Analysis of Symbol Error Rate in Amplify And Forward Nakagami-M Cooperative Networks

Manar Al-Kali, Ali A. Mohammed

School of Computer Science, China University of Geosciences, 430070, Wuhan, China.
Electronic Computer Center, AL-Karkh University of Sciences, Baghdad, Iraq.

Abstract

In this paper, cooperative wireless network over independent non-identical Nakagami-m fading channels is analyzed and evaluated under the consideration of Amplify- and- forward Mode (AF) with M-ary Phase Shift Keying (MPSK) modulation for different cases of the fading parameters m. The performance analysis of average Symbol Error Rate (SER) is considered to behave the network performance since that SER is determined by using Moment Generation Function (MGF) over various values of the Signal to Noise Ratio (SNR). The simulation results of our proposed mathematical model reveals that SER performance downgrades as either the m parameter or the number of relays increases.

Keywords: cooperative networks, amplify-and-forward, symbol error rate, Nakagami-m fading channels.

INTRODUCTION

The Cooperative networks and collaborative strategies protocol relay has been the subject of the research due to its great influence in the field of wireless communications and its applications. Many works state its role in advanced communications and many relaying strategies have been presented, and different relaying protocols could be employed. The received signals at any given relay node could be multiplied by a gain and forwarded, namely employing the amplify- and-forward (AF) relaying protocol. Or they could be decoded and the originally sent messages estimated, before being encoded again and forwarded. This second relaying protocol is known as decode-and-forward (DF). The third option is the compress-and-forward (CF) relaying protocol [1-3]. In these strategies, the users serve as information sources as well as relays. In AF, the relay solely amplifies the received signal from the source, and re-transmits it to the destination without doing any further processing on the source transmission [4],[5]. Therefore, AF relaying incurs low-cost hardware implementation, which represents an ingenious solution to the field of communications systems. For this reason, we investigate the performance of all participate cooperative networks with AF in Nakagami-m fading environments. Nakagami-m fading model has been an important subject of study in cooperative networks, because it provides the most appropriate information and realistic radio links [6-10].

For example, authors in [7] analyzed the performance of cooperative diversity wireless networks using amplify-and-forward relaying over independent, non-identical, Nakagami-m fading channels and derives the symbol error rate and the outage probability using MGF of the total SNR at the destination.

The authors in [8],[9] analyzed the performance SER of a cooperative communication wireless network with a single relay system over independent and identical Nakagami-m fading channels. The concept of the Altamonte code is transmitted through an amplify-and-forward (AF) relay. The exact SER is determined using the MGF of the total SNR for a particular signal in the case of M-ary phase shift keying MPSK modulation schemes. In [10] the closed form expressions of the Cumulative Density Function (CDF) and MGF are used to find the Outage Probability. In [11][12] for a given bit error probability of a user, optimal-power-allocation strategy, considering both AF and DF, is proposed to minimize the total energy consumption based on the optimal power allocation between one source and one relay.

In this paper, the performance analysis for all participate AF (AP-AF) cooperative networks in Nakagami-m environment are presented. Also closed-form expressions for the MGF in independent none identically distributed Nakagami-m are derived. Then the obtained MGF is used to derive close-form expression of the outage probability, and SER of different MPSK signals.

The rest of the paper is structured as follows: Section II describes the system model and the underlying assumption while Section III describes performance and analysis MGF, the outage Probability and SER. Section IV shows the simulation results and analytical results of SER. Section V is drawn the conclusions of this work.

SYSTEM MODEL

We consider the cooperative communications through channels of Nakagami-m fading. The cooperation network system model is composed of a single antenna source, \(1 \leq R \leq R \) single antenna relays and half duplex AF relays as well as a single destination, as shown in Fig. 1.
It is assumed that the channel state information is well known at the destination and time division multiplexing (TDM) is adopted in this network. In the first time slot, the source transmits a signal x to the relays then to the destination. The received signals from this transmission can be given:

$$y_{SR} = h_{SR}x + \eta_{SR}$$ \hspace{1cm} (1)

$$y_{RD} = h_{RD}x + \eta_{RD}$$ \hspace{1cm} (2)

Where h_{SR} and h_{RD} are the channel gain between the source and the i_{th} relay terminals and the i_{th} relay and the destination terminals, respectively. The complex additive white Gaussian noise (AWGN) at the i_{th} relay is denoted by $\eta_{SR} \sim \text{CN}(0, N_o)$ where N_o is the noise variance.

In the second step of cooperation, the i_{th} relay terminal amplifies its received signal and forwards it to the destination through the h_{RD} channel. The destination terminal receives the relay transmission according to:

$$y_{RD} = G_i h_{RD} y_{SR} + \eta_{RD}$$ \hspace{1cm} (3)

Where h_{RD} is the channel gain between the i_{th} relay terminal and the destination terminal and $\eta_{RD} \sim \text{CN}(0, N_o)$ is the complex additive white noise. The i_{th} relay gain denoted by G_i is chosen as $G_i = E_s / (E_s h_{SR}^2 / N_o + N_s)$ and E_s is the average energy per symbol [4].

$$\gamma_D = \sum_{i=1}^{g} \frac{\gamma_{SR} \gamma_{RD}}{1 + \gamma_{SR} + \gamma_{RD}}$$ \hspace{1cm} (4)

where $\gamma_{SR} = \left| h_{SR} \right|^2 E_s / N_o$ and $\gamma_{RD} = \left| h_{RD} \right|^2 E_s / N_o$ are the instantaneous SNR of the $S-R_i$ and R_i-D hops, respectively

$$\gamma^{'\text{up}}_i = \min(\gamma_{SR}, \gamma_{RD}) \geq \frac{\gamma_{SR} \gamma_{RD}}{1 + \gamma_{SR} + \gamma_{RD}}$$ \hspace{1cm} (5)

Therefore, the upper bound for the equivalent SNR can be written as:

$$\gamma^{'\text{up}}_D = \sum_{i=1}^{g} \gamma^{'\text{up}}_i$$ \hspace{1cm} (6)

The upper bound SNR given by (6) is more suitable for analysis and is shown to be quite accurate at medium and high SNR values [5].

TABLES AND FIGURES

In order to find the moment generation function (MGF), We first drive the cumulative distribution function (CDF) for the end-to-end SNR, $\gamma^{'\text{up}}_D$ then we find Probability Density Function (PDF) as a derivative from the CDF. Then, the MGF of $\gamma^{'\text{up}}_D$ is calculated using the inverse Laplace transform. We present our analytical framework for the cooperative system with relay selection.

Outage Probability and MGF Analysis

The outage probability (P_{ou}) is defined as the probability that the instantaneous total SNR falls below a given threshold.

The outage probability of $\gamma^{'\text{up}}_D$ can be written as:

$$P_{ou} = \int_{\gamma_D^{'\text{up}}}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{\gamma_D^{'\text{up}} - \mu}{2}} d\gamma_D^{'\text{up}} = F_{\gamma_D^{'\text{up}}}^{\gamma_D^{'\text{up}}}$$ \hspace{1cm} (6)

$$F\gamma_D^{'\text{up}}(\gamma_D^{'\text{up}}) = \left[\frac{1}{\sqrt{2\pi}} e^{-\frac{\gamma_D^{'\text{up}} - \mu}{2}} \right]^{\gamma_D^{'\text{up}}}$$ \hspace{1cm} (7)

where the $\gamma^{'\text{up}}_D$ upper bound of the end-to-end SNR. Then we derive the CDF of $\gamma^{'\text{up}}_D$ as follows:

$$F_{\gamma_D^{'\text{up}}} (\gamma_D^{'\text{up}}) = 1 - [1 - P(\gamma_D^{'\text{up}} \leq \gamma)] [1 - P(\gamma_D^{'\text{up}} \leq \gamma)]$$ \hspace{1cm} (8)

$$F_{\gamma_D^{'\text{up}}} (\gamma_D^{'\text{up}}) = 1 - [1 - F_{\gamma_D^{'\text{up}}} (\gamma)] [1 - F_{\gamma_D^{'\text{up}}} (\gamma)]$$ \hspace{1cm} (9)

$$F_{\gamma_D^{'\text{up}}} (\gamma_D^{'\text{up}}) = \Gamma(m, \frac{\gamma}{\gamma_D^{'\text{up}}})$$ \hspace{1cm} (10)

$$F_{\gamma_D^{'\text{up}}} (\gamma_D^{'\text{up}}) = \Gamma(m, \frac{\gamma}{\gamma_D^{'\text{up}}})$$ \hspace{1cm} (11)

Where (11) and (12) are the CDF of source to the i-th relay and from the i-th relay to the destination respectively.

Let us assume that:

$$\overline{\gamma}_i = c_i \overline{\gamma}_i$$ \hspace{1cm} (12)

$$\overline{\gamma}_i = c_i \overline{\gamma}_i$$ \hspace{1cm} (13)

where:

$$a_1 = e^{h_{SR}} \times \sqrt{P_s}$$ \hspace{1cm} (14)

$$a_2 = e^{h_{RD}} \times \sqrt{P_r}$$ \hspace{1cm} (15)
We consider assuming $c_1 = c_2 = c$, therefore CDF $F_\gamma(\gamma)$ can be expressed as:

$$F_\gamma(\gamma) = \left\{ \begin{array}{ll}
\frac{2\Gamma(m, \frac{m}{c\gamma})}{\Gamma(m)} + \frac{\Gamma(m, \frac{m}{c\gamma})}{(\Gamma(m))} & \text{if } \gamma \leq \frac{m}{c}
\end{array} \right. \quad (16)$$

We derive the PDF of γ from its CDF equation as follows:

$$f_\gamma(\gamma) = \left\{ \begin{array}{ll}
\frac{(m-1)!e^{-\frac{m}{c\gamma}}}{\gamma^{\frac{m}{c}}} + \frac{(m-1)!e^{-\frac{m}{c\gamma}}}{\gamma^{\frac{m}{c}}} & \text{if } \gamma \leq \frac{m}{c}
\end{array} \right. \quad (18)$$

Equation (18) represents the outage probability in AP-AF Nakagami-m system.

In order to derive the MGF of γ, we derive the PDF of γ from its CDF equation as follows:

$$f_\gamma(\gamma) = \left\{ \begin{array}{ll}
\frac{(m-1)!e^{-\frac{m}{c\gamma}}}{\gamma^{\frac{m}{c}}} & \text{if } \gamma \leq \frac{m}{c}
\end{array} \right. \quad (19)$$

a_1 and a_2 are solved using the following relationships:

$$\frac{\partial^2 F}{\partial \gamma^2} = \left((m-1)! \right) e^{-\frac{m}{c\gamma}} \sum_{i=1}^{\infty} \frac{(m \gamma^{i-1})}{\gamma^{\frac{m}{c}}} \left(2g m^2 \gamma^{i-1} - 2m \gamma^{i-1} \right) \quad (20)$$

$$\frac{\partial F}{\partial \gamma} = (m-1)! e^{-\frac{m}{c\gamma}} \sum_{i=1}^{\infty} \frac{(m \gamma^{i-1})}{\gamma^{\frac{m}{c}}} \left(2g m \gamma^{i-1} - m \gamma^{i-1} \right) \quad (21)$$

Substituting (22) in (23) we can obtain the MGF of γ as follows:

$$M_\gamma(s) = (m-1)! e^{-\frac{m}{c\gamma}} \sum_{i=1}^{\infty} \frac{(m \gamma^{i-1})}{\gamma^{\frac{m}{c}}} \left(2g m^2 \gamma^{i-1} - 2m \gamma^{i-1} \right) \quad (25)$$

Solving (24) with using the [13, (3.351.3)]:

$$\int x e^{-x} = n! \mu^{n+1} \quad (26)$$

We get the MGF of γ as follows:

$$M_\gamma(s) = (m-1)! \sum_{i=0}^{\infty} \phi_i \left[N(s+1)^N - (N-1)(s+1)^{-N} \right] \quad (27)$$

MGF of as follows:

$$M_\gamma(s) = \sum_{i=0}^{\infty} \phi_i \left[N(s+1)^N - (N-1)(s+1)^{-N} \right] \quad (28)$$

Symbol Error Rate

In this section we derive the SER MGF derived in previously with the help of partial fraction expansion. Using the MGF in (28) we estimate the SER for M-PSK signals as follows:

i. Binary Signals: The average SER for binary signals is given by [5]

$$P_{SER} = \frac{\pi}{\pi} \int_{0}^{\frac{\pi}{2}} M_{\gamma} \left(\frac{\pi}{\sin^2 \theta} \right) d\theta,$$

where $g = \sin \left(\frac{\pi}{M_o} \right)$

As $g = 1$ for BPSK and $g = 0.5$ for orthogonal BFSK. By substituting (28) into (29) and after some manipulations the average SER in this case can be expressed as:

$$P_{SER} = \sum_{i=1}^{\infty} \left[2(m-1)! \sum_{i=0}^{\infty} \phi \left(\frac{N}{\pi} \right) \sum_{j=0}^{\infty} \frac{\left(\sin \theta \right)^N}{(c + \sin^2 \theta)^m} d\theta \right]$$
Using partial fraction expansions and after some manipulations, (30) can be written for the BPSK signaling as:

\[
P_{\text{BER}} = \prod_{c} \left[2^{M-1} \sum_{k=0}^{\infty} \phi \left(N! \sum_{j=0}^{N} I_j(c)^{k} - (N-1)! \sum_{j=0}^{N} I_j(c)^{k+1} \right) \right]^{-1}
\]

where the closed-form expression for \(I_j(c) \) is given by [14, 5A.9]:

\[
I_j(c) = \frac{1}{\pi} \int_{0}^{\pi} \frac{\sin^2 \theta}{\sin^2 \theta + c} \cos \theta \, d\theta = \frac{1}{2} \left(1 - \sqrt{\frac{c}{1+c}} \right)
\]

ii. M-PSK Signals: The average SER for M-PSK signals can be written as [5]:

\[
P_{\text{BER}} = \frac{1}{\pi} \int_{0}^{\frac{\pi}{M-1}} M^{\frac{1}{2}} \left(\frac{G_{M-PSK}}{\sin^2 \theta} \right) d\theta
\]

where \(G_{M-PSK} = \sin^2 \left(\frac{\pi}{M} \right) \) and a closed-form expression for \(I_j(c) \) is given by [14, 5A.15]:

\[
I_j(c) = \frac{1}{\pi} \int_{0}^{\frac{\pi}{M-1}} \left(\frac{\sin^2 \theta}{\sin^2 \theta + c} \right) d\theta
\]

\[
= \left(\frac{M-1}{M} \right) \left[\frac{c}{1+c} \left(\frac{M}{M-1} \right) \right]^{\frac{1}{2}} \tan \left(\frac{c}{1+c} \frac{\pi}{2} \right)
\]

NUMERICAL RESULT

In this Section, we provide numerical results of the illustrate analytical expressions of SER for BPSK and 8-PSK modulation signals in coherent cases for different values of \(m \). Our Analytical expressions are verified with Monte Carlo Simulations.

In fig. 2, simulation results show a comparison description of SER for different values of \(m \) through using BPSK simulated signals. These results give a clear impact of increasing the values of \(m \) on SER values, so that SER decreases as \(m \) increases as compared to SNR values.

While fig. 3 shows the performance evaluation of 8PSK simulated signals under Nakagami-m fading model consideration for different values of \(m \). The results of this figure prove that SER values can be decreased as \(m \) value increases as compared to SNR values under our proposed Nakagami-m fading model consideration.
Fig. 4 shows the differences between analytical and simulation results of our proposed Nakagami-m distribution with BPSK modulation taking into account the number of antenna arrays (R). The results of this figure give a good behaviour of our proposed model since SER value is decreased as the number of Antenna arrays (R) is increased with respect to SNR value. While fig. 5 shows the same behaviour for 8PSK modulated signals.

REFERENCES

