
International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 20 (2018) pp. 14823-14826

© Research India Publications. http://www.ripublication.com

14823

A Technique for a Software-Defined and Network-based ARP Spoof

Detection and Mitigation

Deepa Balagopal

Research Scholar, Department of Computer Applications,

Karpagam Academy of Higher Education, Eachanari, Coimbatore – 641021, India.

Orcid Id: 0000-0002-1717-5734

X.Agnise Kala Rani

Research Supervisor, Department of Computer Applications,

Karpagam Academy of Higher Education, Eachanari, Coimbatore– 641021, India.

Orcid Id: 0000-0002-1465-0595

Abstract

The centralized Controller of a Software-defined network can

be used as an effective medium for ensuring network security.

In this paper, the researchers present a restrictive ARP Cache

Recovery module which identifies the poisoned ARP packets

and takes necessary action to block the attacking device.

Apart from issuing alert and blocking the attacker, it also

reestablishes the corrupted link between the victim and other

devices so as not to affect the functioning of the network.

Keywords: ARP Poisoning, Firewall, POX, SDN, Spoofing.

INTRODUCTION

The Software-defined network paradigm strives to improve

the programmability and flexibility of the traditional computer

network. It not only provides network virtualization and

dynamic network policy management but also attempts to

have a greater control over the network devices at a much

lesser operational cost. These positives aside, the new

architecture necessitates the need to rewrite the old

networking software and applications to fit in with the current

scenario.

With SDN and its programmability, the network administrator

has better control over the security of the network not only

from rogue elements outside, but also from within [1]. For

instance, a host can fake the identity of someone else and

flood the network with spoofed packets thus upsetting its

performance and consuming the bandwidth. The presence of

such malicious end-hosts can cause chaos to a network.

Though traditional networks too have reported similar attacks

and have some solutions in place, the researchers believe that

SDN can provide a better solution.

When a device that is directly connected to a software-defined

network is compromised, for instance, a server or a user

workstation, it can pass wrong information about the

network topology and the location of target hosts and confuse

the Controller so as to take over a target host or traffic of

interest [2,3]. These are predominantly attacks that target the

Address Resolution Protocol. The programmability of SDN

presents ample scope to identify and thwart such attacks in

such a way that only minimal manual intervention is required

for the same.

PROBLEM IDENTIFICATION

The ARP protocol maps the MAC address of the host with the

IP address and is positioned below the Internet layer. The

ARP packet structure constitutes the Sender Hardware

Address (SHA), the Target Hardware Address (THA), the

Sender Protocol Address (SPA) and the Target Protocol

Address (TPA). The IP address values of the sender and

receiver are stored within SPA & TPA respectively. MAC

addresses are available in the SHA and THA.

Within a network, the ARP request packets are broadcast by a

source and the corresponding MAC is obtained from the

intended host via an ARP reply packet. The host devices

within the network maintain an ARP cache (dynamic or static)

consisting of these address mappings and this is updated

periodically based on the reply packets received without any

authentication.

An ARP cache entry is usually created when an ARP request

or reply message arrives at a host and if the cache does not

contain any entry for the source IP in the received ARP

packet. The entry is updated, and timeout time is renewed

when an ARP request or reply message arrives at the host and

the entry for the source IP in ARP header is already present.

The major problem here is that the cache cannot verify the

sender of ARP request/ reply packet [4].

One of the strategies used by hostile attackers towards the

ARP attack is to corrupt the ARP cache of the targeted device

to change the IP-MAC mapping stored in these devices. This

will cause the traffic to be redirected to the wrong destination.

A Man-In-The-Middle (MITM) attack occurs when an

attacker poisons the ARP cache of two devices with the (48-

bit) MAC address of their Ethernet NIC (Network Interface

Card). Once the ARP cache has been successfully poisoned,

the victim devices send all their packets to the attacker when

communicating to the other device. With just the act of

corrupting the ARP cache, an attacker can easily monitor or

intercept all communication between target devices.

In traditional networks, several countermeasures like cache

table static management, S-ARP [5], T-ARP [6], and ARP

Table server synchronization method have been proposed. But

practical application of these schemes poses difficulties in

architecture like SDN. Many schemes involve the redirection

of ARP traffic into an intermediate component, which would

https://orcid.org/0000-0002-1717-5734
http://orcid.org/0000-0002-1465-0595

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 20 (2018) pp. 14823-14826

© Research India Publications. http://www.ripublication.com

14824

then perform an analysis of the packet headers to identify the

tampering [7]. While this idea may be practical for the

traditional network architecture, it will turn out to be a

choking hazard for the SDN controller, since the software-

defined network functions with the Controller as the central

component. In [8] the above said packet by packet inspection

for SDN based ARP security has been presented.

As a first step towards ensuring ARP security using SDN, but

without constantly monitoring the packets, in [9] the

researchers presented a technique which analysed the flow

statistics in the switches. This technique was able to identify

unnatural ARP packet flooding. The spoofed packet was

subsequently identified, and the source was blocked through a

new flow entry in the switches. The drawback of this method

was that the ARP cache was getting corrupted for a brief

period during the attack discovery and hence required a

network re-initialisation for recovery. A new scheme for

detecting and recovering from ARP cache corruption had to

be devised which could protect the internal network from

ARP spoofing.

ARP CACHE CORRUPTION RECOVERY: AN

OVERVIEW

The collection of statistics from the network and controlling

of forwarding devices connected to the network are facilitated

in a convenient manner through the software- defined concept.

The methodology suggested in this paper is based on periodic

collection of flow statistics from the connected switches,

which are subsequently analysed for possible poisoning. This

is an improvement of the method presented in [9]. The

application has been written using Python over POX

controller [10].

Threat model

It is assumed that the Controller of the network is a trusted

system, but the hosts can turn malicious. Therefore, the

communication from Controller to switches is reliable but not

the other way around. In this paper, the researchers are

considering only the internal attacks and hence the focus is

only on the Open Flow messages inside the network.

Algorithm functionality

First and foremost, the application is required to intermittently

analyse the ARP traffic through the network. If an unnaturally

high amount of ARP packets is seen, the traffic is diverted to

the Controller. The Controller attempts to detect spoofing

within the packets. If spoofing is identified, an entry is

inserted in the switches to drop the ARP and IP packets from

the malicious source for a pre-defined period. The spoofing

identification involves the capturing the IP and MAC of the

attacker, the victim and the host that has been spoofed.

Fig. 1 represents the algorithm’s workflow which consists of

two stages. First, it initiates the process of flow statistics

collection and instructs the connected switches to transmit the

ARP packets to the Controller in order to obtain the mapping

between IP addresses and MAC addresses of the hosts. The

IP-MAC database stores the mapping information collected

during this stage. Simultaneous entries are inserted into the

switch flow tables so as to allow the already mapped host

devices to communicate among themselves.

Secondly, having collected the network device information,

the application no longer processes the ARP packets at the

Controller level and focuses on the flow statistics. From this

stage the Controller is involved only when a fake mapping is

detected in the packet headers or when a new flow is

identified. This prevents the traffic bottleneck at the

Controller level.

To send packet to controller instruction is re-issued only if an

unusual amount of ARP packet movement is observed. In this

scenario, the Assessor module collects the ARP Packet data

for analysis and suspends the traffic temporarily between the

devices. It uses the information collected in the first stage to

identify a mismatch and issues an alert.

Figure 1. ARP Cache Recovery

Along with the alert, a flow entry is inserted in the switch

flow tables to drop all the packets from the attacker. The

algorithm then crafts ARP request probe packet on behalf of

the victim and floods the rest of the network. The network is

not waiting for the automatic ARP cache update to take place

and instead a proactive ARP cache update on behalf of the

Controller is carried out. The network continues to function in

the normal manner without any disruption.

IMPLEMENTATION

The ARP Cache recovery module has been implemented and

integrated with the SDN Controller. The module is written in

Python and is compatible with POX. This section describes

the implementation details of our application.

Experimental setup

The setup consists of Ubuntu Virtual Machine with 2 cores

and 2 GB of RAM. The host machine has Windows 8 as the

Operating system and has Intel Core i5 processor with 4 GB

of RAM.

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 20 (2018) pp. 14823-14826

© Research India Publications. http://www.ripublication.com

14825

A network emulator is used to create the virtual network with

Linux OS and Open Virtual Switch software. The Mininet

emulator is installed on Ubuntu 14.10 Linux virtual

machine that runs on VirtualBox. The controller used is

POX, and ARP Cache recovery is run as a module on the

SDN controller. Each host is connected by a 100 Mbps link to

the network and a 1 Gbps link exists between switches. Tests

have been performed to verify the capability of the application

to detect and thwart the poisoning attack.

Using a socket program, the ARP Cache is corrupted by

flooding the victim with fake ARP request/reply packets. For

example, host 1 (the attacker) corrupts the ARP cache of host

4 by replacing the host 3’s MAC address with its own MAC

address. Now, host 1 is pretending to be host 3. This affects

the communication between hosts 3 and 4.

Corrupted ARP cache recovery

In this experiment which is similar to the one executed in [9],

host 1 is the attacker and poisons host 4 with an invalid entry.

It floods the victim with hundreds of spoofed ARP

request/reply packets. The flowstats handler tracks the ARP

packets across the network. Any unusually high amount of

ARP traffic is identified, and a new rule is installed in the

switch flow table to redirect the ARP packets to the

Controller. The Packet-In event of the Controller compares

the incoming packet IP & MAC parameters with its own IP-

MAC database. If the packet has been spoofed, it identifies

the attacker and the victim. The procedure ARP cache

recovery has been described in detail below. The input is only

the IP and MAC of the ARP packet which has been identified

as poisoned.

Once the attack is detected, the module adds a new flow table

entry to drop all packets from the attacker for a fixed duration

and issues an alert. Subsequently, the ARP Cache recovery

module running in the Controller constructs an ARP Request

probe packet from the spoofed host to the victim. The probe

packets are then flooded. This corrects the victim device’s

ARP Cache without having to wait for the Cache timeout and

thus keeps the device connected to the network. Fig.2

describes the algorithm used for cache recovery.

Algorithm:

Input: (IP, MAC) of ARP packet

Output: ARP packets on behalf of the victim from the ARP cache recover
algorithm

1: If (IP, MAC) mismatch with database or packet header

2: { Identify the victim IPv and attacker IPa and the host that has been
spoofed IPh;

3: FlowModCommand(drop all packets from IPa);

4: Craft ARP request Probe packet on behalf of IPh asking for IPv;

 Broadcast the packets; }

End Procedure

Figure 2. The ARP Cache Recovery algorithm.

PERFORMANCE ASSESSMENT

The simulation results recorded the performance of ARP

Cache recovery module during three stages - before, during

and after attack detection and mitigation. Experiments were

conducted using tree topology as well as linear topology. A

custom Mininet Data Centre topology with four racks was

also used for testing. Each rack had four hosts and a single

top-of-rack switch. These switches were connected to a

central root switch. In all the cases, the to and fro latency and

TCP bandwidth between the devices which were affected

before, during and after the attack were measured.

The graph in Fig.3 shows that there is no significant variation

in latency between host devices in the pre and post attack

stages. Of course, if the latency or throughput between the

identified attacker and other devices were to be measured, no

concrete results would be available for the post attack stage.

Figure 3. Comparison of latency experienced in different

scenarios

Figure 4. Comparison of bandwidth between devices in

different scenarios.

As far as bandwidth (Fig. 4) was concerned there were no

significant variations between pre-attack and post attack

values. Unlike in [9] there was no down-time of the network

at the moment when the ARP attack was discovered.

Understandably, the throughput does reduce at this point since

the Controller is involved in analysing the suspicious packets

and inserting the drop rules in place for the attacker. The

network continues its working state after the mitigation.

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 20 (2018) pp. 14823-14826

© Research India Publications. http://www.ripublication.com

14826

CONCLUSION

In this paper, an improved solution for detecting and

mitigating ARP poison routing for SDN networks has been

introduced. This feature can identify ARP poison routing and

overcome it without degrading the network performance. The

module not only successfully blocks the malicious host from

further attack but also recovers the ARP Cache of the victim

so that it can continue functioning within the network.

REFERENCES

[1] Cabaj, K., Wytrebowicz, J., Kuklinski, S.,

Radziszewski, P. and Dinh, K.T., “SDN Architecture

Impact on Network Security,” in FedCSIS Position

Papers, pp. 143-148, Sep. 2014.

[2] Dhawan, M., Poddar, R., Mahajan, K., Mann, V.:

SPHINX: detecting security attacks in Software-

Defined Networks. In: Proc. of NDSS (2015)

[3] Hong, S., Xu, L., Wang, H., Gu, G.: Poisoning

network visibility in software-defined networks:

New attacks and countermeasures. In: Proc. of

NDSS. pp. 8–11 (2015)

[4] S.Whalen. (2001)“An introduction to ARP

spoofing." Node99 [Online].

[5] D. Bruschi, A. Ornaghi, and E. Rosti, “S-arp: a

secure address resolution protocol,” in Computer

Security Applications Conference,

2003.Proceedings. 19th Annual. IEEE, 2003, pp. 66–

74.

[6] W. Lootah, W. Enck, and P. McDaniel, “Tarp:

Ticket-based address resolution protocol,” Computer

Networks, vol. 51, no. 15, pp. 4322– 4337, 2007.

[7] C.L.Abad and R.I. Bonilla, “An analysis on the

schemes for detecting and preventing ARP cache

poisoning attacks,” in 2007 International Conference

on Distributed Computing Systems Workshops

(ICDCSW'07), pp. 60-60. IEEE 2007.

[8] Masoud, Mohammad Z., Yousf Jaradat, and Ismael

Jannoud. "On preventing ARP poisoning attack

utilizing Software Defined Network (SDN)

paradigm." Applied Electrical Engineering and

Computing Technologies (AEECT), 2015 IEEE

Jordan Conference on. IEEE, 2015

[9] D. Balagopal and X.A.K Rani. "Empowering SDN

Firewall against ARP Poison Routing." International

Journal of Applied Engineering Research 12.18

(2017): 7466-7469

[10] A. Al-shabibi and M. McCauley, 'Pox Wiki',

Openflow at Stanford, 2014.[Online].Available:

https://OpenFlow.stanford.edu/display/ONL/POX+.

