude of µ decides whether 𝛽 stabilizes at a constant area, 

oscillates within restricted limits, or behaves chaotically in an 

unpredictable form. And equation (18) is deterministic, it 

shows chaotic dynamics when µ = 4.0 and 𝛽1 

∈{0, 0.25, 0.5, 0.75, 1}. It shows the sensitive depend on its 

initial conditions, which is the basic features of chaos.  The 

new inertia weight factor (𝑊𝑛𝑒𝑤) is calculated by multiplying 

the (𝑊) in equation (17) and logistic sequence in equation 

(18) as follows. 

 

𝑊𝑛𝑒𝑤  =  𝑊 ∗   𝛽𝑘+1                                          (19) 

 

To enhance the behavior of the simple PSO, this study 

presents a new velocity change by incorporating a logistic 

sequence equation with inertia weight factor. Finally, by 

substituting equation (19) with equation (14), the following 

velocity updated equation for the proposed CPSO is obtained: 

 

𝑣𝑖
𝑘+1 = 𝑊𝑛𝑒𝑤 ∗ 𝑣𝑖

𝑘 + 𝐶1*𝑟1*(𝑝𝑏𝑒𝑠𝑡(𝑖)
𝑘 − 𝑥𝑖

𝑘) +

                            𝐶2*𝑟2*(𝑔𝑏𝑒𝑠𝑡(𝑖)
𝑘 − 𝑥𝑖

𝑘)              (20) 

 

In the CPSO 𝑊𝑛𝑒𝑤 is a decrease and oscillates simultaneously 

for total iteration from (0.9 to 0.4). 
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REPRESENTATION OF CPSO FOR SOLVING 𝐎𝐑𝐏𝐃 

The CPSO algorithm has (7) steps are given as: 

Step 𝟏: Among minimum and maximum limits, are generated 

particles stochastic. 

Step 𝟐: Assign the initial particles for the local best value 

𝑃𝑏𝑒𝑠𝑡.  

Step 𝟑: Calculate objective function related to local 𝑃𝑏𝑒𝑠𝑡 and 

global  𝑔𝑏𝑒𝑠𝑡  position. 

Step 𝟒: Update the 𝑥𝑖
𝑘+1  and 𝑣𝑖

𝑘+1 using equations (20) and 

(15) for all particles. 

Step 𝟓: Comparison an objective function for each agent 

based on its local best value 𝑃𝑏𝑒𝑠𝑡. If it is bigger than 𝑃𝑏𝑒𝑠𝑡. 
Set present value as local best 𝑃𝑏𝑒𝑠𝑡 and locate it as a present 

location in the search problem. 

Step 𝟔: According to the values of objective function, 

calculate the 𝑚𝑖𝑛 𝑃𝑏𝑒𝑠𝑡 and set as global 𝑔𝑏𝑒𝑠𝑡. 

Step 𝟕: The steps are repeated from step (4) to step (6) until 

max iteration.  

 

CASE STUDY AND RESULTS 

To improve the efficiency, accuracy and high ability of CPSO 

algorithm and also to search for the optimization solution for 

decreasing losses and improving system voltage. Standard 

 IEEE node−14 and node−30 systems are utilized to examine 

and test the proposed approach. PSO and CPSO algorithms 

have been represented in MATLAB programing language. 

 

𝐈𝐄𝐄𝐄 14-Node System 

Bus, branch and generator data for standard IEEE 14 –node 

power system are given in the reference [28]. This standard 

system contains 20 lines, 5 generators, 3 transformers and 1 

shunt capacitor. Thus, standard IEEE node−14  power system 

has 9 dimensions search space and their settings are given in 

Table 1 and the bounds for reactive power generation in 

MVAR are shown in the Table 2 [20]. Figures 1 and 2 shows 

the convergence characteristics, and Figure 3 shows voltage 

profile for this standard system before and after PSO and 

CPSO algorithms. 

 

  Table 1: Control Variables Limits. 

𝐈𝐄𝐄𝐄 bus−𝟏𝟒 Independent Variables Min Max 

14 Bus Generator Voltage (VG) 0.95 1.1 

Transformer Tap (OLTC) 0.9 1.1 

VAR Source (QC) 0 0.20 

 

 

 

Table 2: Constrains Of Reactive Power Generation. 

𝐈𝐄𝐄𝐄 bus−𝟏𝟒 Generator Variables 𝐐𝐌𝐢𝐧 𝐐𝐌𝐚𝐱 

14 Bus 1 0 10 

2 -40 50 

3 0 40 

6 -6 24 

8 -6 24 

 

The simulation results for IEEE 14-node system and 

comparison with EP and SARGA algorithms [29] which are 

given in Table 3. 

 

Table 3: Simulation Results Of IEEE Node−14Systems. 

Control 

Variables 

Base 

Case 

CPSO PSO EP 

[29] 

SARGA 

[29] 

𝐕𝐆−𝟏 1.060 1.100 1.100 - - 

𝐕𝐆−𝟐 1.045 1.087 1.086 1.029 1.060 

𝐕𝐆−𝟑 1.010 1.058 1.056 1.016 1.036 

𝐕𝐆−𝟔 1.070 1.095 1.067 1.097 1.099 

𝐕𝐆−𝟖 1.090 1.100 1.060 1.053 1.078 

𝐓𝐚𝐩𝟒−𝟕 0.978 0.975 1.019 1.04 0.95 

𝐓𝐚𝐩𝟒−𝟗 0.969 0.975 0.988 0.94 0.95 

𝐓𝐚𝐩𝟓−𝟔 0.932 1.018 1.008 1.03 0.96 

𝐐𝐂−𝟗 0.19 0.186 0.185 0.18 0.06 

Total 𝐏𝐋 

(Mw) 

 

13.550 

 

12.243 12.315 13.34620 13.21643 

 

 

Figure 1: Convergence for IEEE 14 Node Power System with 

PSO Algorithm. 
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Figure 2: Convergence for IEEE 14 Node Power System with 

CPSO Algorithm. 

 

 

Figure 3: Voltage Profile for IEEE 14 Node Power System. 

 

 

𝐈𝐄𝐄𝐄 30-Node System 

Bus, branch and generator data for IEEE 30-node systems are 

given in reference [28]. They are contains 41 branches, 6 

generators node, 4 transformers ratio and 2 VAR sources 

(capacitor banks) connected in IEEE 30-node system. 

Therefore, this system has 12 dimensions search space and 

their settings are tabulated in Table 4 and the bounds of 

generator reactive power in MVAR are shown in the Table 5 

[28]. 

 

Table 4: Control Variables Limits. 

𝐈𝐄𝐄𝐄 bus−𝟑𝟎 Variables Min Max 

30 Bus Generator Voltage VG 0.95 1.1 

Transformer Position (OLTC) 0.9 1.1 

VAR Source QC 0 0.20 

 

 

Table 5: Constrains Of Reactive Power Generation. 

𝐈𝐄𝐄𝐄 bus−𝟑𝟎 
Generator 

Variable 
𝐐𝐌𝐢𝐧 𝐐𝐌𝐚𝐱 

30 Bus 

1 0 10 

2 -40 50 

5 -40 40 

8 -10 40 

11 -6 24 

13 -6 24 

 

The simulation results for IEEE 30-node system and 

comparison with EP, SARGA [29], DE, DE−ABC and ABC 

[20] algorithms which are given in Table 6. 

Figures 4 and 5 shows the convergence of standard IEEE 

node 30 power system. Figure 6 show the voltage profile of 

this standard power system before and after PSO and CPSO 

algorithms. 

It is clear that from Figure 6, average voltage at initial is about 

1.029 and at PSO is about 1.035 and at CPSO is about 1.050.  

 

Table 6: Simulation Results of IEEE- 30 Node System. 

Control 

Variables 

Base case CPSO PSO EP 

[29] 

SARGA 

[29] 

𝐕𝐆−𝟏 1.060 1.100 1.100 - - 

𝐕𝐆−𝟐 1.045 1.086 1.072 1.097 1.094 

𝐕𝐆−𝟓 1.010 1.052 1.038 1.049 1.053 

𝐕𝐆−𝟖 1.010 1.059 1.048 1.033 1.059 

𝐕𝐆−𝟏𝟏 1.082 1.083 1.058 1.092 1.099 

𝐕𝐆−𝟏𝟑 1.071 1.100 1.080 1.091 1.099 

𝐓𝐚𝐩𝟔−𝟗 0.978 1.008 0.987 1.01 0.99 

𝐓𝐚𝐩𝟔−𝟏𝟎 0.969 0.993 1.015 1.03 1.03 

𝐓𝐚𝐩𝟒−𝟏𝟐 0.932 1.024 1.009 1.07 0.98 

𝐓𝐚𝐩𝟐𝟖−𝟐𝟕 0.968 0.987 1.012 0.99 0.96 

𝐐𝐂𝟑 0 0 0 0.19 0.19 

𝐐𝐂𝟏𝟎 0.19 0.077 0.077 0.04 0.04 

𝐐𝐂𝟐𝟒 0.043 0.123 0.128 - - 

Total 𝐏𝐋 

(Mw) 

 

17.55 

 

16.01 16.25 16.38 16.09 

DE[20]  DE−ABC [20] ABC[20] 

16.3176 16.2163 16.59 
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Figure 4: Convergence of IEEE 30-Node System with PSO 

Algorithm. 

 

 

Figure 5: Convergence of  IEEE 30-Node System with CPSO 

Algorithm. 

 

 
Figure 6: Voltage Profile of IEEE 30-Node System. 

 

 

 

CONCLUSIONS 

In this study, PSO and chaotic PSO algorithms are employed 

for  ORPD problem. The goal of using objective function is to 

decreasing branch loss as well as voltage profile enhancement 

of power system. The efficiency and higher speed of 

convergence of CPSO algorithm and also decrease in time 

calculation has been proved by examining on IEEE node 

14 and 30 standard power systems. The simulation results are 

compared with multi algorithms that presented in the 

literature. It is prove, the results of chaotic particle swarm 

optimization (CPSO) in this study are best results and high 

accuracy than the results calculated in simple PSO approach 

and other results reported in the literature. 
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