Design and Analysis of Adjustable Constant Current Source with Multi Frequency for Measurement of Bioelectrical Impedance

Charu Pawar
Research Scholar, Department of Electronics Engineering,
Dr. A P J Abdul Kalam Technical University, Lucknow, Uttar Pradesh, India.
Orcid Id: 0000-0002-9291-3047

Munna Khan
Professor, Department of Electrical Engineering,
Jamia Millia Islamia University, New Delhi, India.

J.P. Saini
Director, Netaji Subhas Institute of Technology
(An Autonomous Institute of Govt. of NCT of Delhi)
University of Delhi, India

Abstract

Bio-Impedance analyzer, using adjustable constant current source with multi frequency system consist an advanced form of Howland Constant Current Source in which a very low constant current injected in joint tissues by changing the values of load resistor. Resultant current were shown on 10 values of load resistance applied with change in constant current as 208.49 μA, 229.12 μA, 254.29 μA, 285.71 μA, 326.05 μA, 379.74 μA, 454.74 μA, 566.95 μA, 753.31μA, 1.12mA respectively for 10-1kΩ for detection of joint disease. System includes all measurements at different frequencies of range 50-200 KHz at a constant value of current. Current remains constant at all values of frequencies.

Keywords: Bio-impedance analyser, Adjustable constant current source, Multi frequency, Joint disease.

INTRODUCTION

Bioelectrical-impedance is mostly used to diagnose body condition. The applications not only include body joints assessment and body computation; it is determining salutary status of body. Single frequency and multi frequency bio-impedance analysis is useful for impedance information from last decades. A Bioelectrical-impedance (BI) technique includes a process of small current injection in body then considers voltage across it for measurement of impedance using Ohms law.

Osteoarthritis (OA) can affect any joint of body, but it most often occurs in the hands, knees, hips, or spine. The knee segments bear more weight than any other joint in the body, which makes them very susceptible to OA. OA affected human can suffer from unbearable pain with limited joints motion. Sometimes Disability can be last point. Physical exercise and medical treatment is very useful in this case. At the last disability stage joint replacement surgery can often help people for their independence. Proposed study is a easy, fast and non-invasive method, to measure body segments abnormalities for early detection of this type of diseases.

OA is a most common disease in elderly population and female, it is a non-fatal irreversible problem [1]. It is possible to detect knee osteoarthritis earlier by measuring changes in selected articular cartilage features using sensitive modalities [2].

Bioelectrical Impedance Analysis (BIA) may be used for estimating body segments. A very small and constant currents flows between electrodes, for this purpose. Another pair of electrodes pick voltage signals from subject's body. This voltage is represents in terms of impedance [3]. It can be measured by applying a small 1mA, 50 KHz current which is injected into the body through a pair of electrodes and the induced voltage is picked up using another pair of electrodes [4]. The average value of the knee intracellular resistance was of 281 ± 82.6 Ω in the health subjects (NG) and 143 ±33.9 Ω in subjects with knee osteoarthritis (OG) [5]. The resistivity of the leg constituents, fat, muscle, bone (tibia and fibula) and blood volume, were taken as 1400 Ohms-Centimeters (Ω-cm), 200 Ω-cm, 10000 Ω-cm, 150 Ω-cm) respectively [6,7]. The LEI has been predicted to be 46.7 omega, in which experimental value of 46.0 omega and predicted value, being 1.58% higher [8]. Multi-frequency and electrodes method are implemented in Bioelectrical impedance measurement systems. A low frequency (less then 10KHz) flows only outside the cell membrane through extracellular fluid, but high frequency (above 100KHz) flows inside and outside the cell through extra and intracellular fluid [8]. Extra-cellular resistance (Re) and reactance of the equivalent capacitance (Xcx) increase according to the disease intensity [9]. BIA was measured at each frequency according to the distance between the two electrodes when the distance between the electrodes was changed from 1 to 15 cm [8].

Bioelectrical impedance may vary with frequency of measuring signal due to the nature of tissues. There is a nonlinear relation between impedance and frequency. Slow rise time of active component can be improved using high speed components in circuit because current source has better performance at low frequency [10]. Biomedical sensors
commonly designs at below 100kHz frequency for better sensitivity [11].

In Howland circuit when resistance changes then output current and impedance also sensitive. High operational amplifier gain is required to get higher output impedance. Open loop gain of the operational amplifier increases with increment in sensitivity of the output impedance [12]. The output impedance varies with frequency [13], range 10 Hz to 100 kHz. But at very high load above 10 kΩ the current starts decreases [14]. If current levels fluctuate in unit of microamperes then it stable between 1 and 100 kHz. [15]. Load current shrinks with increasing frequency and load resistance, its value is always less than the ideal 1 amp [14]. During non-invasive techniques measure voltage across OA effected joints, it can be represent as resistance and capacitive reactance. [16].

The voltage detection is done across measuring electrode with respect to ground [17]. By measuring impedance of a segment of body, potential problems of the damaged tissue of segments may be found. Every tissue exhibits its own specific impedance according to its electrical properties at each frequency [18]. Phase angle of patients with malnutrition is lower than that of healthy subjects (P<0.01 for male and P<0.05 for female) [19].

BIOELECTRICAL IMPEDANCE

Bioelectrical impedance measurements have been employed to determine various body characteristics, such as assessment of joints, fluid volume, blood flow and composition including an assessment of body fat, lean body mass, intracellular mass and extracellular mass.

Figure 1: Intracellular and extracellular electrical circuit diagram.

Basic Principle of Bioelectrical Impedance Analysis

Impedance is a opposition of alternate current which flowing in a conductor; it is dependent on frequency of conductor. Impedance (Z) is a combination of resistance (R) and reactance (XC), measured at fixed frequency express mathematically by the equation

\[Z^2 = R^2 + XC^2 \]

Figure 2: Impedance curve of resistance and reactance with frequency.

Estimation of total body water (TBW) based upon a relationship between resistance and a conductor is represented in the formula:

\[V = \rho L^2 / R. \]

Since, Resistance \(R = \rho (L/A) \) and Volume \(V = L \times A \) or \(A = V/L \), Where L= length; A= area; \(\rho \)= specific resistivity.

Basic Measurement Techniques For BIA

Basic technique for the measurement of electrical impedance consist constant current source for applying a small amount of current across which impedance measure with one or two pair of electrodes for sensing corresponding voltage. Frequency generator, an A/D converter and finally a display unit used for proposed system.

Figure 3: Current flow in BIA, Types of Analyzer.
METHODS AND MATERIALS

Aim of the proposed research is to develop a system for the measurement of electrical impedance of body segments with help of a combination of some low cost, compact, reliable and easy design circuits. System block diagram and circuits design is explained in the following diagram:

![System block diagram](image)

Electrodes Method and Benefit

Four-electrode BIA is an informative, accurate, easy to perform and affordable method of determining impedance of joints. Connected Electrodes are composed of Ag/AgCl material which is used mostly in bio-impedance applications.

Adjustable Constant Current Source

A constant current which is not dependent on input voltage and output load; provide by a constant current source. Most electronic devices have a maximum current rating and if current above that rating is drawn by it, the device may get damaged or not work properly.

Proposed research use an adjustable constant current source which supplies a variation of constant current 200-750μA. Constant current of circuit can be changed as per requirement by changing the load resistance at the output of the circuit. According to the circuit, output current can be manually adjusted with a constant value at a particular frequency. Constant current vary from 208.49μA to 1.12mA by changing load resistance from 10kΩ to 1kΩ at frequency range of 50-200 KHz. Table 1 shows the resultant adjustable constant current source with multi frequency at different load values.

Multi-Frequency Generator

Multi-frequency generator is used to generate a sine wave of variable frequency 50 KHz to 200 KHz which is required for the measurement of bio impedance of body segments.

Automatic Gain Control

Multi-frequency generator use AGC to adjust amplification rate of signal.

Impedance Measurement

Bioelectrical impedance of body segments can be measured using two pair of electrodes; one pair of electrode is used for injecting small current in body and second pair of electrode used for measure Impedance from body tissues.

Analog to Digital Converter

ADC is more useful for finding small currents of the order of μA.

Voltage Amplification

Voltage amplifier is used to amplified measure voltage across applied current.

Band Pass Filter

To find the exact shape of sine wave; we designed a band pass filter for the frequency range 50-200 KHz.

Digital Voltmeter

Digital voltimeters worked as multitasking and use for measuring current, voltage and resistance as it replaced by digital multi-meter.

PC or CPU

To control Bio impedance analysis and measured bio impedance data; whole circuit is simulated by TINA-TI. PC program use for set parameters as Computer program is used for the variation of parameters values as increment and decrement of no. of output and frequency. Computer use RS232 communication protocol to store measured data which display in form of graph, tables.

Simulation Detail

In this section, paper presents simulation studies and the obtained results.

Introduction of TINA-TI

TINA-TI is useful to design a broad variety of basic and advanced circuits, which include complex circuitry, without any lack of node or number of device.

Integrated PCB Design

TINA has all the features to design advanced PCB designed, including PCB’s with multi layers split power plane layers.
Table 1. Adjustable Constant Current with different load between frequency range 50-200 KHz.

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Freq. Range (KHz)</th>
<th>LR (Ω)</th>
<th>ACC (µA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>50-200</td>
<td>10k</td>
<td>208.49</td>
</tr>
<tr>
<td>2</td>
<td>50-200</td>
<td>9k</td>
<td>229.12</td>
</tr>
<tr>
<td>3</td>
<td>50-200</td>
<td>8k</td>
<td>254.29</td>
</tr>
<tr>
<td>4</td>
<td>50-200</td>
<td>7k</td>
<td>285.71</td>
</tr>
<tr>
<td>5</td>
<td>50-200</td>
<td>6k</td>
<td>326.05</td>
</tr>
<tr>
<td>6</td>
<td>50-200</td>
<td>5k</td>
<td>379.74</td>
</tr>
<tr>
<td>7</td>
<td>50-200</td>
<td>4k</td>
<td>454.74</td>
</tr>
<tr>
<td>8</td>
<td>50-200</td>
<td>3k</td>
<td>566.95</td>
</tr>
<tr>
<td>9</td>
<td>50-200</td>
<td>2k</td>
<td>753.31</td>
</tr>
<tr>
<td>10</td>
<td>50-200</td>
<td>1k</td>
<td>1120.00</td>
</tr>
</tbody>
</table>

RESULTS AND DISCUSSIONS

Simulation result shown from figure 5 to figure 12. Relationship between constant current and load resistance with frequency is presented in the form of graphs. These graphs represent different values of constant current at different load resistances with multi frequencies which remain constant.

Figure 5 and figure 6 show that value of constant current remains constant at load resistance 2kΩ at frequency 100KHz and 50KHz is 753.31µA. Similarly, in figure 7 and figure 8 constant current of value 379.74µA remains constant at load resistance 6kΩ with frequency 150 and 200KHz. In figure 9 and figure 10 current is 208.49µA with RL =10kΩ at frequency 100 KHz and 200 KHz. At frequency 50 KHz and 200 KHz constant current value is 566.95µA at load resistance 8kΩ in figure 11 and figure 12. Vsine is output of function generator in form of sine wave at frequency range 50-200 KHz.

Figure 5: Output of ACCS at RL=2kΩ with 100KHz.

Figure 6: Output of ACCS at RL=2kΩ with 50KHz.

Figure 7: Output of ACCS at RL=6kΩ with 150KHz.

Figure 8: Output of ACCS at RL=6kΩ with 200KHz.
Conclusions

In this study, adjustable constant current system is designed in which constant current is used to measure bioelectrical impedance with different load values at different values of frequency. For the measurement of bioelectrical impedance an adjustable constant current is used to inject a constant current in to the body joints. It is also a more conventional method of changing the frequency manually and record voltage in terms of impedance. From the experimental results, it is showing that an adjustable constant current source with multi-frequency bio-impedance measuring system provides a constant current from 200 to 700 µA on different load resistance over the frequency range of 50-200 KHz.

In this proposed system, all the information about the parameter setting and data measurement of the system, controlled and provided through TINA-TI software interface. The system provides a software integration solution for the bio impedance measurements which may be very useful and helpful in clinical applications.

Proposed research enhanced by measuring different parameters related to body in field of biomedical electronics for assessment of joints diseases and body composition as bioelectrical impedance, body mass index, intracellular fluid, extracellular fluid, total body water, phase shift according to subjects with different age, sex, weight. Study will be enhanced by comparative analysis of normal and abnormal subjects in sense of joint disease. The proposed system may be applied to the clinical application such as the electrical characterization of joint tissues for disease detection.

References

international Conference of the IEEE EMBS, Cancun, Mexico, 17-21.

