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Abstract 

In this paper, we have analyzed a memory dependent 

inventory model with linear type demand rate and time-

varying holding cost as well as salvage value. Shortage is not 

allowed for that model. Memory means it depends past state 

of the process not only current state of the process. Two type 

memory indexes have been established (i) differential memory 

index corresponding fractional order derivative (ii) integral 

memory index corresponding fractional order integration. The 

influence of memory effect corresponding differential 

memory index is more active compared to the integral 

memory index. The above statement has been justified by the 

numerical example. The sensitivity analysis is carried out to 

find out critical inventory parameters for the decision maker. 

Keywords: Fractional order derivative; Classical inventory 

model; Salvage value; Memory dependent inventory model. 

 

INTRODUCTION 

The fractional calculus becomes an important research topic 

during the past three decades, owing to its application 

backgrounds in the different interesting fields of mathematics 

[1, 2, 3, 4], economics [5,6], physics[7],mechanics[8-9]. The 

concept of fractional calculus grew up from the question of 

L'Hospital to Gottfried Leibnitz about the derivative of order 

1/2. The fractional derivatives are defined by the integration, 

so they are treated as a non- local operator. The fractional 

calculus is actually an extension of ordinary calculus. The 

fractional order derivative and fractional order integration 

leads to develop the whole memory dependent inventory 

model. The concept of memory is actively used because the 

order of fractional derivative and fractional integration is an 

index of memory. In economics, the memory was first 

engaged to fractional differencing and integrating by Granger 

and Joyeux [10] with the frame of discrete time approach. 

Recently fractional calculus has been used to describe the 

memory effect in the inventory models [3, 4].Here, an 

importance has also given on the salvage value of the 

inventory system. But our main focus is to incorporate 

memory effect to the inventory model with linear type 

demand rate and time varying holding cost as well as salvage 

value of the inventory. 

Authors expect that inventory system is a memory affected 

system. For example, if an object gets its popularity in the 

market then its demand will increase or if it gets poor 

impression then its demand will gradually decrease. In some 

sense demand of any object depends on dealing of the 

shopkeeper or staff of the company with the customer i.e. the 

selling of any product depends on the quality as well as the 

shopkeeper’s attitude or environment of the company or shop 

or public relation with the shop or company. The associated 

cost has been developed with fractional effect. The integral 

memory index comes from the associated cost. 

In general, for the classical economic order quantity model, 

the researchers use integer order differential equation and 

evaluate the minimized total average cost and optimal 

ordering interval. Harris [11] was the first person who 

developed the classical economic order quantity model. From 

that moment, many different type concept about the inventory 

system was developed by different researchers [12, 13, 14, 

15].Mishra et al [16], shah et al [17] developed the inventory 

model with considering salvage value. But we want to come 

out the traditional thoughts of classical inventory model. In 

this paper, the concept of memory has developed with 

considering R-L fractional order integration, evaluating 

minimized total average cost, optimal ordering interval. 

Our analysis clear that the effect of memory is more sensitive 

for the differential memory index compared to the integral 

memory index. 

 

REVIEW OF FRACTIONAL CALCULUS 

Euler Gamma Function 

Euler’s gamma function is one of the best tools in fractional 

calculus which was proposed by the Swiss mathematicians 

Leonhard Euler (1707-1783).The gamma function  x is 

continuous extension from the factorial notation .The gamma 

function is denoted and defined by the formulae 

   1

0

0
x tx t e dt x


   

                         

(1) 

 x is extended for all real and complex numbers and the 

gamma function satisfies some basic properties 
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Numerically !x  can be evaluated for all positive integer values numerically but  1 x  can be evaluated for real values. 

 

Fractional derivative on polynomial function 

The idea of the fractional calculus reduced from the powerful thinking of fractional order derivative. Derivative (
thm order) of any 

continuous polynomial function 
nxxf )( is derived as follows 

 
          ( )!

1 2 3 4 5 ...... 1 0, (2)
( )!

m n
n m m n

m

d x mn n n n n n n m x x n n m
dx m n

           


 

We know that    1!  nn .Then m! and (n-m)! is replaced by the  1 m and  1 mn in (2) and obtained as 

 Taking ,2,
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Different type fractional order derivative 

(i) Liouville fractional order derivative 

Liouville fractional order derivative for any continuous function  xf  is denoted and defined by

 
 

  
0where)(

1

1
)( 






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 



 xdfx
dx
dxfD

x





                                      (3)

 

Liouville left sided fractional derivative is denoted and defined as follows 

 
 
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                                 (4) 

Liouville right sided fractional derivative is denoted and defined as follows 

 
 
 
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(5)

                      

 

(ii)Riemann-Liouville fractional derivative(R-L) 

Left Riemann-Liouville (R-L) fractional derivative of order  is denoted and defined as follows  

 
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                          (6)

 

Right Riemann-Liouville(R-L) fractional derivative of order  is defined as follows  

 
 
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                         (7)

 

Riemann-Liouville(R-L) fractional derivative of any constant function is not equal to zero which created a distance between 

ordinary calculus and fractional calculus.  
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(iii)Caputo fractional order derivative 

Left Caputo fractional derivative for the function )(xf which has continuous, bounded derivatives in  ba, is denoted and 

defined as follows 

 
 

   mmdfx
m
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mm
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C
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1
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1

               (8)

 

Right Caputo fractional derivative for the function )(xf which has continuous and bounded derivatives in  ,,ba is defined as 

follows 

 
 

   mmdfx
m

xfD
b

x

mm
b

C
x 


 







10where)(

1
)(

1

                (9)

 

  constantAwhere,  oADx
C
a



 

 

CLASSICAL INVENTORY MODEL 

The classical inventory model has been developed in this section without its formulation part. 

Assumptions 

In this paper, the classical and fractional order EOQ models are developed on the basis of the following assumptions. 

(i) Lead time is zero.(ii)Time horizon is infinite.(iii)There is no shortage.(iv)There is no deterioration.(v) Demand rate is linear 

type     for 0 .D t a bt t T     

 

NOTATIONS: 

Table-1: Used symbols and items. 

 ( ) :i D t Demand rate. :)( Qii Total order quantity. 

( ) :iii P Per unit cost. :)( 1Civ Inventory holding cost per unit. 

:)( 3Cv Ordering cost or setup cost per order. :)()( tIvi Stock level or inventory level. 

:)( Tvii Ordering interval. ,( ) :viii HOC 
Inventory holding cost per cycle for the classical 

inventory model. 

:)( *Tix Optimal ordering interval. ,( ) :avx TOC  Total average cost during the total time interval. 

*

,( ) :xi TOC 
Minimized total average cost during the total 

time interval  T,0 . 

( )( ,.) :xii B Beta function. 

*

,( ) :xiii T  Optimal ordering interval. (xiv)( ,.) :  Gamma function. 

(xv) :  Salvage value per unit.
 ,(x )vi SL  : Salvage value for total unit with fractional effect. 

,(x )vii PC  : Total purchasing cost with fractional effect. 
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Classical model formulation 

The inventory level depletes due to demand only during the total time interval [0, T].Shortages are not allowed. Inventory level 

reaches to zero level at t=T. Therefore, the classical inventory model is represented by the integer order differential equation as 

  
     0 with 0, 0 .

d I t
a bt t T I T I Q

dt
      

                                          

(10)
 

 

FRACTIONAL ORDER INVENTORY MODEL WITH MEMORY KERNEL 

To study the influence of memory effects, first the differential equation (10) is written using the memory kernel function in the 

following form [1]. 

 
( )

k ' ( ') '
dI t t t a bt dt

dt
                                                                                            (11) 

in which ( ')k t t plays the role of a time-dependent kernel. This type of kernel promises the existence of scaling features as it is 

often intrinsic in most natural phenomena. Thus, to generate the fractional order model we consider

21
( ') ( ')

(1 )
k t t t t 



  
 

, where 0 1  and ( ) denotes the gamma function. Using the definition of fractional 

derivative [1], the equation (11) can be written to the form of fractional differential equations with the Caputo-type derivative in 

the following form as, 

   1

0

( )
t

dI t D a bt
dt

 
  

                                                                                                  
(12) 

Now, applying fractional Caputo derivative of order  1  on both sides of (12), and using the fact that Caputo fractional order 

derivative and fractional integral are inverse operators, the following fractional differential equations can be obtained for the 

model 

  0 ( )C
tD I t a bt    or equivalently 

 
 

I(t)
, 0 1.0, 0

d
a bt t T

dt




                                                                (13) 

with boundary conditions 0)( TI and QI )0( . 

Long Memory effect: The strength of memory is controlled by the order of fractional derivative or fractional integration.If  order 

of fractional derivative or fractional integrationis in (0,0.5).Then this system may be called that it has long memory effect. 

Short Memory effect: If order of the fractional derivative or the fractional integration is in [0.5,1).The system is called that it has 

short memory effect.  

 

Fractional order inventory model analysis 

Here, keeping fixed all assumptions as classical model, the fractional order inventory model has been governed by the following 

fractional order differential equation as follows 

    

 

0 (14)

, where,0 1.0, 0 0

C
tD I t a bt

dD t T with I T
dt









  

     
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Applying Laplace transform and the corresponding inversion formula on the equation (14) we get the inventory level at time t is 

 
   












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





21

1btatQtI
                                                                                         

(15) 

Using the boundary condition   0I T  on the equation (15) the total order quantity is obtained as 

   

1

1 2

aT bTQ
 

 



 
   

                                                                                                               

(16) 

and corresponding the inventory level at time t being, 

 
 

 
 

 1 1

1 2

a bI t T t T t   

 

 
 

                                                    

(17)  

Inventory holding cost is assumed time dependent and the
th  0 1  order total inventory holding cost is denoted as 

 THOC  , and defined as 

   
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Total purchasing cost with fractional effect 

   

1

,
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Salvage quantity is  
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                                                 (20)

 

Total salvage value is given below 

  
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                             (21)

 

(here,   is considered as integral memory index).  
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Therefore, the total average cost per unit time per cycle is given as 
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Here, four cases have been studied for the characterization of this fractional order inventory model  (i)0<α 1.0,0<β 1.0, 

(ii)α 1.0 and   0<β 1.0,  (iii)β 1.0 and   0<α 1.0,  (iv)α 1.0,β 1.0. 
 

(i)Case-1: 0<α 1.0, 0<β 1.0. 
 

In this case, the total average cost becomes 
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Therefore, the inventory model can be written as 

  1 1 1 1

, 1Min

Subject to 0

avTOC T AT BT CT DT ET FT GT
T

       

 

            


                      

(24) 

(A) Primal Geometric programming method 

The above inventory model (24) is solved by primal geometric programming method [3, 4]. 

The dual form of the above primal (24) model is as, 

3 5 6 71 2 4

1

1 2 3 4 5 6 7

Max ( )

w w w ww w w
BA C D E F Gd w

w w w w w w w
            

             
                                                 

(25)

 

Orthogonal condition is as 

         1 2 3 4 5 6 71 1 1 0w w w w w w w                  
                                                           (26)                                                                    

 

Normalized condition is as 

1 2 3 4 5 6 7 1w w w w w w w      
                                                                                              

(27) 

Primal –dual relations are given below 

     

       





















wdwGTwdwFTwdwETwdwDT
wdwCTwdwTBwdwAT

7

1

6

1

54

1

3211

1

,,,

,,




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From the above primal- dual relations we get, 

 

 

 

1 1 2

2 1 3

1

31 1 1 1 4

2 4 2 5

5 61 1 1 1

2 6 2 7

,

,

,

B w Cw
Aw B w

DwB w B w Ew
Aw Cw Aw Dw

Fw GwB w B w
Aw Ew Aw Fw



 



 

   
    
    
 
       

         
        
 

                      
                                                                   (28) 

along with,
 

1 1

2

B wT
Aw

 
  
                                                                                                                                  

(29) 

The non-linear equations (26, 27 and 28) for 
1 2 3 4 5 6 7, , , , , ,w w w w w w w  can be solved to obtain 

1 2 3 4 5 6 7

* * * * * * *, , , , , ,w w w w w w w
.Optimal ordering interval and minimized total average cost can be solved from (29) and (24) analytically. 

(ii)Case-2: α 1.0,  0<β 1.0.   

I n this case, the total average cost becomes as
 

 

   
    

   
    

 
 
 

 
 

 
 

2 1 1 0 1

1, 1

1 1
1

3

2, 4, , 2, 3, ,
3 2

2,
, , , ,G C

1 3 2

avTOC T AT B T CT DT ET FT GT

C b C aA B B B B B

bB P b P aaC D E F

   



   
 

   

 

         

 
       

 
  

     
        

In this case, the inventory model can be written as follows

  2 1 1 0 1

1, 1Min
(30)

Subject to 0

avTOC T AT B T CT DT ET FT GT
T

   



          



 

In similar way of case-1, the minimized total average cost and optimal ordering interval has evaluated from (30). 

(iii)Case-3: β 1.0,  0<α 1.0. 
 

The total average cost is
 

 

 
    

   
    

 

 

 

   

 

 

2 1 1 0 1

,1 1

1 1
1

3

2,1 3,1 , 2,1 2,1 ,
2 1 1

2,1
, , ,F ,G C

2 1 2 1

avTOC T AT B T CT DT ET FT GT

C b C aA B B B B B

P b P a bBaC D E

   



 
 

  

 

         

 
          

 
  

              

In this case, the inventory model is 

  2 1 1 0 1

,1 1Min
(31)

Subject to 0

avTOC T AT BT CT DT ET FT GT
T

   



          



 

In similar way of case-1, the minimized total average cost and optimal ordering interval has been evaluated from (31). 
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(iv) Case-4: 1.0, 1.0  
 

I n this case, the total average cost is obtained 
 

 

 
    

   
    

 

   

 

 

 

 

3 2 0 1

1,1 1

1 1

1

3

2,1 4,1 , 2,1 3,1 ,
3 2 1

2,1
, , C

3 2 2 1

avTOC T AT B T CT DT ET

C b C aA B B B B B

P b P a bBaC D E
  

    

 
    
  

 
  
     
     

 

In this case, the inventory model can be written as follows 

  3 2 0 1

1,1 1Min

Subject to 0

avTOC T AT B T CT DT ET
T

     



      (32) 

In similar way of case-1, the minimized total average cost and optimal ordering interval has been formulated from (32). 

 

NUMERICAL EXAMPLE 

Here we have calculated the minimized total average cost and 

the optimal ordering interval with assuming example. 

Example: Let
1 310, 6, 7, 20, 50, 0.1a b C C P      

in appropriate units. 

Table-2: Minimized total average cost and optimal ordering 

interval for 0 1.0, 1.0.     

(here↑ uses for increasing value and ↓ uses for decreasing 

value) 

    *

,T   
*

,TOC   

0.1 1.0 2.9560 600.36722 

0.2 1.0 2.6096 660.8729 

0.3 1.0 2.2811 713.3738 

0.4 1.0 1.9652 754.7137 

0.5 1.0 1.6580 781.6777↓(decreasing)(above) 

0.6 1.0 1.3571 791.1120(maximum) 

0.7 1.0 1.0672 780.0738↓(decreasing)(below) 

0.8↑ 
(growing 

memory effect) 

1.0 0.7811 746.1518 

0.9 1.0 0.5323 688.5363 

1.0 1.0 0.3533 611.2919 

 

Corresponding differential memory index , the minimized 

total average cost becomes maximum at 0.6   then 

gradually decreases below and above. Hence, at the critical 

memory effect, profit is low compared to the other moment. 

Some bad memory started to work at that moment then again 

it is able to recover. 

Table-3: The minimized total average cost and optimal 

ordering interval 0 1.0, 1.0.     

    *

,T   
*

,TOC   

1.0 0.1 0.3611 610.4477 

1.0 0.2 0.3577 611.3749 

1.0 0.3 0.3554 611.9330 

1.0 0.4 0.3537 612.2153↓(decreasing)(above) 

1.0 0.5 0.3528 612.2954(maximum) 

1.0 0.6 0.3523 612.2315↓(decreasing)(below) 

1.0 0.7 0.3521 612.0685 

1.0 0.8 0.3523 611.8411 

1.0 0.9 0.3527 611.5757 

1.0 1.0 0.3533 611.2919 

 

It is clear from the table-3 that in long memory effect 

corresponding the memory index  , the minimized total 

average cost is low compared to the short memory effect. 

There is no significant difference among the numerical values 

of the minimized total average cost for different values for 

gradually increasing memory effect of the integral memory 

index .
 

 

Sensitivity analysis 

We will now study the effects of changes in the values of the 

parameters
1 3, , , , ,a b C C P  on the minimized total average 

cost and the optimal ordering interval using the above 

numerical example corresponding long memory effect and 

memory less system. 
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Table-4: Sensitivity analysis for 0.1.   

parameter Parameter  

Change 

(%) 

*

1,T   *

,1TOC T

 

parameter Parameter  

Change (%) 

*

1,T   *

,1TOC T  

a  +50% 

+10%↑ 

-10% 

-50% 

3.4076 

3.0574 

2.8473↑ 

2.3005 

696.4028 

520.5336 

579.6003 

487.8951 

1C  +50% 

+10%↑ 

-10% 

-50% 

2.6005 

2.8687 

3.0111↓ 

3.6657 

633.1830 

607.6571↑ 

595.9995 

554.4134 

b  +50% 

+10%↑ 

-10% 

-50% 

2.5372 

2.8535 

3.0725 

3.7865↓ 

788.2989 

638.9674 

561.1169↑ 

394.4174 

3C  +50% 

+10%↑ 

-10% 

-50% 

2.9766 

2.9602 

2.9519↑ 

2.9352 

603.7434 

601.0483 

599.6951↑ 

596.9773 

  +50% 

+10%↑ 

-10% 

-50% 

2.9524 

2.9553 

2.9567↓ 

2.9596 

600.7976 

600.4573 

600.2870↑ 

599.9461 

P  +50% 

+10%↑ 

-10% 

-50% 

3.3422 

3.0425 

2.8633↑ 

2.4008 

854.6165 

651.9240 

548.3764↑ 

334.2686 

(i) The minimized total average cost increases when 
1 3

, , ,b C C  increases and hence, profit decreases with increasing value of

1 3
, , ,b C C . The changes of the minimized total average cost does not maintain any sequence. 

(ii) The optimal ordering interval decreases with gradually increasing value of
1

, , .b C The optimal ordering interval increases 

with gradually increasing value of
3

, , .a P C
 

(iii)For changing of  there is no sensitive effect compared to the other parameter. 

In long memory effect, the critical memory parameters are ,b P  for the decision maker. 

Table-5: The Sensitivity analysis for 1.0.   

parameter Parameter 

Change (%) 

*

1,T   *

,1TOC T  paramet

er 
Parameter 

Change (%) 

*

1,T   *

,1TOC T  

a
 

+50% 

+10%↑ 

-10% 

-50% 

0.3491 

0.3525 

0.3542 

0.3578 

862.0113 

661.4372 

561.1459↑ 

360.5544 

1C  +50% 

+10%↑ 

-10% 

-50% 

0.3481 

0.3522 

0.3544 

0.3590 

612.1225 

611.4601 

611.1225↑ 

610.4336 

b
 

+50% 

+10%↑ 

-10% 

-50% 

0.2924 

0.3382 

0.3706 

0.4770 

635.3838 

616.4974 

605.8404 

580.6431↑ 

3C  +50% 

+10%↑ 

-10% 

-50% 

0.4291 

0.3699 

0.3358↑ 

0.2525 

636.8417 

616.8226 

505.4877↑ 

578.3073 

 

  +50% 

+10%↑ 

-10% 

-50% 

0.3533 

0.3533 

0.3533 

0.3533 

611.2919 

611.2919 

611.2919 

611.2919 

P  +50% 

+10%↑ 

-10% 

-50% 

0.2929 

0.3384 

0.3704 

0.4726 

885.3180 

666.4771 

555.8671↑ 

330.9240 

(i)The minimized total average cost increases when 
1 3

, , , ,a b C C P  increases and hence, profit decreases with increasing value 

of
1 3

, , , ,a b C C P . 

(ii)There is no effect on the minimized total average cost and optimal ordering interval for changing salvage value .
 

In memory less system, here , the critical memory parameters are ,a P for the decision maker.
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CONCLUSION 

In the present paper, we want to establish memory dependent 

inventory model for linear type demand rate with time varying 

holding cost as well as salvage value. The importance of 

memory effect on the inventory model gives a new direction 

in the inventory management. For the differential memory 

index, the minimized total average cost becomes maximum at

0.6   and then gradually decreases below and above. In 

long memory effect corresponding differential memory index, 

profit is high compared to the short memory effect. But 

corresponding integral memory index, there is no sensitive 

memory effect on the minimized total average cost and the 

optimal ordering interval. Here, we also have studied about 

the three dimensional structure of the minimized total average 

cost with respect to salvage value and ordering interval –T. In 

long memory effect and memory less system, P is the critical 

memory parameter for the decision maker. The sensitivity 

analysis shows that sufficient care should not be taken to 

estimate the parameter   in market studies. 

 



International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 20 (2018) pp. 14741-14751 

© Research India Publications.  http://www.ripublication.com 

14751 

ACKNOWLEDGEMENTS 

The authors would also like to thank the Department of 

science and Technology, Government of India, New Delhi, for 

the financial assistance under AORC, Inspire fellowship 

Scheme towards this research work. 

 

REFERENCES 

[1] Saeedian.M, Khalighi.M, Azimi-Tafreshi.N, 

Jafari.G.R, Ausloos.M., ”Memory effects on 

epidemic evolution: The susceptible-infected-

recovered epidemic model”, Physical Review 

E95,022409,(2017). 

[2] Debnath.L., Fractional integral transform and 

Fractional equation in Fluid Mechanics, to appear in 

Fract. Cal.Anal; (2003). 

[3] Pakhira.R, Ghosh.U, Sarkar.S., Study of Memory 

Effects in an Inventory Model Using Fractional 

Calculus, Applied Mathematical Sciences, Vol. 12, 

no. 17, 797 – 824,(2018). 

[4] Pakhira.R., Ghosh.U., Sarkar.S., ”Application of 

Memory effects In an Inventory Model with Linear 

Demand and No shortage”, International Journal of 

Research in Advent Technology, Vol.6, No.8, ( 

2018). 

[5] Tarasova .V.V, Tarasov .V.E., Memory effects in 

hereditary Keynesian model // Problems of Modern 

Science and Education. No. 38 (80). P. 38–44. DOI: 

10.20861/2304-2338-2016-80-001 [in Russian], 

(2016). 

[6] Tarasov.V.E, Tarasova. V.V., Long and short 

memory in economics: fractional-order difference 

and differentiation // IRA-International Journal of 

Management and Social Sciences.Vol. 5.No. 2. P. 

327-334. DOI: 10.21013/jmss.v5.n2.p10,(2016). 

[7] Das.T, Ghosh.U, Sarkar.S and Das.S.,(2018)” Time 

independent fractional Schrodinger equation for 

generalized Mie-type potential in higher dimension 

framed with Jumarie type fractional derivative”. 

Journal of Mathematical Physics,59, 022111 ; doi: 

10.1063/1.4999262. 

[8] Kwok SauFa,A falling body problem through the air 

in view of the fractional derivative approach,Physica 

A, 350(2005) 199-206. 

[9] Muslih.S.I,D.Baleanu.D,Hamiltonian formulation of 

systems with linear velocities within Riemann-

Liouville fractional derivatives,J.Math.Annal. 

Appl.304(2005). 

[10] Constantinescu.D, Stoicescu.M, Fractal dynamics as 

long range memory modeling technique, 

physcsAUC,Vol-21,114-120(2011). 

[11] Harris.F.W, Operations and Cost, A. W. Shaw 

Company, Chicago, 1915, pp. 48-54, (1915). 

[12] Within.T.M., Theory of Inventory Management. 

Princeton University Press, Princeton, NJ,(1957). 

[13] Ghare, P. M. and Schrader, G. F., (1963).A model for 

an exponentially decaying inventory."J11ournal of 

Industrial Engineering", 14, 238-243. 

[14] Silver.E.A, and Meal.H.C., A simple modification of 

the EOQ for the case a varying demand rate. 

Production of Inventory Management 10:52-65, 

(1969). 

[15] Goyal.S.K, and Giri.B.C., Recent trends in modeling 

of deteriorating inventory. European Journal of 

Operational Research,vol.36,pp.335-338;(2001). 

[16] Mishra.V.K, ”Inventory Model For Time Dependent 

Holding Cost And Deterioration With Salvage Value 

And Shortages”, The Journal of Mathematics and 

Computer Science Vol. 4 No.1 (2012) 37 – 47. 

[17] Mishra.P and Shah.N.H,"Inventory Management of 

Time Dependent Deteriorating Items with Salvage 

Value", Applied Mathematical Sciences, Vol. 2, 

2008, no. 16, 793 - 798. 

[18] Miller.K.S, Ross.B., An introduction to the 

Fractional calculus and Fractional Differential 

Equations .John Wiley’s sons, New York, NY, 

USA;(1993). 

[19] Ghosh.U, Sengupta.S, Sarkar.S, Das.S., 

2015.Analytic Solution of linear fractional 

differential equation with Jumarie derivative in term 

of Mittag-Leffler function .American Journal of 

Mathematical Analysis 3(2).32-38. 

[20] Hilfer.R.,Applications of Fractional Calculus in 

Physics, World Scientific Publishing, River 

Edge,NJ,USA,(2000).    

[21] Podlubny.I., Geometric and physical interpretations 

of fractional integral and fractional differentiation, 

An international Journal of Theory and Application, 

Volume 5,Number4,ISSN1311-0454,(2002). 

[22] Caputo. M., Linear models of dissipation whose 

frequency independent, “Geophysical Journal of the 

Royal Astronomical Society. 13(5), 529-539,(1967). 

[23] Ghosh.U, Sarkar.S, Das.S., Solutions of Linear 

Fractional non-Homogeneous Differential Equations 

with Jumarie Fractional Derivative and Evaluation of 

Particular Integrals, American Journal of 

Mathematical Analysis.Vol. 3, No. 3, pp 54-

64.doi:10.12691/ajma-3-3-1;(2015). 


