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Abstract 

In this paper, we use the reduced differential transform 

method (RDTM) and new iterative method (NIM) to present 

solution of the nonlinear Cahn-Hiliard equation (CHE) with 

initial conditions, which are able to solve linear and nonlinear 

partial equations and the use of a very simple and less than 

other methods in solutions and accuracy. 
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Transform Method (RDTM) ; New iterative method(NIM).  

 

INTRODUCTION 

The Cahn-Hiliard equation     22,21  finds applications in 

diverse fields.In complex flyids and soft matter (inter facial 

fluid flow, polymerscipnce and in industrial applications) we 

found some exact solutions of the equations by considering a 

modified extended tanh function method A numerical solution 

to Cahn-Hilliard equation is obtained using NIM method 

        22,21,1513   and RDTM method 

        .25,9,7,4  

This equations is very crucial in matherials many articles have 

investigated mathematically and numerically this equation 

The authors in[20] using solutions of the Cahn-Hilliard 

equation     22,21 . 

We are interested in the Cahn-Hilliard equation in its simplest, 

one-dimensional form[2], 

 R uuuuu xxt
3=  (1) 

The equation was originally introduced as a model for phase-

separation in binary alloys, and has since been used to 

describe the formation and annihilation of patterns in many 

contexts, including phase transitions in material science [3], 

polymer- and protein dynamics     11,1 , and pattern 

formation in uids [10]. Phenomenologically, this equation 

reproduces qualitatively and sometimes even quantitatively 

the spontaneous formation of patterns from homogeneous 

equilibrium and a subsequent evolution of characteristic 

wavelengths through a coarsening process. In bounded, 

onedimensional domains, equipped with Neumann boundary 

conditions 0== xxx uu  at 0=x ; L  or with periodic 

boundary conditions, the dynamics of the Cahn-Hilliard 

equation is fairly well understood.As t , solutions 

converge to the global attractor, which consists of equilibria 

and heteroclinic orbits between them. Equilibria and their 

stability properties can be characterized completely, and, to 

some extent, existence of heteroclinic connections is known. 

 

REDUCED DIFFERENTIAL TRANSFORMMETHOD 

(RDTM) [8] 

Let, suppose that );( txu  can be represented two variable 

functions as a product of two single variable functions )(xf  

and )(tg to show following manner     74   

 )()(=);( tgxftxu    (2) 

 

From the similar meaning of definition of Differential 

Transform Method and its properties,we can write the 

transforming form of RDTM     74   

,)(=)()(=);(
0=0=0=

k
k

k
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i
txUtjGxiFtxu 



 (3) 

where )(xUk  is called t dimensional spectrum function of 

);( txu . If function );( txu  is analytic and differentiated 

continuously with respect to time t and space x in the domain 

of interest,then let 

 

0=

),(
!

1
=)(

t
k

k

k txu
tk

xU 









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  (4) 

 

Thus, from (4) , it can be written the inverse transform of a 

sequence 0=)( 

kk xU  
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then combining (4)  and (5) , we obtain the RDTM solution 

as 

 
k
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 (6) 

 

If we consider the expressions (5)(4),  and (6) , it’s clearly 

shown that the concept of the reduced di erential transform is 

derived from the power series expansion.So, we give a table 

which included fundamental transformation properties of 

RDTM in Table 1. The proofs of Table 1 and the basic de 

nitions of reduced di erential transform method can be found 

in [5]. For illustration of the proposed method, we write the 

Cahn-Hiliard Equation (CHE) (1)  in the standard operator 

form     74   : 

 ),(=),()),(( txgtxNutxuL    (7) 

 

with initial condition 

 )(=;0)( xfxu     (8) 

where 
t

L



=  is a linear operator, );( txNu  is a nonlinear 

terms and );( txg  inhomogeneous term. According to the 

RDTM and Table 1, we can construct the following iteration 

formula [4-7] 

 ).()(=)(1)( 1 xNUxGxUk kkk    (9) 

 

Here, )(xUk , )(xGk and )(xNUk  are the transformations 

of the functions )),(( txuL );( txg  and 

);( txNu respectively. From the initial condition, we write 

 )(=)(0 xfxU     (10) 

 

Substituting (10)  into (9)  and by straightforward iterative 

calculations, we get the following )(xUk  values. Then the 

inverse transformation of the set of values 0=)( n
kk xU gives 

the approximation solution as 

 
k

k

n

k
n txUtxu )(=),(

0=

    (11) 

where n  is order of approximate solution. Therefore, the 

exact solution of the problem is given by     74   

 ).,(lim=);( txutxu n
x    

 (12) 

 

Table 1. Basic transformations of RDTM for some functions 

 

 

BASIC IDEA OF NIM 

To describe the idea of the NIM, consider the following 

general functional equation     2212  : 

 

 )),(()(=)( xuNxfxu    (13) 

 where N is a nonlinear operator from a Banach space BB 

and f is a known function. We are looking for a solution u  of 

(13)  having the series form : 

).(=)(
0=

xuxu i
i



   (14) 

The nonlinear operator N can be decomposed as follows : 
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From Eqs. (14)  and (15) , Eq. (13)  is equivalent to: 
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We define the recurrence relation 

,=0 fu          (17) 

),(= 01 uNu
    

     (18) 

1,2,3...=),...()...(= 110101 nuuuNuuuNu nnn  
  

(19) 

then 

1,2,3...=),...(=)...( 10110 nuuuNuuu nn    
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
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uNfuu
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If N is a contraction, i.e. 

1,<<,0)()( kyxkyNxN   

then 

)...()...(= 110101   nnn uuuNuuuNu  

 0,1,2...,=... 0 nukuk n
n   

and the series ii u

0=  absolutely and uniformly converges to a 

solution of (13)  [23] which is unique, in view of the Banach 

fixed point theorem [24] .The k-term approximate solution 

of (13)  and (14)  is given by




1

0

k

i
iu  

 

IMPLEMENTATION OF PRESENTED METHOD 

Reduced differential transform method (RDTM) for 

solving Cahn-Hiliard Equation (CHE) following [9] : 

 
3= uuuu xxt     (21) 

with initial condition 

 )1/(1=,0)( 2

x

exu     (22) 

Let, )(xUk  denotes transformation form of the 

function );( txu . Then, by using the basic properties of the 

reduced di erential transformation as shown in Table 1 , we 

can write the transformed form of equation (22)  as 

2

1 2
=0

3

=0 =0

( ) ( ) = ( )

( ) ( )

k

k k r
r

r r
r r

dk r U x U x
dx

U x U x

 

 



 
   



 

        (23) 

 

and using the initial condition (22) , we get the reduced 

transform form 

 )1/(1=)( 2
0

x

exu     (24) 

Now, put (24) into place (23) , from hence we have the 

)(xUk values following : 
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Thus, if we continue this process and also the inverse transformation of the set of 0=)( 

kk xU  values are written: 
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Arranging  26  and from (5)  and (6) , we obtain RDTM solution of (21)  as 
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New iterative method (NIM) for solving Cahn-Hiliard Equation (CHE)     22,21  : 

 uuuu xxt  3=  (28) 

subject the initial condition 
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from (17) and (29) ,we obtain 
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Therefore ,The initial value problem (28) and (29) is equivalent to the following integral equations: 
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 And the rest of the components of iteration formula (20) are obtained. The approximate solution which involves few terms is 

given by 
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CONCLUSION 

Cahn-Hiliard Equation is solved numerically by (RDTM) and 

(NIM). The solutions obtained by (RDTM) and (NIM) show 

that it has higher accuracy same time presented method are 

more quickly Additionally, we can say that (RDTM) and 

(NIM) are very simple and powerful numerical method to 

solve various nonlinear partial differential equations. 
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