International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 20 (2018) pp. 14823-14826
© Research India Publications. http://www.ripublication.com

A Technique for a Software-Defined and Network-based ARP Spoof
Detection and Mitigation

Deepa Balagopal
Research Scholar, Department of Computer Applications,
Karpagam Academy of Higher Education, Eachanari, Coimbatore — 641021, India.
Orcid Id: 0000-0002-1717-5734

X.Agnise Kala Rani
Research Supervisor, Department of Computer Applications,
Karpagam Academy of Higher Education, Eachanari, Coimbatore— 641021, India.
Orcid 1d: 0000-0002-1465-0595

Abstract

The centralized Controller of a Software-defined network can
be used as an effective medium for ensuring network security.
In this paper, the researchers present a restrictive ARP Cache
Recovery module which identifies the poisoned ARP packets
and takes necessary action to block the attacking device.
Apart from issuing alert and blocking the attacker, it also
reestablishes the corrupted link between the victim and other
devices so as not to affect the functioning of the network.

Keywords: ARP Poisoning, Firewall, POX, SDN, Spoofing.

INTRODUCTION

The Software-defined network paradigm strives to improve
the programmability and flexibility of the traditional computer
network. It not only provides network virtualization and
dynamic network policy management but also attempts to
have a greater control over the network devices at a much
lesser operational cost. These positives aside, the new
architecture necessitates the need to rewrite the old
networking software and applications to fit in with the current
scenario.

With SDN and its programmability, the network administrator
has better control over the security of the network not only
from rogue elements outside, but also from within [1]. For
instance, a host can fake the identity of someone else and
flood the network with spoofed packets thus upsetting its
performance and consuming the bandwidth. The presence of
such malicious end-hosts can cause chaos to a network.
Though traditional networks too have reported similar attacks
and have some solutions in place, the researchers believe that
SDN can provide a better solution.

When a device that is directly connected to a software-defined
network is compromised, for instance, a server or a user
workstation, it can pass wrong information about the
network topology and the location of target hosts and confuse
the Controller so as to take over a target host or traffic of
interest [2,3]. These are predominantly attacks that target the
Address Resolution Protocol. The programmability of SDN
presents ample scope to identify and thwart such attacks in
such a way that only minimal manual intervention is required
for the same.

PROBLEM IDENTIFICATION

The ARP protocol maps the MAC address of the host with the
IP address and is positioned below the Internet layer. The
ARP packet structure constitutes the Sender Hardware
Address (SHA), the Target Hardware Address (THA), the
Sender Protocol Address (SPA) and the Target Protocol
Address (TPA). The IP address values of the sender and
receiver are stored within SPA & TPA respectively. MAC
addresses are available in the SHA and THA.

Within a network, the ARP request packets are broadcast by a
source and the corresponding MAC is obtained from the
intended host via an ARP reply packet. The host devices
within the network maintain an ARP cache (dynamic or static)
consisting of these address mappings and this is updated
periodically based on the reply packets received without any
authentication.

An ARP cache entry is usually created when an ARP request
or reply message arrives at a host and if the cache does not
contain any entry for the source IP in the received ARP
packet. The entry is updated, and timeout time is renewed
when an ARP request or reply message arrives at the host and
the entry for the source IP in ARP header is already present.
The major problem here is that the cache cannot verify the
sender of ARP request/ reply packet [4].

One of the strategies used by hostile attackers towards the
ARP attack is to corrupt the ARP cache of the targeted device
to change the IP-MAC mapping stored in these devices. This
will cause the traffic to be redirected to the wrong destination.
A Man-In-The-Middle (MITM) attack occurs when an
attacker poisons the ARP cache of two devices with the (48-
bit) MAC address of their Ethernet NIC (Network Interface
Card). Once the ARP cache has been successfully poisoned,
the victim devices send all their packets to the attacker when
communicating to the other device. With just the act of
corrupting the ARP cache, an attacker can easily monitor or
intercept all communication between target devices.

In traditional networks, several countermeasures like cache
table static management, S-ARP [5], T-ARP [6], and ARP
Table server synchronization method have been proposed. But
practical application of these schemes poses difficulties in
architecture like SDN. Many schemes involve the redirection
of ARP traffic into an intermediate component, which would

14823

https://orcid.org/0000-0002-1717-5734
http://orcid.org/0000-0002-1465-0595

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 20 (2018) pp. 14823-14826
© Research India Publications. http://www.ripublication.com

then perform an analysis of the packet headers to identify the
tampering [7]. While this idea may be practical for the
traditional network architecture, it will turn out to be a
choking hazard for the SDN controller, since the software-
defined network functions with the Controller as the central
component. In [8] the above said packet by packet inspection
for SDN based ARP security has been presented.

As a first step towards ensuring ARP security using SDN, but
without constantly monitoring the packets, in [9] the
researchers presented a technique which analysed the flow
statistics in the switches. This technique was able to identify
unnatural ARP packet flooding. The spoofed packet was
subsequently identified, and the source was blocked through a
new flow entry in the switches. The drawback of this method
was that the ARP cache was getting corrupted for a brief
period during the attack discovery and hence required a
network re-initialisation for recovery. A new scheme for
detecting and recovering from ARP cache corruption had to
be devised which could protect the internal network from
ARP spoofing.

ARP CACHE CORRUPTION RECOVERY: AN
OVERVIEW

The collection of statistics from the network and controlling
of forwarding devices connected to the network are facilitated
in a convenient manner through the software- defined concept.
The methodology suggested in this paper is based on periodic
collection of flow statistics from the connected switches,
which are subsequently analysed for possible poisoning. This
is an improvement of the method presented in [9]. The
application has been written using Python over POX
controller [10].

Threat model

It is assumed that the Controller of the network is a trusted
system, but the hosts can turn malicious. Therefore, the
communication from Controller to switches is reliable but not
the other way around. In this paper, the researchers are
considering only the internal attacks and hence the focus is
only on the Open Flow messages inside the network.

Algorithm functionality

First and foremost, the application is required to intermittently
analyse the ARP traffic through the network. If an unnaturally
high amount of ARP packets is seen, the traffic is diverted to
the Controller. The Controller attempts to detect spoofing
within the packets. If spoofing is identified, an entry is
inserted in the switches to drop the ARP and IP packets from
the malicious source for a pre-defined period. The spoofing
identification involves the capturing the IP and MAC of the
attacker, the victim and the host that has been spoofed.

Fig. 1 represents the algorithm’s workflow which consists of
two stages. First, it initiates the process of flow statistics
collection and instructs the connected switches to transmit the

ARP packets to the Controller in order to obtain the mapping
between IP addresses and MAC addresses of the hosts. The
IP-MAC database stores the mapping information collected
during this stage. Simultaneous entries are inserted into the
switch flow tables so as to allow the already mapped host
devices to communicate among themselves.

Secondly, having collected the network device information,
the application no longer processes the ARP packets at the
Controller level and focuses on the flow statistics. From this
stage the Controller is involved only when a fake mapping is
detected in the packet headers or when a new flow is
identified. This prevents the traffic bottleneck at the
Controller level.

To send packet to controller instruction is re-issued only if an
unusual amount of ARP packet movement is observed. In this
scenario, the Assessor module collects the ARP Packet data
for analysis and suspends the traffic temporarily between the
devices. It uses the information collected in the first stage to
identify a mismatch and issues an alert.

Other OF packets

h Device Info
Flow Stats Collector
IIIHHHHHHHIII

Gather &
Validate

Log/Admin

Flow
entry to
block
attacker

Packet In

Cache

Intercept OF Update

packets

Figure 1. ARP Cache Recovery

Along with the alert, a flow entry is inserted in the switch
flow tables to drop all the packets from the attacker. The
algorithm then crafts ARP request probe packet on behalf of
the victim and floods the rest of the network. The network is
not waiting for the automatic ARP cache update to take place
and instead a proactive ARP cache update on behalf of the
Controller is carried out. The network continues to function in
the normal manner without any disruption.

IMPLEMENTATION

The ARP Cache recovery module has been implemented and
integrated with the SDN Controller. The module is written in
Python and is compatible with POX. This section describes
the implementation details of our application.

Experimental setup

The setup consists of Ubuntu Virtual Machine with 2 cores
and 2 GB of RAM. The host machine has Windows 8 as the
Operating system and has Intel Core i5 processor with 4 GB
of RAM.

14824

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 20 (2018) pp. 14823-14826
© Research India Publications. http://www.ripublication.com

A network emulator is used to create the virtual network with
Linux OS and Open Virtual Switch software. The Mininet
emulator is installed on Ubuntu 14.10 Linux virtual
machine that runs on VirtualBox. The controller used is
POX, and ARP Cache recovery is run as a module on the
SDN controller. Each host is connected by a 100 Mbps link to
the network and a 1 Gbps link exists between switches. Tests
have been performed to verify the capability of the application
to detect and thwart the poisoning attack.

Using a socket program, the ARP Cache is corrupted by
flooding the victim with fake ARP request/reply packets. For
example, host 1 (the attacker) corrupts the ARP cache of host
4 by replacing the host 3’s MAC address with its own MAC
address. Now, host 1 is pretending to be host 3. This affects
the communication between hosts 3 and 4.

Corrupted ARP cache recovery

In this experiment which is similar to the one executed in [9],
host 1 is the attacker and poisons host 4 with an invalid entry.
It floods the victim with hundreds of spoofed ARP
request/reply packets. The flowstats handler tracks the ARP
packets across the network. Any unusually high amount of
ARP traffic is identified, and a new rule is installed in the
switch flow table to redirect the ARP packets to the
Controller. The Packet-In event of the Controller compares
the incoming packet IP & MAC parameters with its own IP-
MAC database. If the packet has been spoofed, it identifies
the attacker and the victim. The procedure ARP cache
recovery has been described in detail below. The input is only
the IP and MAC of the ARP packet which has been identified
as poisoned.

Once the attack is detected, the module adds a new flow table
entry to drop all packets from the attacker for a fixed duration
and issues an alert. Subsequently, the ARP Cache recovery
module running in the Controller constructs an ARP Request
probe packet from the spoofed host to the victim. The probe
packets are then flooded. This corrects the victim device’s
ARP Cache without having to wait for the Cache timeout and
thus keeps the device connected to the network. Fig.2
describes the algorithm used for cache recovery.

Algorithm:

Input: (IP, MAC) of ARP packet

Output: ARP packets on behalf of the victim from the ARP cache recover
algorithm

1: If (IP, MAC) mismatch with database or packet header

2: { Identify the victim IPy and attacker IP, and the host that has been
spoofed IPy;

3: FlowModCommand(drop all packets from IPa);
4: Craft ARP request Probe packet on behalf of IP, asking for IPy;
Broadcast the packets; }

End Procedure

Figure 2. The ARP Cache Recovery algorithm.

PERFORMANCE ASSESSMENT

The simulation results recorded the performance of ARP
Cache recovery module during three stages - before, during
and after attack detection and mitigation. Experiments were
conducted using tree topology as well as linear topology. A
custom Mininet Data Centre topology with four racks was
also used for testing. Each rack had four hosts and a single
top-of-rack switch. These switches were connected to a
central root switch. In all the cases, the to and fro latency and
TCP bandwidth between the devices which were affected
before, during and after the attack were measured.

The graph in Fig.3 shows that there is no significant variation
in latency between host devices in the pre and post attack
stages. Of course, if the latency or throughput between the
identified attacker and other devices were to be measured, no
concrete results would be available for the post attack stage.

0.5

EH3toH4
EHAto H3

Pre-Attack During Attack Post Attack

Figure 3. Comparison of latency experienced in different
scenarios

9

8
o7
a
T /
)
5 \
~ w—H3 to H4
=
54
=2 =—H4 to H3
23
-]
=
a2

1

0

Pre-Attack During Attack Post Attack

Figure 4. Comparison of bandwidth between devices in
different scenarios.

As far as bandwidth (Fig. 4) was concerned there were no
significant variations between pre-attack and post attack
values. Unlike in [9] there was no down-time of the network
at the moment when the ARP attack was discovered.
Understandably, the throughput does reduce at this point since
the Controller is involved in analysing the suspicious packets
and inserting the drop rules in place for the attacker. The
network continues its working state after the mitigation.

14825

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 20 (2018) pp. 14823-14826
© Research India Publications. http://www.ripublication.com

CONCLUSION

In this paper, an improved solution for detecting and
mitigating ARP poison routing for SDN networks has been
introduced. This feature can identify ARP poison routing and
overcome it without degrading the network performance. The
module not only successfully blocks the malicious host from
further attack but also recovers the ARP Cache of the victim
so that it can continue functioning within the network.

REFERENCES

[1] Cabaj, K., Wytrebowicz, J., Kuklinski, S.,
Radziszewski, P. and Dinh, K.T., “SDN Architecture
Impact on Network Security,” in FedCSIS Position
Papers, pp. 143-148, Sep. 2014.

[2] Dhawan, M., Poddar, R., Mahajan, K., Mann, V.
SPHINX: detecting security attacks in Software-
Defined Networks. In: Proc. of NDSS (2015)

[3] Hong, S., Xu, L., Wang, H., Gu, G.: Poisoning
network visibility in software-defined networks:
New attacks and countermeasures. In: Proc. of
NDSS. pp. 811 (2015)

[4] S.Whalen. (2001)“An introduction to ARP
spoofing." Node99 [Online].

[5] D. Bruschi, A. Ornaghi, and E. Rosti, “S-arp: a
secure address resolution protocol,” in Computer

Security Applications Conference,
2003.Proceedings. 19th Annual. IEEE, 2003, pp. 66—
74,

[6] W. Lootah, W. Enck, and P. McDaniel, “Tarp:
Ticket-based address resolution protocol,” Computer
Networks, vol. 51, no. 15, pp. 4322— 4337, 2007.

[7] C.L.Abad and R.I. Bonilla, “An analysis on the
schemes for detecting and preventing ARP cache
poisoning attacks,” in 2007 International Conference
on Distributed Computing Systems Workshops
(ICDCSW'07), pp. 60-60. IEEE 2007.

[8] Masoud, Mohammad Z., Yousf Jaradat, and Ismael
Jannoud. "On preventing ARP poisoning attack
utilizing Software Defined Network (SDN)
paradigm.” Applied Electrical Engineering and
Computing Technologies (AEECT), 2015 IEEE
Jordan Conference on. IEEE, 2015

[9] D. Balagopal and X.A.K Rani. "Empowering SDN
Firewall against ARP Poison Routing." International
Journal of Applied Engineering Research 12.18
(2017): 7466-7469

[10] A. Al-shabibi and M. McCauley, 'Pox Wiki',
Openflow at Stanford, 2014.[Online].Available:
https://OpenFlow.stanford.edu/display/ONL/POX+.

14826

