Driver Behavior Detection Techniques: A survey

Sarah Kadhim Aluluabi¹, Munaf S. Najim Al-Din², Aiman Moyaid³
Department of Information System, University of Nizwa, Nizwa, Oman.
Department of Electrical and Computer Engineering, University of Nizwa, Nizwa, Oman.

Abstract:
Driver behavior considered an important factor in vehicle-driver-environment system. Real driving monitoring system has a big role in increasing driving safety. Several factors effect on the behavior of the driver like the fatigue, distraction, experience, environment condition, vehicle condition, and so on. Improper driver behavior will lead to increase the probability of accidents occurring. So detecting driver behavior is one of interested research area. By identifying and distinguishing between normal driving and aggressive driving, driving monitoring system alert the driver about his dangerous driving. The driver can enhance his driving style and decrease accident occurring probability. The important factor in driving monitoring system is the accuracy of it. Different techniques have been used to identify driver behavior based on the objectives of each system. Sensors are the key factor of driving monitoring systems. In this paper, we discuss several methods which have been proposed for detecting driver behavior and identify the advantages and disadvantages of each method.

Keyword: aggressive, behavior, driver, dangerous, detection, monitoring, sensors, systems.

INTRODUCTION
Road accidents are undoubtedly becoming a growing concern in many countries because they are rising to become one of the leading causes of death and injuries. According to the World Health Organization (WHO), road accidents are considered the 9th leading cause of death worldwide and the leading cause of serious injuries [1]. In addition to traffic safety, fuel consumption and gas emissions also led vehicle manufacturers, other industries and research centres all over the world to develop solutions to monitor driving behavior, style, manoeuvres and performance. A driving behavior and style profiling system involves automated collection of driving data and application of computer algorithms and models to generate a taxonomy that describes the driver performance profile. The major module in any driving behavior and style profiling system is the identification of driving manoeuvres and the classification of the driving style for these events using intelligent systems. The real-time capturing of driving manoeuvres and events requires various types of sensors, such as acceleration, orientation, velocity and positioning [2-4]. Generally, current available monitoring systems are based on different technologies, such as global positioning services (GPS), Global Navigation Satellite Systems (GNSSs), In-Vehicle motion sensors accessible through CAN-BUS or OBD systems, external special purpose developed systems, vision systems and very recently smartphones. Smartphones are now includes different types of sensors and probes, such as GPS, Inertial Measurement Units (IMU), cameras, and etc. Although, Different sensors and classification methods have been employed for this driving manoeuvres and events detection and recognition; the low-cost solutions and high performance are still research targets [5-8]. The emergence of mobile-phones and sensor technology has led to the resurgence of smartphones. This widespread of smartphones with their increasing processing capacity and their increasingly rich sensors set led to the development of a numerous number of applications especially in driving safety area. Smartphones are now playing an important role in the field of Intelligent Transport Systems (ITS) such as driver behavior detection and vehicle monitoring [9]. In this paper, recent researches that proposed methods to detect driver behavior based on different parameters will be reviewed to identify the suitable method for driver behavior detecting. Note that there are different techniques used for driver behavior detection systems will be mentioned such as Advanced Driver Assistance system (ADAS), Simulator, Remotely mounted cameras and others.

The organization of this paper as follows: Section 2 discuss driver behaviour detection techniques briefly with strength and weakness of each one of them and section 3 the conclusion.

DRIVING MONITORING SYSTEM TECHNIQUES
Classification of driver behavior considered as a complex issue because it is a multi-dimensional problem and is subjected to several peculiarities of driver and traffic state [9].The traffic state is derived by group of variables like road conditions, vehicle kinematic and driver behavior [51]. All these factors can be described by a set of vague driving rules dependent on many conditions, vehicle and road state and vehicle [11]. events classification and identification [12] and biological and physiological status [10]. Building an accurate and complete model based on all these factors is difficult and also impossible in practice. In the last 10 years different commercial and research systems have been proposed to analyse the driver behavior and present systems to evaluate driver performance and assist drivers [13]. A common infrastructure all these systems are shared which is the driving monitoring system. Driving Monitoring Systems generally are classified into In-Vehicle Data Recording Systems and Real-Time Monitoring Systems [14].

8856
In-Vehicle Data Recording Systems

Classical monitoring systems usually utilize the in-vehicle sensory or external devices with data acquisition systems to monitor and record driving performance. The available systems are usually based on obtaining driving data from the CAN-BUS directly or by using OBD interface [13-15]. Other systems utilized external sensory systems to extract some information and parameters that are not accessible or obtainable through the CAN-BUS [16-18]. Hybrid systems that combine both in-vehicle and external sensory systems are also used to improve the accuracy and reliability through the sensor fusion of both systems [19-21]. In [22], proposed a system to detect if the driver distracted or fatigue based on Camera installed inside the car, the camera can alert the driver directly. In [23], they installed two cameras in front and at the end of the car to help the driver in lane changing decisions. Data recorder In-vehicle was installed in [24] to identify different driving maneuvers take environment condition as a factor in the analysis. In [25], proposed a system to detect drowsiness of the driver and swinging heads based on visual features to detect behavior of the driver. The violations of the traffic detection system proposed in [26] based on RFID technology.

Smartphone-based sensing in vehicles

The development of smartphones during the last ten years has enabled those whom own smartphones to carry a significant computational and processing power on their person at all times. Furthermore, all newly smartphones are now equipped with a wide range of sensing devices such as accelerometer, a gyroscope, magnetometer and many other sensors. In addition to build-in sensors, smartphones provide a link to the Global Positioning System satellite network thus allowing for navigational and tracking systems [27].

Various driving behavior systems have been proposed based on smartphone to avoid the several problems related to use different hardware devices, also the development in smartphone technology such as Accelerometer, a gyroscope, magnetometer,…, cheap cost and different other advantages help the smartphone to be a good and efficient platform for driver behavior detecting and monitoring systems [28]. In [17], they used smartphone motion sensors to classify the driving into normal and aggressive driving. In [29], they proposed a system to detect driver maneuvers based on accelerometer sensor only. System for recognize driver behavior have been proposed in [30]. Based on smartphone motion sensors in [31] based on smart phone they presented a system to detect the distraction of the driver with mobile. In [32], they presented application for mobile to detect dangerous and inefficient driving. A system to detect driving maneuvers based on smartphone has been proposed in [33]. In [34], based on accelerometer and orientation sensor of the smartphone a system proposed to detect unsafe driving. In [35], based on smartphone sensors they proposed a system to detect six types of maneuvers. In [36-37], they proposed a system to estimate the behavior of the driver based on smartphone. In [38], they proposed a system based on smartphone work as a black-box way in case of accidents. In [39], system work after accident occurring and inform other predefined persons about the accident.

All of the old systems have been proposed based on external devices or installing sensors in-vehicle to monitor and derived driving behavior. As well as, various systems have been proposed based on smartphone to avoid the several problems related to use different hardware devices, also the development in smartphone technology such as availability of different sensors (Accelerometer, gyroscope, magnetometer,…) help the smartphone to be a good and efficient platform for driver behavior detection.

Behavior Detection Methods

In [40], they installed CAN BUS in vehicle for collecting data. They used statistical method: Hidden Markov Model (HMM) and Gaussian Mixture Model (GMM) for detecting. Based on one parameter (Speed) they analyse the data using Matlab and compared between speeds in different events such as lane changing, over taking, stopping, and stable driving, all with distraction and natural driving. They found that HMM got more accurate results than GMM. As well as, they found that the speed is decreased with distraction driving in dangerous events like overtaking. However, they got high probability for false alarm in all events. In [41]. Based on CAN-BUS they collected different data from real driving trips, they used statistical method for detecting driving behavior such as mean, median and standard deviation in uncontrolled condition.

In [42], they used utilized external sensor such as GPS to extract some information and parameters that are not accessible or obtainable through the CAN-BUS, based on lateral, longitudinal and velocity as parameters they identified three events: Acceleration, Braking, and Turning. They used support vector machine for analysing data. They found that there is high potential for using external devices beside CAN_BUS to identify the type of event. However, their accuracy percentage considered low compared to other systems. In [43], they used accelerometer, gyroscope and magnetometer of physical device to analyse and detect behavior of the driver by using statistic method. They found that there are fixed axes changes for each type of maneuver for example in braking event the acceleration in x axes (a_x) of a car reduces to a negative value. As well as, they found that mean and peak value of acceleration in X, Y and Z axes are helpful to distinguish between brake, acceleration, turns and the slope information can help in differentiate between left and right lane change. They got good results but the need for design their physical device considered very costly. In [44] proposed detection system for driver behavior by using pattern recognition method for detection based on acceleration only. They used three axes of accelerometer sensor to analyse and detect behavior. They found that there is a big different in longitudinal acceleration between aggressive and normal driving. Their results show that more than 10% of the features are distinct for each style of driving. However, they did not mention to events which they are detected it.

In [45] a model that distinguishes between lane keeping, lane change and emergency lane change was suggested.
implemented using Bayesian Networks. In this model the steering wheel angle was used as the only information to detect and recognize maneuvers. Their result shows good accuracy related to the relation between angle of steering wheel and type of changing lane. However, long time analysis related to Bayesian network considered not good in driving behavior systems. The prediction of stopping event and behavior at intersections was suggested in [46]. The traffic signs, pedestrian crossing, and leading vehicle were used to assist the stopping behavior and evaluate the driver. They used multiple linear regression analysis for detect accelerating status and Bayesian networks for decelerating status. By using multiple linear regressions for analysis they got the dependencies between variables. By identifying three different coefficients for regression, they found that there is a relation between types of driving with traffic condition.

In particular [47], Dynamic time warping (DTW) algorithm and Bayesian classifier are used to estimate driver event by matching a predefined abnormal event templates with new real time data. A Bayesian network has been successfully applied for human-behavior modelling and driver manoeuvre recognition. However, the major drawback in utilizing Bayesian networks is due to the difficulty of including historical information. Therefore, more complicated forms of Bayesian networks such as dynamic Bayesian networks are suggested to overcome this drawback. However, this type of solution will add-up to the complexity in the construction as well as long time analysis which will lead to lose power of the battery [48-49].

Intelligent techniques such as neural networks are also used in the field of driver modelling. Neural networks proved to be a powerful technique for learning sample input/output relationships. In the case of predicting driving manoeuvres using neural networks, the input to the network could be behavioural parameters such as vehicle speed, acceleration and attitude or steering wheel angle. While the network’s output could be a model that predicts a manoeuvre and its assessment. In [50], an intelligent system (Neural Network) to perform an erratic driving diagnosis was proposed, Backbone propagation algorithm used to identify and recognize manoeuvres. Their work shows how differently drivers perform an overtaking manoeuvre and produce different styles with different speeds. Good method and high accuracy but there is a need for many external sensors which lead to increase the cost as well as, they collected data based on simulator. In [51], Neural Network used to detect and predict behavior of the driver based on Deep Recurrent algorithm. They used many devices to collect data such as camera, GPS, Can Bus and microphones to increase the accuracy of predicting. Very good performance was achieved but many devices used led to increase processing time. A neural network is used to learn how to execute overtaking maneuvers was implemented in [52], based on longitudinal and lateral position they identified the type of the driving. They used three networks architecture in the system and applied propagation algorithm for detecting. Authors in [53] built a model to predict lateral and longitudinal vehicle acceleration by way of training a neural network. The error of prediction was very low. Even though neural networks are powerful learning mechanisms, their main drawback is that they are very difficult to analyse since the information they encode is not easily interpretable. Another disadvantage is that most neural networks are not able to handle a temporal sequence of data points, but only compute the output for one data vector at a time. In the domain of driver behavior modelling, especially for the prediction of driving maneuvers, the data usually consists of sequences of individual phases and including this temporal information is essential.

Fuzzy logic systems were also used in the field. As it is well known, fuzzy logic is a form of logic used for approximate, rather than exact reasoning. Since driving a vehicle is largely a reasoning process, it is intuitive to use fuzzy logic to model driving behavior, especially in the context of driving maneuvers. A detection system based on fuzzy logic method was presented in [54] to distinguish emergency braking from merely strong braking behavior. The pressure on the brake was the parameter to detect. Based on relation between brake length of the pedal stroke and its ratio of variance they put their fuzzy rules. The system presented high performance. However, they focused only on the braking event and their tests were based on simulator only. In [55], based on GPS sensor they got velocity and position to detect behavior of the driver if it is aggressive or not. They used fuzzy logic and Neural Network methods for detecting. They focused on three events braking, throttle, and steering. Based on their fuzzy logic rules they found that the acceleration more ±0.3 in the units of Gravity Force is aggressive driving. High performance got in simulated conditions but the problem of losing signal of GPS can be avoided. In [56], proposed a module to detect car following event only based on speed, acceleration and distance parameters. Fuzzy logic method applied to identify car following event. Their system presented high efficiency through simulation environment. However, they did not identify other events which are affected by car following status. Based on accelerometer and orientation sensors of smartphone as well as GPS device in [57], they detect driver behavior and send the information to predefined server for several issues. They used fuzzy logic method to detect if the driving risky or not. They identified their fuzzy rules based on over speed, acceleration and steering rate through turning and intersection events. The output of fuzzy set is normal, moderate and aggressive. The results were accurate but the problem of external device may be effect on the reliability of results.

In[58] Gaussian Mixture Model used to detect driver behavior in case of car following based on brake pedal, accelerator pedal, vehicle velocity, and distance from the vehicle in front as a parameter for algorithm. Gaussian Mixture Model is a statistical model that is a linear combination of Gaussian basis functions. Good result in real time environment as well as in simulator, while the rate of identification was 73% which can improve by using multiple statistical models.

In [59] based on statistical method (Multiple linear regression and principal component analysis (PCA)) driving-events-based eco-driving behavior evaluation model are proposed. Driving mode duration, speed and acceleration are the parameters used to identify three events including Long-Time Accelerating, Accelerating Sharply and Decelerating Sharply.
The results provide good accuracy and simple computational process. However, the speed of the vehicle more than 100 km/h is ignored in their model. In [60], proposed develop a comprehensive knowledge about the feature and characteristics of stopping dilemma zone drivers at signalized intersections. Based on Brake response time and deceleration they identified several events. They used SPSS for multiple linear regression (Brake-Response Times recognition) and logistic regression (for Prediction of Stop and Go-Through Events) recognition. Their results shows that speed and distance have the strongest effect on deceleration rate. Based on accelerometer and orientation smartphone sensors cooperated with Car DVR for video recording used in [61] they identified six types of abnormal driver maneuvers with distinct parameters as a ground truth(Swerving, Side slipping, Fast U-turn, Turning with A wide radius and Sudden braking.). Support vector machine (SVM) machine learning algorithm used for identify driver maneuvers. They got distinct features for each type of maneuvers based on acceleration, orientation and time duration. Very good performance was achieved. However, there is some kind of restriction to the driver related to Car Video recorder. In [62], an application for iphone devices proposed to detect behavior of driver based voice, GPS, video, and inertial sensors for collecting data. They identified thresholds for each pattern of maneuvers and after that they used pattern recognition and computer vision as methods for detecting the behavior. High performance got from application. However, the location required for device under the mirror may be restricted in some countries. In [63], abnormal maneuvers related to drunk drivers were detected. Lateral acceleration and longitudinal acceleration which are achieved from accelerometer sensor used as a parameter to recognize the event. They identified patterns for drunk driver and applied pattern matching algorithm on smartphone for compared between new data and predefined pattern. Their system alerts the driver directly. Results show high efficiency and high accuracy. While the mobile position in the front seat consider as a drawback for the system. In [64], they identified aggressive driver behavior take in consideration several environmental conditions like road rage and anger emotions. They did a questionnaire for driver how are participate in driving trips, questionnaire contained several parts related to the causes which make them angry during driving. Based on Chi square method their system can detect if the driver is angry or not. Their studies was good for differentiate between normal driver and angry driver, but other factors like age and gender were not considered in their study.

In [65] proposed system to predict the consumption of gasoline. By applying linear regression their system can predict consumption of gasoline based on acceleration and speed. As well as, they applied K-means clustering and Naïve Bayes for recognition trying to find more accurate patterns for gasoline consumption. They found that Naïve Bayes propose more accurate pattern than K-means clustering. However, they did not collect a full utilization of data set for analysing also there is a need for gear shift information and throttle paddle.

CONCLUSION

Generally the sensors are the key factor in driving monitoring systems. To detect driver behavior we need automated collection of driving data and application of computer algorithms and models to generate a taxonomy that describes the driver performance profile. In this review, we have divided driving behavior detection systems in general into two type in-vehicle sensors systems and real time systems. Several techniques have been used to detect and recognize driver behavior. Each one of these techniques has its own strength and weakness points. The techniques of non-real time system are very important in training and feedback to the driver but it is not good in alert driver through his driving. In other hand, real driving monitoring systems need to several hardware devices with long processing time and high memory capacity. However, these systems have its own disadvantages like signal losing, large memory needed, and long-time processing. The development of smartphone, availability and cheap cost helped in enhancing and improving driver behavior monitoring systems by overcome all the obstacles faced in previous systems. We can see that large number of researches proposed based on classification problem to detect several behaviors of driver as well as, statistical method presented a good and accurate result, it gives valuable insights in detection problem. Additionally, we found that there are no fix parameters for detecting systems, it based on the objective of each system as well as based on the type of a tool which is used to collect data.

REFERENCES


[32] Nattakorn Promwongsa1, Pramookh Chaisatsilp1, Automatic Accelerometer Reorientation for Driving Event Detection Using Smartphone, 2National Conference on Ubiquitous and Future Networks 2014


[36] Javier E. Meseguer, Carlos T. Calafate,


