2 – Equitable Domination in Fuzzy Graphs

C. Gurubaran¹, A. Prasanna² and A. Mohamed Ismayil³

¹Department of Mathematics, National College, Tiruchirappalli, Tamilnadu, India.
²³Department of Mathematics, Jamal Mohamed College, Tiruchirappalli, Tamilnadu, India.

Abstract
In this paper, 2 – equitable dominating set and 2 – equitable domination number of a fuzzy graph is introduced. Some results on 2 – equitable dominating sets are proved upper and lower bounds of 2 – equitable domination number are obtained. The new parameters connected 2 – equitable dominating set, connected 2 – equitable domination number and exact 2 – equitable dominating set, exact 2 – equitable domination number of a fuzzy graph are discussed.

Keywords : strong neighbours, 2- dominating set, 2- domination number, 2- equitable dominating set, 2- equitable domination number.

AMS Mathematics Subject Classification (2010) : 03E72, 05C72

INTRODUCTION
Zadeh[8] introduced the concept of fuzzy sets in the year 1965. In 1975, fuzzy graph was introduced by Rosenfeld[4]. The notion of domination in fuzzy graphs was developed by A. Somasundaram and S. Somasundaram[6]. Nagroorgani and Chandrasekaran[3] discussed about domination in a fuzzy graph using strong arcs. The concept of degree equitable domination in graphs was introduced by Venkatasubramanian Swaminathan and Kuppusamy Markandan Dharmalingam[7]. Sivakumar.S., Soner.N.D., and Anwar Alwardi[5] introduced the concept 2-equitable domination in graphs. The concept of equitable domination in fuzzy graphs was introduced by Dharmalingam and Rani[2]. In this paper, the 2-equitable domination sets and its numbers are defined and discussed.

PRELIMINARIES

Definition 2.1
Let \(G^* = (V,E) \) be a graph with vertex \(V \) and edge set \(E \subseteq V \times V \). Let \(\sigma \) and \(\mu \) be a fuzzy set of \(V \) and \(E \) respectively. Then \(G = (\sigma, \mu) \) be a fuzzy graph if \(\mu(u,v) \leq \sigma(u) \wedge \sigma(v) \) for all \((u,v) \in E \) and is denoted by \(G = (\sigma, \mu) \).

Definition 2.2
Let \(G = (\sigma, \mu) \) be a fuzzy graph then the order and size are defined as \(p = \sum_{u \in V} \sigma(u) \) and \(q = \sum_{(u,v) \in E} \mu(u,v) \).

Definition 2.3
The neighbourhood degree of a vertex \(u \) is defined to be the sum of the weights of the vertices adjacent to \(u \) and is denoted by \(d_N(u) \). The minimum neighbourhood degree of \(G \) is \(\delta_N(G) = \min\{d_N(u) : u \in V \} \) and the maximum neighbourhood degree of \(G \) is \(\Delta_N(G) = \max\{d_N(u) : u \in V \} \).

Definition 2.4
An arc \((u,v)\) in a fuzzy graph \(G = (\sigma,\mu) \) is said to be strong if \(\mu^o(u,v) = \mu(u,v) \) then \(u, v \) are called strong neighbours.

Definition 2.5
The strong neighbourhood of the vertex \(u \) is defined as \(N^s(u) = \{v \in V | (u,v) \text{ is a strong arc} \} \).

Definition 2.6
A vertex \(u \in V \) dominates \(v \in V \) if \((u,v) \) is a strong arc. A subset \(D \) of \(V \) is called a dominating set of a fuzzy graph \(G \) if for every \(v \in V - D \) there exists \(u \in D \) such that \(u \) dominates \(v \). The minimum scalar cardinality taken over all dominating set is called domination number and it is denoted by \(\gamma \) of a fuzzy graph \(G \).

Definition 2.7
Let \(u \) and \(v \) be two vertices in a fuzzy graph \(G \). A subset \(D \) of \(V \) is called an equitable dominating set if for every \(v \in V - D \) there exist a vertex \(u \in D \) such that \(uv \in E(G) \) and \(|d(u) - d(v)| \leq 1 \) and \(\mu(u,v) \leq \sigma(u) \wedge \sigma(v) \). The minimum scalar cardinality of an equitable dominating set in a fuzzy graph is called equitable domination number and is denoted by \(\gamma_e(G) \).

Definition 2.8
A subset \(D \) of \(V \) is called a 2 – dominating set of \(G \) if for every vertex \(v \in V - D \) there exist atleast two strong neighbours in \(D \). The 2 – domination number of a fuzzy graph \(G \) is the minimum cardinality of a set of all 2 – dominating set of \(G \) and is denoted by \(\gamma_2 \).
2 – EQUIVALENT DOMINATION IN FUZZY GRAPHS

In this section, 2-equitable dominating set and 2-equitable domination numbers of a fuzzy graph are defined. The relation among domination number, equitable domination number and 2-equitable domination number are also obtained.

Definition 3.1

An equitable dominating set \(D \subseteq V \) of a fuzzy graph \(G = (\sigma, \mu) \) is called 2 – equitable dominating set if for every vertex \(v \in V - D \) there exist \(v \in D \) or \(v \) is equitable dominated by atleast two vertices in \(D \).

The minimum scalar cardinality of an 2 – equitable dominating set of \(G \) is called the 2 – equitable dominating number of \(G \) and is denoted by \(\gamma_{2e}(G) \).

Example 3.2

[Diagram showing vertices a, b, c, d, e with edges and values 0.9, 0.7, 0.8, 0.9, 0.8]

Equitable Dominating set \(D \) of a fuzzy graph are \(\{b, e\}, \{a, d\}, \{e, c\} \Rightarrow \gamma_e = 1.8 \)

2 – equitable dominating set = \(\{e, d, b\}, \gamma_{2e} = 2.7 \)

Proposition 3.3

i) \(\gamma(G) \leq \gamma_e(G) \leq \gamma_{2e}(G) \)

ii) \(\gamma_{2}(G) \leq \gamma_{2e}(G) \)

Proof

From the definition, 2-equitable dominating set of a fuzzy graph \(G \), it is clearly that for any fuzzy graph \(G \) any 2 – equitable dominating set \(D \) is also an equitable dominating set and is also dominating set. Hence \(\gamma(G) \leq \gamma_e(G) \leq \gamma_{2e}(G) \)

Similarly, since every 2 – equitable dominating set is 2 – dominating set for any fuzzy graph \(G \). Hence \(\gamma_{2}(G) \leq \gamma_{2e}(G) \).

Definition 3.4

2 – equitable dominating set \(D \) is said to be minimal if no proper subset of \(D \) is 2 – equitable dominating set.

Proposition 3.5

For any fuzzy graph \(G \) with order \(p \), then \(\sum_{v_i \neq v_j} \min(\sigma(v_i), \sigma(v_j)) \leq \gamma_{2e}(G) \leq p \)

Proof

Let \(D \) be a dominating set of a fuzzy graph \(G \) having atleast two vertices has minimum of \(V \) which is a sum of minimum value of a vertices\(v_i, v_j \in D, \gamma_{2e}(G) \leq p \) it is obviously true.

Theorem 3.6

Let \(G \) be a fuzzy graph, \(\gamma_{2e}(G) = p \) iff the fuzzy graph \(G \) has adjacent to less than two vertices.

Proof

Let \(G \) be a fuzzy graph then \(\gamma_{2e}(G) = p \) then definition of fuzzy graph has all vertices in dominating set \(D \). which shows that every vertex in \(G \) has adjacent to less than two vertices. Conversely, \(G \) be a fuzzy graph has adjacent to less than two vertices then every vertex in are in dominating set. Which is \(\gamma_{2e}(G) = p \)

Theorem 3.7

Let \(D \) is a minimal 2 – equitable dominating set then \(V - S \) contains minimal 2 – equitable dominating set if every vertex of \(V \) in a fuzzy graph \(G \) adjacent to more than two vertices in \(V \)

Proof

Let \(D \) be a minimal 2 – equitable set of \(G \) suppose that \(V - D \) is not an equitable dominating set, then there exist atleast one vertex \(v \in D \) which is not equitable adjacent to any vertex in \(V - D \). Therefore \(V - D \) is equitable adjacent to atleast two vertices in \(D \) then \(D - \{v\} \) is an 2 – equitable dominating set which is a contradiction. Hence every vertex in \(D \) must be equitable adjacent to atleast one vertex in \(V - D \). Hence \(V - D \) is equitable dominating set which contains minimal equitable dominating set.

Corollary 3.8

Every connected fuzzy graph has minimum 2 – equitable dominating set \(D \) then \(V - D \) need not be 2 – equitable dominating set of \(G \).

Proof

Let \(D \) be a 2 – equitable dominating set of \(G \) satisfies the condition also \(|d(u) - d(\nu)| \leq 1 \), suppose \(v \in V \), then \(v \) be in every 2 – equitable dominating set of a fuzzy graph \(G \), since it has only one neighbor vertex. This one neighbor also strong neighbor of \(v \). Which shows that every vertex in \(V - D \) does not has two strong neighbors for \(v \). This implies that \(V - D \) is not a 2 – equitable dominating set of \(G \).
Theorem 3.9
Let G be a connected fuzzy graph has no non–equitable edge and H is spanning subgraph of G then $\gamma_{2e}(G) \leq \gamma_{2e}(H)$

Proof
Let G be a connected fuzzy graph and H is the spanning subgraph of H. Consider D is minimum 2–equitable dominating set of G, D also an 2–equitable dominate all the vertices in $V(H) - D$ that is D is an 2–equitable dominating set in H. Hence $\gamma_{2e}(G) \leq \gamma_{2e}(H)$.

Theorem 3.10
For cyclic fuzzy graph G with odd cycle then,
$$\gamma_{2e} = \begin{cases} \gamma_e + \min \sigma(v_i), & v_i \notin D \text{ if odd cycle} \\ \gamma_e, & \text{if even cycle} \end{cases}$$

Theorem 3.11
For any fuzzy graph G, $\gamma_e + \min \sigma(v_i) \leq \gamma_{2e}(G)$, for $v_i \notin D$.

Proof
Let D be 2–equitable dominating set with minimum cardinality γ_{2e}. For any vertex $v_i \in D, D - \{v_i\}$ is equitable dominating set. Hence $\gamma_e + \min \sigma(v_i) \leq \gamma_{2e}(G)$.

Theorem 3.12
For any fuzzy graph G of order p, size q and maximum neighbourhood degree Δ_N of fuzzy graph G. Which shows that $\Delta_N + \Delta_N(\Delta_N - 1) = \Delta_N^2$. The 2–equitable dominating set has another vertex with maximum degree of G, i.e. $2\Delta_N^2 + 1$. In the same way, an edge v_1, v_2 of G enables to dominate atmost itself $2(\Delta_N - 1) + 2 = 2\Delta_N$ and $2(\Delta_N - 1) + 2(\Delta_N - 1)^2 = 2\Delta_N^2 - 2\Delta_N$, which has maximum number of vertices adjacent to it. i.e $2\Delta_N^2 + 1$. The result is $\gamma_{2e}(G) \geq \frac{p + q}{2\Delta_N^2 + 1}$ is obvious.

CONNECTED 2–EQUITABLE DOMINATION IN FUZZY GRAPHS

Definition 4.1
Let $G = (\sigma, \mu)$ be a fuzzy graph. An 2–equitable dominating set $D \subseteq V(G^*)$ if the subgraph of G induced by D is connected. The connected 2–equitable dominating of G with minimum cardinality is called connected 2–equitable dominating number of a fuzzy graph G and it is denoted by γ_{2ce}.

Observation 4.2
For any fuzzy tree T, with size p then $\gamma_{2ce} = p$

Proposition 4.3
For any fuzzy graph $G, \gamma(G) \leq \gamma_e(G) \leq \gamma_{2e}(G) \leq \gamma_{2ce}(G)$

Theorem 4.4
Let G be a fuzzy graph without any equitable isolated vertices, then $\gamma_{2ce}(G) \leq \Delta_N + 1$

Proof
Let v be any vertex with $d(v) = \Delta_N(G)$ then obviously $N(v)$ is connected equitable dominating set and hence $\gamma_{2ce}(G) \leq \Delta_N + 1$.

Example 4.5

![Diagram](image)

Connected 2–equitable dominating set = {a, b, c, e}, $\gamma_{2ce} = 2.4$
Theorem 4.6
For any fuzzy graph, \(\gamma_{2ce}(G) \geq \frac{2p}{\Delta N + 2} \)

Proof
Let \(D \) be a minimum connected 2 – equitable dominating set and let \(k \) number of strong edges between dominating set \(D \) and \(V - D \). Since the degree of each vertex in \(D \) is atmost \(\Delta N \), which shows that \(\sum \mu(u_i, u_j) \leq \Delta N \). But each vertex in \(V - D \) is adjacent to at least 2 vertices in \(D \). \(\sum \mu(u_i, u_j) \geq 2(p - \gamma_{2ce}) \) combining these two inequalities produce \(\gamma_{2ce}(G) \geq \frac{2p}{\Delta N + 2} \).

Example 5.2

Equitable dominating set of a fuzzy graph \(G = \{v_1, v_4, v_6, v_{10}\} \), \(\gamma_e = 1.9 \)

Exact 2 – equitable dominating set = \(\{v_2, v_4, v_6, v_8, v_{10}\} \),
\(\gamma_{2ee} = 2.7 \)

Theorem 5.3
If \(G \) be a fuzzy graph has an exact 2 – equitable dominating set then all such sets have the same size.

Proof
Let \(D_1, D_2 \) be the two exact 2 – equitable dominating sets of \(G \). Let us write \(C = D_1 \cap D_2 \) and let \(X_0 \) and \(X_1 \) be the subsets of \(D_1 - I \) such that every vertex of \(X_0 \) has no neighbours in \(I \) and every vertex of \(X_1 \) has exactly one strong neighbor in \(I \). \(\gamma_{2ee} \) is an exact 2 – equitable dominating set \(Z \) in which every vertex of \(X_0 \) has exactly one neighbor in \(Y_0 \) and every vertex of \(X_1 \) has exactly two neighbours in \(Y_0 \). This implies \(|X_0| = |Y_0| \) and thus \(|D_1| = |D_2| \). Hence \(\gamma_{2ee} \) is an exact 2 – equitable dominating set, every vertex of \(X_1 \) has exactly one neighbor in \(Y_0 \) and \(Y_1 \), and every vertex of \(X_0 \) has exactly two neighbours in \(Y_0 \) and \(Y_1 \).

Proof
Let \(D \) be an exact 2 – equitable dominating set of a fuzzy graph \(G \), then \(\gamma_{2ee} \leq \frac{2p}{\delta N + 1} \)

Equitable domination number of \(G \) = \(2(p - \gamma) \) since \(D \) is an exact 2 – equitable dominating set. \(D \) induces the matching of \(G \) if it has two strong neighbours. Then which implies that \(\gamma_{2ee} \leq \frac{2p}{\delta N + 1} \).

Proposition 5.5
Every exact 2 – equitable dominating is 2 – equitable dominating set, but converse need not be true.
REFERENCES

