The Mechanical Limited-Slip Differential Revisited: High-Performance and Racing Car Applications

Marco Gadola 1 and Daniel Chindamo 1,*

1Department of Industrial and Mechanical Engineering, Automotive Group, University of Brescia, I-25123 Brescia, Italy.
*Correspondence Author

Abstract

The paper is aimed at a comprehensive revision of the working principles and limitations of the mechanical limited slip differential (LSD), a passive device used to improve traction capabilities and to extend the performance envelope of high performance road cars, racing and rally cars.

The LSD has been in use for decades however, according to the authors’ experience, its impact on vehicle dynamics appears to be somehow neglected in literature and is still misunderstood quite often, especially in the semi-pro racing community. Current research on the subject as a matter of fact is usually focused on side aspects and/or on modern control applications like active differentials and the so-called torque-vectoring (aka overdriven) systems. These state-of-the-art technologies however still rely on the same principles of the LSD, which should therefore be fully explained.

The authors would like to try and fill this gap starting with a comprehensive literature review. Then a basic and intuitive explanation of the impact of limited slip systems on vehicle behaviour is proposed with simple math models and examples in order to integrate what seems to be missing. The peculiar shape of the torque-sensitive LSD working zone on the torque bias diagram is also explained to an unprecedented level of detail. Real-world application examples are provided under the form of data recorded on a single-seater racecar and integrated with other examples based on a virtual model.

Keywords: vehicle dynamics; vehicle stability; limited slip differential; yaw moment control; torque bias diagram.

INTRODUCTION

Differential (diff) locking can help to solve traction problems on low friction surfaces. On high-performance vehicle applications with a high power-to-weight ratio it can also help to improve cornering behaviour and stability through the development of a yaw torque with a direct impact on handling characteristics.

Passive LSD devices are usually classified as speed-sensitive (a locking torque is developed as a function of wheel speed difference, where a viscous cartridge is fitted in parallel with an open differential for instance) or torque-sensitive, where the locking action is proportional to input torque: the so-called ramp or Salisbury differential for instance. These devices are now superseded by actively controlled differentials or even by torque vectoring systems, where not only the magnitude but also the direction of torque transfer across the differential is under control. However active systems are expensive and require deep system knowledge, integration with the other chassis control systems and very careful tuning to be effective.

On the contrary the use of traditional, passive, torque-sensitive differentials is still widespread where a back-to-basics driving experience is the key to marketing success, such as on lightweight sports cars. Active systems moreover are often banned even in professional motorsport in order to limit costs and keep complexity under control. In these cases, traditional LSD’s are the standard: examples are all the various “road to Formula 1” championships like Formula 2 and Formula 3 and also Touring, Grand Touring and Endurance racing. However, according to the authors’ experience as trackside engineers, the LSD is still a fairly unknown item, although its impact on vehicle performance is significant. Torque sensors are expensive and not very robust, hence usually output torque signals are not available in the data acquisition system, and this is probably one of the reasons. The experimental work described in [58] is one of very few evidences of a testing campaign dedicated to LSD characterization in motorsport.

A literature survey over more than 40 years of research resulted in just a few papers dealing with the passive LSD, while the topic is probably considered too specific even for the mainstream literature on the subject of vehicle dynamics. Needless to say, some of the works now appear slightly out of date. For example [1] is a “historic” American paper focused on the traditional live axle suspension, dealing with the principles of the torque-sensitive action on a basic differential coupled with a clutch pack. The authors do not mention the impact of the system on handling and deal solely with the traction problem. The paper introduces useful definitions like the torque bias ratio, and describes an arrangement for a test rig dedicated to the so-called “split” condition, i.e. where the wheels on one side of the car are on a low-grip road surface and a yaw moment arises in acceleration. An early evidence of an experimental campaign conducted by a major manufacturer is [2], describing a comparison of free vs fully locked vs viscous vs ramp differential in terms of traction, braking and handling, including steady-state steering pad testing, throttle-off manoeuvres and frequency response analysis. An oft-quoted work is [3], written by Gleason Corporation to promote their patented torque-sensitive LSD concept called Torsen®. The traction problem is dealt with extensively but the impact of torque bias on handling is not mentioned. An overview of conventional LSD systems is mainly aimed at highlighting their disadvantages. A somehow similar work is [16], introducing the Gerodisc® system for racing applications. This is mainly a
passive hydro-mechanical coupling that can achieve speed-sensitive and/or torque-sensitive differential locking action. Although a bit contradictory, [6] is an interesting paper written by Nissan engineers showing that a viscous coupling on a RWD car can work in conjunction with a TCS, the former working for limited slip values and the latter coming into play in the high slip region. Traction, handling, stability, and system architecture are examined. A very interesting read is [19], a paper written by GKN to describe pros and cons of passive LSD’s on high-power FWD cars. The influence of standard and progressive speed-sensitive devices and torque-sensitive units on vehicle behaviour and driver workload is tested. The interaction of torque biasing with steering geometry and suspension elasto-kinematics is also investigated.

A comprehensive experimental analysis on the behaviour of RWD cars equipped with a LSD is [8]. The study is validated through a testing campaign, distinguishes between preload and ramp contributions, takes transmission inertia effects into account during transients. The authors also state that the overall suspension setup should be tuned according to the influence of the LSD on vehicle behaviour. However, the torque bias diagram is not dealt with, the traction problem is just mentioned, and somehow basic conclusions are given. Despite being universally considered the best reference for the dynamics of high-performance and racing cars, Millican [14] deals with limited slip differentials very quickly in Section 20.2 and reports the peculiar shape of the ramp differential working zone in a torque bias diagram without any explanation, probably leaving the average reader with some open questions. The featured LSD characteristics, for example, have a symmetric behaviour on and off power, which is usually not the case in real-world applications. Among the most renowned books on vehicle dynamics, apparently [15] is the only one dealing extensively with LSD’s and their impact on handling. Unfortunately, the beneficial effect in terms of stability off-power is totally missed as torque-sensitive systems are said to “act as free differentials on the overrun”.

Celebrated Formula 1 engineer Peter Wright [22] introduces the principles of torque vectoring with an intelligible explanation, but the basics of the LSD are not described. [32] is an analysis of the steady-state behaviour of a vehicle with a fully locked differential i.e. with a so-called “spool” by means of a very detailed although simplified numerical model. Practical implications however are basically neglected and the study is mainly theoretical.

As stated in Section 3.5, a relevant work, entirely focused on the mechanical LSD, is [43]; detailed modelling of the ramp differential internals is used to match a theoretical locking model with experimental data. The wedging action of the ramps is supplemented by other forces and inherent friction between moving parts.

Recent works by Tremlett et al. are focused on the impact of passive LSD devices on the handling and performance envelope limits of either FWD and RWD racing cars. [49] combines both a torque-sensitive and a speed-sensitive device in a so-called VCP (Viscous Combined Plate) diff on a FWD car and uses a comprehensive model to simulate significant manoeuvres. Although this work is a relevant contribution to the subject, the authors do not underline what is perhaps considered an obvious statement: the performance of a FWD racing car is inherently limited by poor traction due to longitudinal load transfer on power and to high force demands on the front wheels, therefore a torque-sensitive device alone is not very effective, and preload is detrimental to performance because it further increases understeer and steering activity. [50] basically extends the scope of [49] to a theoretical Passive Torque Vectoring Differential (PTVD) guided by a functional characteristic similar in shape to tyre saturation curves. [51] is one of very few papers to go “back to basics”: it explains the typical shape of the mechanical LSD locking action. Experimental tests performed on a dedicated rig support the explanations. The conclusions basically confirm the different effects on handling balance, stability, and traction, that are also well explained by Cheli in [33]. Tremlett’s work also extends to modelling and simulation of semi-active differential systems. [54] applies the theory of optimal control to a RWD racing car model performing a double-lane change manoeuver. It is a sort of “blind approach” to the optimization of a hypothetical speed-sensitive differential featuring an active, variable-response characteristic. Dal Bianco et al. also apply optimal control theory to the simulation of an entire race lap with the model of a GP2 single-seater racecar equipped with a LSD differential in [59].

Contemporary research is focused on active systems and assumes the basics of yaw control for granted. Among many papers, some do recall the principles of a passive LSD are listed below. [26] for instance explains the torque-sensitive LSD by means of a somehow perplexing diagram. A very useful contribution is [33], describing the criteria used to design the control strategy of the active limited-slip differential adopted on Ferrari sportscars about ten years ago, with the related advantages in terms of handling and stability. Guidelines for tuning a passive LSD can be drawn as well, where the action required is clearly split into three different situations according to driver demand, vehicle state and road conditions: steady state/power on, power off, and pure traction/“-split. An understeer curve (steering angle vs lateral acceleration) is also traced for generical open, limited-slip and semi-active differentials on the same car. The active LSD is also the subject of [56], a recent study based either on the traditional single-track vehicle model with linear tyres, and on a more complex model based on the CarSim® software. Yaw stability is controlled by means of model predictive control theory applied to the ALSD.

Although active control is beyond the scope of this paper, the following works are proposed for a further look into models and systems for yaw dynamics and control. For instance [34] describes a model for the internal dynamics of a “steering differential” which is the typical torque-vectoring system based on a counter-rotating side shaft. Hancock et al. [36] propose an interesting and well-structured comparison between an electronically controlled LSD, an ideal torque vectoring system and a real-world one by means of a traditional vehicle dynamics model. The most interesting concept is about torque vectoring. The system, also enabling torque transfer from the slower to the faster wheel, is inherently more suitable to modify vehicle balance by reducing understeer (or even by generating
oversteer) than the opposite, due to potential saturation of the inner tyre on power. Again from the same author is [29], an interesting comparison between the potentials of torque vectoring and active brake control systems to improve the yaw-sideslip handling characteristics of a high-performance RWD car. Energy requirements are also discussed. Although the authors classify this work as a preliminary investigation, the conclusions state that the systems can be complementary, but the ABC should be mainly used to reinstate driver control in emergency situations only. Nowadays it is well-known that brake intervention is considered unacceptable as a primary measure to influence vehicle cornering behaviour. A comparison of different torque vectoring systems can also be found in [20].

More on active yaw control can be found in [10, 12, 13, 23, 24, 27, 28, 37, 38, 39, and 45]. Some works deal with the comparison of an active differential vs RWS for yaw moment control. Two examples covering a large time span are [18, 44], while also active front wheel steering is dealt with in [46]. Papers dealing with active differentials based on electrorheological fluids are [9, 42]. The latter is a comprehensive study based on the CarSim® software. Although the shortcomings of a passive LSD are used as a baseline for the development of the ALSD control strategy, apparently the paper is in contrast with similar ones like [33] and some degree of perplexity inevitably arises. For the sake of completeness, it should be noted that Milliken [14] classifies LSD adjustment as a secondary setup item in racing. Nowadays the diff is generally considered a primary one, while other factors should be added to the list of the secondary items, like suspension and steering friction [60, 61], the interaction between vertical and lateral loads in the steering system [57], as well as the coupling between suspension non-linearities and downforce [62]. Again, although the LSD can also play a role in driverless experimental vehicles [53] its impact on driver workload can be a key to performance [55].

Last but not least, along this literature survey a progressive shift from proving ground testing with real-world vehicles to vehicle dynamics numerical models to control theory is evident. A further shift towards Human-in-the Loop testing on driving simulators is already in progress and will certainly become even faster in the next few years.

This work is intended to provide a clear and comprehensive explanation of how a typical passive LSD works and how it affects vehicle behaviour by using math models and examples, with the aim of filling the gap encountered in the related literature.

BASIC PRINCIPLES

Tyre characteristics: longitudinal and combined forces

As it is always the case in vehicle dynamics, a good knowledge of tyre characteristics is required to understand how the LSD affects vehicle behaviour. The typical shape of pure traction/braking force vs longitudinal slip and combined lateral and longitudinal forces are recalled in this section.

A practical definition of the longitudinal slip is

\[
S = \frac{\omega r - V}{\omega r} \quad \text{with} \quad 0 \leq S \leq 1 \quad \text{on power} \quad (1)
\]

\[
S = \frac{\omega r - V}{V} \quad \text{with} \quad -1 \leq S \leq 0 \quad \text{off power} \quad (2)
\]

![Figure 1](image)

Figure 1. a) longitudinal force vs slip, b) combined slip curves: lateral vs longitudinal force on power.

The longitudinal force vs slip curve is shown in Figure 1a. Only positive values (on power) are shown, assuming the negative slip curve is symmetric. For a given vertical load an almost linear zone is followed by a peak around \(S = 0.1\) then a strongly non-linear zone called saturation occurs: the tyre is not able to give further increments in terms of tractive force, as adhesion is superseded by slippage along the whole length of the tyre contact patch. The curves are scaled up for increasing vertical load, at least neglecting non-linear effects due to load sensitivity [48, 52].

Figure 1b, showing the so-called combined case, highlights the strong interaction between the development of lateral and longitudinal forces on a single tyre at the same time, once again for a given vertical load.
The spool: a simple axle with no or locked differential

The simplest form of final drive is the so-called spool. If there is no differential and the left and right drive wheels are rigidly connected (like a kart), or if the differential is fully locked, both wheels are forced to rotate at the same angular velocity. The input power is equal to the output power and it is the same for the overall torque (see Figure 2a):

\[\omega_m = \omega_1 = \omega_2 \]
\[C_m = C_1 + C_2 \]

(3)

It is impossible however to calculate the torque distribution on the drive wheels (the so-called torque bias) without taking the longitudinal tyre force vs slip characteristics into account. In other words the tyres determine the torque bias, mainly according to longitudinal slip ratio and vertical load. For a given speed and a given cornering radius, therefore in steady-state turning, the forward velocities of the outer and inner wheels are dependent upon the track i.e. the wheel relative distance (Figure 2b):

\[V_1 = \psi R_1 \quad \text{and} \quad V_2 = \psi R_2 \quad \text{with} \quad R_1 = R_2 + c \]
\[V = \psi R \]

(4)

\[\text{Figure 2. a) RWD car with spool axle, b) forward velocities of the driven wheels.} \]

The following sections are aimed at explaining the impact of the spool on vehicle balance, handling and stability in an intuitive manner. Some assumptions are used for simplicity: the effect of combined tyre slip is dealt with separately for instance. Tyres are assumed to work in the linear range of the longitudinal force vs slip curve i.e. before the onset of saturation. The rolling radius is considered equal on both sides of the drive axle, and second-order effects like the camber influence are not considered.

Steady state / on power cornering

According to the definition of longitudinal slip on power:

\[S_1 = \frac{\omega_1 r - \psi R_1}{\omega_1 r} \quad S_2 = \frac{\omega_2 r - \psi R_2}{\omega_2 r} \quad \omega_m = \omega_1 = \omega_2 \]

(5)

The longitudinal tyre slip difference is determined by kinematics:

\[S_2 - S_1 = \frac{\omega_m r - \psi R_2}{\omega_m r} - \frac{\omega_m r - \psi R_1}{\omega_m r} = \frac{\psi (R_2 - R_1)}{\omega_m r} = \frac{\psi c}{\omega_m r} R \]
\[= \frac{V_c}{R \omega_m r} \]

(6)

Since \(R_1 > R_2 \) the inner wheel slip is larger: \(S_2 > S_1 \). The slip difference is proportional to the track width and inversely proportional to the cornering radius. Now, assuming that lateral acceleration and lateral load transfer \(\Delta F_Z \) are negligible, \(F_{X2} > F_{X1} \) and a yaw moment is generated:

\[M_Z = \Delta F_X \cdot c = (F_{X2} - F_{X1}) \cdot c \]

(7)

\[\text{Figure 3. Yaw moment induced by spool. a) low-speed cornering, b) effect of lateral load transfer.} \]
In agreement with [8, 32], Figure 3a shows that the yaw moment on power is an understeer contribution. As this stabilizing effect is inversely proportional to the cornering radius it is particularly significant in tight cornering at very low speed, during a parking maneuver for instance: the spool will resist yaw rate therefore spoiling vehicle maneuverability, and friction at the contact patch will dissipate energy causing premature tyre wear. When lateral acceleration is higher, the lateral load transfer ΔF_Z is no longer negligible (Figure 3b): the inner and outer tyres work on separate curves. The yaw moment is still towards understeer, but the amount is reduced.

![Figure 3](image)

(a)

(b)

Figure 3. a) oversteer induced by spool in high-speed cornering, b) combined slip on rear outer tyre.

Finally for extreme cornering speeds and very high lateral acceleration, the lateral load transfer causes the inversion of the yaw moment, that becomes an oversteer contribution (Figure 4a). On top of that when considering the combined tyre slip curves, a strong demand of tractive force will cause the outer wheel to shift towards higher slip angles (Figure 4b), thus further increasing the tendency to oversteer on a RWD car. This change in terms of vehicle balance can be unpredictable hence it is undesirable, unless a reasonable amount of understeer is built into the overall vehicle setup to take this effect into account properly. In other words a spool makes the handling balance strongly affected by lateral acceleration and torque demand, generating understeer for low a_y and oversteer – probably associated with poor stability- for a_y levels close to the cornering limit.

Off power behaviour

Releasing the throttle means that the drive tyres will develop negative longitudinal forces due to the engine braking torque. Once again assuming the same rolling radius on both axle sides and according to the definition of negative longitudinal slip, the slip difference is determined by kinematics:

$$S_1 = \frac{\omega_1 r - \psi R_1}{\psi R_1}, \quad S_2 = \frac{\omega_2 r - \psi R_2}{\psi R_2}, \quad \omega_{\text{net}} = \omega_1 = \omega_2 \quad (8)$$

$$S_2 - S_1 = \frac{\omega_2 r - \psi R_2}{\psi R_2} - \frac{\omega_1 r - \psi R_1}{\psi R_1} = \frac{\omega_2 r}{\psi} \left(\frac{R_1 - R_2}{R_1 R_2} \right) = \frac{\omega_2 r}{\psi} \left(\frac{c}{R_1 R_2} \right) \quad (9)$$

with $R_1 > R_2$ and $|S_1| > |S_2|$. When lateral acceleration and load transfer ΔF_Z are negligible, then $|F_{X1}| > |F_{X2}|$ and an understeer moment, resisting yaw, is generated (Figure 5a). In this case however even when lateral acceleration and load transfer are higher or extreme there is no inversion of the yaw moment, that remains on the understeer side (Figure 5b).

![Figure 4](image)

(a)

(b)

Figure 4. a) oversteer induced by spool in high-speed cornering, b) combined slip on rear outer tyre.

![Figure 5](image)

(a)

(b)

Figure 5. spool effect off power. a) low-speed cornering, b) high-speed cornering.
Figure 6. a) open differential. The traction issue: b) standing start on μ-split, c) high-speed cornering.

Table 1. Yaw moment induced by spool: effect on handling balance.

<table>
<thead>
<tr>
<th>Cornering state</th>
<th>Yaw moment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steady state</td>
<td>UNDERSTEER</td>
</tr>
<tr>
<td>On power, low a_y</td>
<td>UNDERSTEER</td>
</tr>
<tr>
<td>On power, high a_y</td>
<td>OVERSTEER</td>
</tr>
<tr>
<td>Off power, low a_y</td>
<td>UNDERSTEER</td>
</tr>
<tr>
<td>Off power, high a_y</td>
<td>UNDERSTEER</td>
</tr>
</tbody>
</table>

Generally speaking a spool or locked differential always resists vehicle yaw even at very low speed, and unless the vehicle is driven close to the cornering limits. In this case the high lateral load transfer coupled with the demand of large tractive forces can result in an abrupt change of vehicle balance towards oversteer and instability.

On the other side releasing the throttle in a corner is a critical situation for stability in itself, as the longitudinal load transfer helps the front axle to develop high lateral forces with smaller slip angles, while the opposite happens on the rear axle. In this case a locked differential always gives an understeer contribution promoting stability, sometimes at the expense of vehicle agility (Table 1). The yaw moment also increases yaw damping, as long as it is towards understeer [36].

By the way a difference in longitudinal slip with the associated friction and consequently a yaw moment are also generated in straight running on an uneven road surface, or whenever tyre pressure and rolling radius are different between the drive wheels. All the above makes the spool hardly compatible with the requirements of a road vehicle.

The open differential

The open or free differential for modern automotive applications (Figure 6a) was patented by Monsieur Pecqueur in 1827. It is universally adopted on ground vehicles to decouple the angular velocities of the drive wheels, thus avoiding the undesirable side effects of a spool. The input torque C_m is transferred from the differential carrier to the pins of the satellite bevel gears to the driven bevel gears, which are coaxial and engaged with the output shafts.

Assuming that energy losses due to internal friction and inertial terms are negligible, a symmetric differential is fully described by the following equations:

$$ C_m = C_1 + C_2 \quad C_1 = C_2 = C_m / 2 $$

$$ \omega_m = \frac{\omega_1 + \omega_2}{2} \text{ also known as Willis' formula} $$

The open differential can therefore deliver torque to both wheels that are free to rotate at different velocities, thus canceling tyre contact patch friction along a turn, and potentially achieving a condition close to pure rolling. The torque is always split into equal proportions left to right (once again neglecting internal friction) therefore, assuming the same rolling radius on both sides, there is no yaw moment either on and off power, and the transmission of torque does not interfere directly with vehicle handling, cornering balance and driver inputs.

The output torque being equal on both sides, a traction problem however is encountered whenever one of the tyres saturates for any reason. Two typical situations can be taken as reference examples:

1) Standing start on a μ-split road surface: when a wheel is resting on a low-grip surface and can deliver limited or zero torque, neither this nor the other wheel can generate any torque/tractive force. In Figure 6b:

$$ C_1 = C_2 = 0 \quad \omega_1 = 0 \quad \omega_2 = 2\omega_m $$
2) Acceleration in a corner with high lateral acceleration hence high lateral load transfer: the inner wheel tends to lift off the ground and the tyre can saturate, developing low or null torque/tractive force. The same, limited amount of torque can be transmitted to the outer wheel. When the inner wheel is no longer loaded (Figure 6c):

\[
C_1 = C_2 = 0 \quad S_1 = 0 \quad S_2 = 1 \quad (13)
\]

\[
\omega_1 \equiv \frac{V}{r} \quad \omega_2 \equiv 2\omega_m - \frac{V}{r} \quad (14)
\]

The second type of traction problem is quite common on RWD cars with a high power-to-weight ratio and a weight distribution biased to the front, front-engined cars for instance. Even more so on FWD cars, where the longitudinal load transfer removes vertical load from the front wheels on power. In any case whenever the inner wheel tends to spin, the open differential will prevent saturation of the outer wheel, allowing for the generation of enough lateral force in conjunction with small slip angles hence restraining power understeer on a FWD car and power oversteer on a RWD car.

Torque bias range: spool vs open differential

Two equivalent types of diagrams are used to visualize the differential working range. The first one (Figure 7a) shows the torque delivered to each drive wheel vs the differential input torque. The second, more popular diagram shows the left vs right output torques (Figure 7b).

[Figure 7. Torque bias diagrams, spool vs open differential: a) output torque on each wheel vs input torque, b) LH vs RH output torque.]

In both diagrams the first quadrant corresponds to on-power operation \((C_m > 0) \) while the third one to off-power \((C_m < 0) \). The lines \(AB \) on power and \(CD \) off power represent the maximum input torque with the equation

\[
C_m = C_1 + C_2 \quad (15)
\]

while the dotted line \(MN \) is the open differential:

\[
C_1 = C_2 = \frac{C_m}{2} \quad (16)
\]

\(ABDC \) is the working range of the spool with its typical “butterfly” shape. The torque bias is determined by vertical load and tyre slip and the entire torque can even be delivered to one wheel only. The line \(BD \) for instance means

\[
C_1 = C_m - \Delta C_{MAX} \quad (17)
\]

while on the other side (line \(AC \) on the first diagram)

\[
C_2 = 0 \quad (18)
\]

The limited-slip or self-locking differential

The open differential is suitable for normal road vehicles, while the spool is only compatible with extreme applications [15]. A passive limited-slip differential based on some sort of clutch in parallel with an open differential offers the potential to cover the entire working range between the open differential and the spool, with the related advantages (and disadvantages): it can be quite effective for high-performance vehicles like sports and racing cars, solving the traction problem and improving vehicle balance and stability at the same time.
The laws describing the open differential are still applicable:

\[\omega_m = \frac{\omega_1 + \omega_2}{2} \quad \text{and} \quad C_m = C_1 + C_2 \quad (19) \]

A dissipative device, based on friction, can bypass the differential gears and deliver torque from the faster to the slower wheel output shafts through the differential case, whenever \(\omega_1 > \omega_2 \) or vice-versa (Figure 8a).

If \(\omega_1 > \omega_2 \) then \(C_1 = C_m/2 - \Delta C \) and

\[C_2 = C_m/2 + \Delta C \quad (20) \]

where

\[\Delta C = f(X) \quad (21) \]

is the LSD locking torque, and \(X \) can assume different meanings. As stated previously the yaw moment modifying vehicle balance is

\[M_Z = \Delta C \cdot \left(\frac{c}{r} \right) = \Delta F_X \cdot c \quad (22) \]

while the power balance shows that the locking torque is proportional to the power loss through the clutch pack [31]:

\[\Delta C = \left(\frac{W_p}{\omega_1 - \omega_2} \right) \quad (23) \]

The simplest type of LSD is... the real-world open differential. The internal friction across the bevel gears can dissipate a certain amount of energy that is sensitive to either input torque and to wheel velocity difference, in a \(\square \)-split situation for instance.

The two most common types of passive, open differential-based LSD’s are described in the following sections, however only the much more complex torque-sensitive, ramp-based differential and the effect of preload are explained extensively.

Speed-sensitive devices

The locking torque is a function of the angular velocity difference across the differential:

\[\Delta C = f(\Delta \omega) \quad (24) \]

A typical device fitted in parallel with an open differential is the rotary viscous coupling, basically a clutch pack immersed in a silicon fluid (Figures 8b, 9a, and 9b). Its peculiar torque vs velocity curve (Figure 9c) relies on the shear friction of a non-newtonian, silicon-based fluid, that is subject to an increase in viscosity when the temperature grows due to the relative velocity of the alternate disks: torque is transmitted from the faster spinning disks to the slower ones.
The design parameters that determine the ΔC vs $\Delta \omega$ curve include the viscosity and fill rate of the fluid as well as the geometry and number of discs encapsulated in the unit. The fluid shear frictional resistance curve is also sensitive to ambient temperature.

Speed-sensitive systems alone can be suitable for vehicle applications in order to deal with the traction problem on low friction surfaces, especially where a smooth intervention is required, such as to prevent "wheel fight" and steering feedback on power on FWD cars, and keep driver workload under control \[2, 15, 19, 38, 63\]. Although a certain preload amount is always present, just a small amount of torque is transmitted across the differential for low $\Delta \omega$ values in normal driving conditions e.g. in tight corners at low speed and parking maneuvers, therefore the system affects vehicle maneuverability to a limited extent. For high-performance applications however the degressive curve together with a certain delay in the torque transfer response (building up a speed difference takes time, as stated by \[19\]) makes this device not very suitable to improve vehicle handling and stability: a very aggressive ΔC vs $\Delta \omega$ curve would be required in this case.

More on viscous couplings for automotive applications can be found in \[5, 25\], while speed-sensitive couplings of the progressive type are dealt with in \[17, 19\].

Torque-sensitive devices: a basic model

The locking torque across the differential is proportional to the input torque:

$$
\Delta C = f(C_m)
$$

(25)

The most common torque-sensitive device on road-going sportscars and racing cars is the so-called ramp differential, often known as Salisbury or Hewland Powerflow® differential (Figure 10). In this case the differential case (2) transfers the torque to the satellite gear pins (6) by means of a pair of side rings (11). The torque is exchanged between each pin and a pair of inclined surfaces called ramps (3). The wedging thrust tends to separate the side rings with a contact force proportional to the input torque and the cotangent of the ramp angle σ, pressing them against one or (usually) two wet clutch packs located between each ring and the differential carrier (8 and 9, and Figure 8c), that in turn develop the locking torque. Separate ramp pairs act on and off power, possibly with a different angle ($\sigma = 60^\circ$ and 30° respectively in Figure 11).

![Figure 10](image)

The torque-sensitive ramp differential: internal parts (courtesy ZF and Xtrac). 1) final drive: crown\&pinion, 2) differential carrier, 3) ramp pair on side gear rings (4 at 90°), 4) satellite bevel gears (spider gears), 5) driven bevel gears, 6) satellite gear pin, 7) spline gear, output shaft, 8) clutch disks coupled with output shaft, 9) clutch disks coupled with diff carrier, 10) Belleville spring for axial preload, 11) side gear pressure rings, 12) diff housing cover.
Figure 11. satellite pin and ramp engagement. 60°: drive ramp angle, 30°: overrun ramp angle.

If the number of pins/ramp pairs \(n \) is 4, as in Figure 10, and the load distribution is symmetric:

\[
N_T = \frac{C_m}{8 \cdot r_{\text{ramp}}} \quad \text{with} \quad N_A = N_T \cdot \cot \sigma \\
F = 8N_A
\]

Assuming the clutch pack works under uniform pressure distribution, the locking torque generated by the total axial thrust \(F \) on \(n \) clutch face pairs is

\[
\Delta C = F \cdot \frac{2}{3} \left(\frac{R^2}{R^2 - r^2} \right) n \cdot \mu_c = \frac{2}{3} \left(\frac{C_m}{r_{\text{ramp}}} \cdot \cot \sigma \right) \left(\frac{R^2}{R^2 - r^2} \right) n \cdot \mu_c
\]

This type of LSD is a versatile setup tool, especially for racing, as it is separately adjustable on- and off-power by changing the ramp angles. Also the number of clutch interfaces, acting as a torque multiplier, can be changed.

The diagrams in Figure 12 are based on a motorsport differential with 45°/30° ramps on and off power respectively and a 6-face wet clutch pack. The working zones are defined by the following lines:

On power

\[F0 = \text{slower wheel:} \quad C_{\text{slower W}} = C_m/2 + \Delta C_{\text{MAX}}\] \hspace{1cm} (28)

\[E0 = \text{faster wheel:} \quad C_{\text{faster W}} = C_m/2 - \Delta C_{\text{MAX}}\] \hspace{1cm} (29)

Off power

\[H0 = \text{slower wheel:} \quad C_{\text{slower W}} = \left[-\frac{C_m}{2} + \Delta C_{\text{MAX}}\right]\] \hspace{1cm} (30)

\[G0 = \text{faster wheel:} \quad C_{\text{faster W}} = \left[-\frac{C_m}{2} - \Delta C_{\text{MAX}}\right]\] \hspace{1cm} (31)

where the maximum locking torque \(\Delta C_{\text{MAX}} \) is proportional to the input torque \(C_m \). On- and off-power lines feature different gradients because of the different ramp angles in drive and overrun.

Figure 12. Torque bias diagrams for a torque-sensitive differential. Engine output torque 500 Nm in fourth gear, diff input torque \(\approx 2800 \) Nm; overrun torque 200 Nm; ramp angles 45°/30°, no preload, 6 clutch disk face pairs. a) output torque on each side vs input torque, b) LH vs RH output torque.
The Torque Bias Ratio is defined as

\[TB = \frac{C_{\text{slower} _ \text{MAX}}}{C_{\text{faster} _ \text{MAX}}} \]

(32)

In this case, with the 60° ramp angle on power:

\[TB_a = \frac{C_E}{C_E} = 2.45 \quad \text{(slope of } F0 \text{ in Figure 12b)} \]

(33)

while off power the 30° ramp angle generates larger locking torques:

\[TB_r = \frac{C_H}{C_r} = 6.34 \quad \text{(slope of } H0 \text{ in Figure 12b)} \]

(34)

The ramp-based, torque-sensitive differential as a matter of fact can be tuned to cover a wide range between the spool and the free differential: the higher the torque bias ratio, the closer to a spool it becomes when input torque is applied. On the other side as the locking torque is directly proportional to the input torque, the unit is substantially a free differential during cruising and smooth driving, hence it is also suitable for road car applications. This is however also the main drawback: only limited or null input torque can be delivered on low friction and \(\mu \)-split surfaces, no locking arises and the traction problem occurs.

The static preload

In order to handle the traction problem an axial preload is often applied statically to the clutch packs e.g. by means of a Belleville spring (no. 10 in Figure 10), resulting in a preload frictional torque across the differential. Points \(P \) and \(Q \) in Figure 13 correspond to such a preload torque across the differential \(\Delta C_{\text{MAX}} = P \) which is independent from \(C_m \).

With reference to Figure 13a, for \(Q \leq C_m \leq P \) the differential is equivalent to a spool because the input torque is not enough to overcome the preload, while for \(C_m < Q \) or \(C_m > P \) the input torque \(C_m \) has no influence and \(\Delta C_{\text{MAX}} = P \). The dotted lines in the second and fourth quadrants of Figure 13b define the areas where \(C_m = 0 \): the input torque can be null during coasting in mid-corner.

It should be stated that the interconnection between left- and right-hand wheels due to preload may interfere with the operation of the ABS therefore high values should be avoided on road cars.

The combination of the ramp and preload effects results in a typical shape defined by the \(\Delta C_{\text{MAX}} \) boundaries in Figure 14.
transmissions. Some authors assume that a similar friction vs
physics are reversed, enabling smooth operation of automatic
dynamic friction. The usual assumptions related to friction
15, for
pack. Zooming in the first quadrant of the diagram in Figure
lubricant additives that can make static friction lower than
clutch packs can be found in [47], showing the effect of special
coefficient as a function of relative angular velocity in wet
on traditional Coulomb’s theory
in certain conditions. An experimental study of the friction
complexity and can trigger instability of the clutch pack regime
Static and dynamic friction
The transition between static and dynamic friction adds further
red complexity and can trigger instability of the clutch pack in
certain conditions. An experimental study of the friction
coefficient as a function of relative angular velocity in wet
clutch packs can be found in [47], showing the effect of special
lubricant additives that can make static friction lower than
dynamic friction. The usual assumptions related to friction
physics are reversed, enabling smooth operation of automatic
transmissions. Some authors assume that a similar friction vs
velocity curve is applicable to LSD clutch packs as well: [36,
49] for instance. Other sources like [21, 35, 56] however rely
on traditional Coulomb’s theory and on Karnopp’s modeling,
and the authors will do the same, also in agreement with their
personal experience on motorsport transmissions. Static and
dynamic friction will be considered, with coefficients of
\(\mu_k = 0.12 \) and \(\mu_0 = 0.08 \) respectively [30, 43], for a 6-face wet clutch
pack. Zooming in the first quadrant of the diagram in Figure
15, for \(C_m > 0 \) and positive longitudinal acceleration:

As stated above, when \(C_m < P \) the input torque is not enough to
overcome the static friction preload: \(\Delta C \leq C_m \) hence \(\Delta C < P \).
The differential is fully locked as a matter of fact, and equivalent to a spool.

For \(P \leq C_m < C_{m0} \) the preload is still dominating since
\(\Delta C_{\text{MAX}}(C_m) < \Delta C_{\text{MAX}}(P) \). The static friction however can be
exceeded, a relative angular velocity \(\Delta \omega \) will then arise and the
maximum preload torque region will stretch from between the
red to the blue lines.

\(C_{m0} \) is the transition between the preload and ramp regions i.e.
where the ramp action overcomes the static preload torque.
Beyond this points the differential becomes fully torque-
sensitive. In fact for a generic input torque \(C_m \geq C_{m0} \):

- point 1 corresponds to the condition \(C_1 = C_2 = C_m/2 \), during
acceleration on a straight line on an even road surface for
instance. In any case the differential is locked.

- in points 2 the torque is delivered to the wheels in unequal
parts but the differential is still locked because \(\Delta C = |C_1-C_2| < \Delta C_{\text{MAX}} \).

- points 3 are the limits where \(\Delta C = \Delta C_{\text{MAX}} \), the differential is
unlocked, the dynamic friction coefficient comes into play and
the output torque delivery drops to points 4. The areas between
the red and blue lines on each side are transition zones where
clutch pack instability due to stick-slip oscillations can arise,
involving driveline torsional dynamics as well.

Additional locking effects
An experimental campaign on a dedicated test rig for a
motorsport unit is described by Dickason [43], stating that a
secondary locking effect should also be taken into account: the
axial load applied to the satellite bevel gears is exchanged as
wedging force between the gear back spherical face and the side
gear rings, resulting into additional thrust on the clutch packs.
Locking proportional to input torque is also provided by
friction between the same back face and the side rings, and
between the bevel teeth. These effects can be taken into account
by means of a constant, to be empirically determined: \(k \approx 0.08\div0.22 \).

And finally, taking also the pin/ramp friction coefficient \(\mu_k \) into
account [43, 51], (27) can be rearranged as:

\[
\Delta C = C_m \left[k + \frac{2}{3} \left(\frac{\mu_c \cdot \cos \sigma - \mu_r \sin \sigma}{\sin \sigma + \mu_k \cos \sigma} \right) \left(\frac{R^3 - r^3}{R^2 - r^2} \right) \right]
\]

(35)

Setup variations
The effects of ramp angle change are shown in Figure 16a.
Typical angles ranging from 80° (virtually no locking) to 30°
(heavy locking) are usually available in different drive/overrun
combinations. The red lines show that for the given torque
input, ramps larger than 75° on power and 60° off power never
manage to overcome the preload.
Figure 16. a) the effect of ramp angle on the torque bias diagrams. Various ramp combinations. As in Figure 12, engine output torque 500 Nm in fourth gear, diff input torque ≈ 2800 Nm; overrun torque 200 Nm; preload torque 300 Nm, 6 clutch disk face pairs. b) same input torque, 30°/80° ramps, preload 80 Nm, 8 clutch disk pairs.

Figure 16b shows an extreme example regarding adjustability: such a setup would be somehow unpractical, nevertheless it demonstrates that the locking action can be differentiated to a significant extent, and the whole range between a spool and a free differential can be covered with the standard adjustments. While the differential is virtually free off power, an aggressive ramp setting on the drive side makes for large torque bias ratios and can even cover the whole quadrant, making the LSD a spool de facto, but only on power.

Figure 17 shows a real-world example on a single-seater racing car, where the differential allows for some wheel speed difference during turn-in and coasting, but as soon as throttle is applied (around 15%) the wheels are locked together. The adjustability range allows to address issues like braking and turn-in instability, an inherent problem of racing cars with significant downforce levels due to ground effect; the level of understeer on power can also be tuned by means of the locking action. Care should be taken with the amount of preload built in the differential: too much usually means turn-in and/or mid-corner understeer, not enough might trigger the traction issue in corner exit, with the inner wheel spinning on the wet for instance. This is the reason why externally adjustable preload differentials are used in racing whenever allowed by the regulations.

Figure 17. ramp differential action on a racing car. The red and blue lines on the top are the LH and RH rear wheel speeds respectively. The wheel speeds differentiate when the car is approaching the apex. As soon as the driver hits the throttle (green arrow) the diff is locked (red arrow).
Torque-sensitive LSD variants

In top-level systems like the Hewland EMA® [41] the preload is adjustable on and off power separately, and can also be negative, see Figure 18. In this case the differential is open for \(Q - C_m < P_e \), e.g. when coasting in mid-corner, then the ramp action comes into play and the typical, V-shaped torque-sensitive characteristic is back.

![Torque distribution vs input torque](image1)

![RH vs LH wheel torque](image2)

Figure 18. Torque bias diagrams with negative preload.

In some special transmissions for motorsport applications like the Xtrac 379 [30] it is possible to combine a ramp differential (torque-sensitive) with a viscous joint (speed-sensitive) in parallel, in order to obtain a so-called VCP, where low static preload values can be used to reduce US in mid-corner coasting. The viscous coupling will take over for traction on low friction surfaces, in the wet for instance.

Other types of torque-sensitive LSD’s such as the Torsen® or the Quaife ATB® are based on the separation forces between gears (radial forces for cylinder gears, axial forces for bevel gears) to generate friction and dissipate energy, see [3, 22].

REAL-WORLD AND SIMULATION EXAMPLES

As anticipated in the introduction, [58] is the only experimental work found by the authors and showing a real-world torque bias diagram. Output torque data have been measured by means of Kistler wheel force transducers on a production-based racing car. The LH vs RH output torque diagram is mapped as a function of longitudinal vehicle acceleration (Figure 19a). The preload value is around 400 Nm, while no ramp effect can be seen on overrun.

With regard to the second example, a full GT racing car model was built under supervision of the authors in VI-CarRealTime®, a parametric software dedicated to vehicle dynamics, with the aim of performing setup sensitivity analysis, lap time simulations and HIL (Human/Hardware-in-the-loop) testing on a professional driving simulator [64]. A description of the project is beyond the scope of this work, and will be presented extensively in a future publication. Suffice it to say the model is extremely detailed: tyres are based on flat track experimental data coming from the manufacturer and fitted with Pacejka’s Magic Formula 5.2, while aerodynamics is based on wind tunnel maps and it is fully sensitive to ride heights. Validation was carried out successfully with real-world data. The LSD model was built as shown in the previous sections. Figure 19b shows the torque bias diagram for a single lap at the Imola circuit.
The diagram is mapped on input torque. It can be noticed that the whole working zone is used, apart from an “empty” area for low torque input values. The diff acts as a spool quite often, either in the preload and in the ramp regions, and the ramp setting off power is quite aggressive in this case to improve braking and turn-in stability.

CONCLUSIONS

Although the subject is well-known in the vehicle dynamics community, the authors felt the need to recap theory and practical aspects related to the limited-slip differential, a passive device used to improve traction capabilities, handling, and ultimately performance of racing cars as well as road-going sportscars. As a matter of fact the impact of yaw moment control on balance and stability is the focus of attention in literature since active systems became the new standard for vehicle dynamics control. Interestingly enough, the traditional LSD was somehow a neglected subject in literature and still it is often misunderstood, despite valuable recent research of authors like Tremlett and Hancock.

The present work recaps working principles, advantages and limitations of the passive LSD, with specific focus on the ramp differential, a device that even today is the standard in professional motorsport. A simple model is presented and the torque bias diagram is discussed to an unprecedented level of detail. A comprehensive literature review -from “historic” works on the subject to renowned books to contemporary papers on active yaw control- is also offered in the introduction.

A detailed vehicle dynamics model based on the VI-CarRealTime® software is introduced and will be the subject of future research on passive and active limited-slip differentials - on the type of transition between static and dynamic friction for instance- as well as on torque vectoring.

Nomenclature

- \(m \) = vehicle mass
- \(c \) = drive axle track width
- \(r \) = tyre rolling radius
- \(R \) = cornering radius
- \(\dot{\psi} \) = yaw velocity
- \(\delta \) = steering angle (front axle only)
- \(\mu \) = friction coefficient, tyre contact patch on road surface
- \(V \) = vehicle forward speed
- \(a_y \) = lateral acceleration
- \(\omega_{m} \) = angular velocity, final drive
- \(\omega_{1,2} \) = angular velocity, left- and right-hand wheels
- \(\Delta\omega \) = angular velocity difference across the differential or viscous coupling
- \(S_{1,2} \) = longitudinal tyre slip, outer and inner wheels
- \(F_{X_{1,2}} \) = longitudinal tyre force
- \(\Delta F_X \) = longitudinal tyre force difference across the axle
- \(\Delta F_Z \) = lateral load transfer
- \(C_m \) = differential input torque
- \(C_{1,2} \) = output torque at each wheel
- \(\Delta C \) = differential locking or torque transfer across the differential
- \(W_p \) = power loss across the differential
- \(M_z \) = yaw moment on vehicle
- \(N, N_T, N_A \) = forces exchanged between gear pin and ramp:
normal force, tangential and axial components

\[r_{\text{ramp}} = \text{ramp radius} \]

\[P (P-) = \text{generic preload torque (negative preload torque)} \]

\[\sigma = \text{ramp angle} \]

\[n = \text{number of clutch disk interfaces (per side)} \]

\[\mu_c, \mu_b, \mu_0 = \text{generic friction coefficient, clutch pack disks; static and dynamic friction coefficient} \]

\[\mu_p = \text{friction coefficient between pin and ramp surface} \]

\[k = \text{constant for additional torque-sensitive locking effects} \]

FWD, RWD = Front Wheel Drive, Rear Wheel Drive

AWD, 4WD = All Wheel Drive, Four Wheel Drive

RWS, 4WS = Rear Wheel Steering, Four Wheel Steering

LSD, ALSD = Limited Slip Differential, Active Limited Slip Differential

VCP = Viscous Coupling Plate

PTVD = Passive Torque Vectoring Differential

TCS, ABS, ABC = Traction Control System, Anti-lock Braking System, Active Brake Control

Conflicts of Interest: The authors declare no conflict of interest.

REFERENCES

