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Abstract

This paper discusses a simple and economical procedure developed for the
prediction of optimal cylindrical grinding process parameters for surface
roughness of AISI 316 stainless steel. With a minimum number of
experimental data an effective regression model is developed which correlates
the grinding process parameters (work speed, feed rate and depth of cut) with
surface roughness. The evolutionary optimization techniques such as Genetic
Algorithm (GA) and Particle Swarm Optimization (PSO) are employed to find
the optimal values of process parameters with the objective of achieving
minimum value of surface roughness. Finally, the experiments are carried out
to identify the effectiveness of the proposed method.

Keywords: Cylindrical grinding. Surface roughness. Regression analysis.
Genetic Algorithm. Particle Swarm Optimization.

Introduction

The quality of a machined surface is very important for satisfying the specific
demands of sophisticated component performance like longevity and reliability which
are in turn dependent on the geometric, dimensional and surface characteristics.
Surface roughness is of great importance for product quality and its function in
manufacturing industries. It is generally regarded as an important factor in terms of
fatigue life performance. Grinding is a widely used machining process in industry for
close dimensional and geometric accuracies and smooth surface finish. It involves
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material removal by the contact between a grinding wheel with a randomly structured
topography and the workpiece. It is a complex manufacturing process, influenced by
factors such as wheel, work piece, machine and process setting.

A lot of research work has been carried out to characterize and understand the
grinding process [1-4], to examine the effect of coolant on surface integrity [5,6] and
to evaluate the influence of grinding variables on surface roughness [7-9]. Attempts
have also been made by researchers to develop a surface roughness model using
Response Surface Methodology (RSM) [10 -11, 15-18] and Back Propagation Neural
Network [19-21]. Since grinding is a complex manufacturing process with a lot of
factors which influence each other, modeling can be a useful tool for understanding
and simulating the process itself. Regression analysis is an efficient mathematical and
statistical tool to develop an empirical model [10]. It is more practical, economical
and relatively easy to use when compared with neural network modeling, because
development of an adequate network structure is rather complex and needs powerful
data processing computer and artificial intelligence technology. In this research work,
regression analysis is employed to develop an empirical model for predicting the
surface roughness of AISI 316 stainless steel during cylindrical grinding operation.

The success of any grinding operation depends upon the proper selection of
various operating conditions like wheel speed, work speed, traverse feed, in feed, area
of contact, grinding fluids, balancing of grinding wheels, dressing etc. Usually the
process parameters are selected based on the operator’s experience or from the
manufacturer’s manual, and this does not provide optimal results. Hence, optimization
of operating parameters is an important step in machining, which will reduce the
machining cost and ensure the quality of the final product. Researchers have worked
on optimization of grinding process parameters using computer simulation and
enumeration method [12-14]. Many researchers have attempted on optimization of
process parameters for different machining processes using various evolutionary
algorithms such as Genetic Algorithm and Particle Swarm Optimization [18-28], Ant
Colony Optimization[25,29], Tabu Search and Simulated Annealing [25], Differential
Evolution and Non-dominated Sorting Genetic Algorithm-11 [30]. Among all these
evolutionary techniques Genetic Algorithm (GA) and Particle Swarm Optimization
(PSO) have been widely used as an optimization tool in various problem domains
owing to its broad applicability, ease of use and global perspective. In this work, it is
proposed to implement GA and PSO to optimize the machining parameters for the
required surface roughness of AISI 316 stainless steel during cylindrical grinding
operation.

Proposed Methodology

Although work has been done in modeling and optimization of cylindrical grinding
using GA and PSO [24, 26], a different procedure is adopted in this work as presented
in Fig.1. In the present work, effort has been taken to reduce the number of
experiments to make the procedure more cost-effective. Experiments were carried out
for AISI 316 stainless steel under different grinding conditions based on Taguchi’s
design of experiments and the corresponding surface roughness values were
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measured. Based on this experiment the effect of grinding parameters on surface
roughness of AISI 316 stainless steel were analyzed using S/N ratio and ANOVA.
From the data collected a multiple non-linear regression model was generated using
SPSS (Statistical Package for Social Science) software for establishing the
relationship of various process parameters towards surface roughness. The empirical
model developed is subsequently used for optimization of process parameters for
minimum surface roughness. The optimization problem was solved by using Genetic
Algorithm (GA) and Particle Swarm Optimization (PSO).

| Selection of materizl and machining operation |

| Selection of machining parameters and their levels |

| Formation of Taguch LY orthogonsl array |

—"i Conduct of experiment mnd mezsursment of surface roughness |

[ Analysis of results using §/N Ratio and ANOVA |
)

| Empirical modeling of surface roughness using Repression Analysis |

. Validation
Tes
—>|  Optimization of machining parameters using GAmd P50 |

No

Comparison of results

Figure 1: Flowchart for proposed methodology

Design of Experiments

To evaluate the influence of process parameters, numerous experimental runs are
required to explore the parameter space. The experiments are planned using Taguchi’s
Design of Experiments (DOE), which helps in reducing the number of experiments
needed to extract meaningful conclusions [34]. Since three controllable factors
(operating parameters) of three levels are considered in this study, Taguchi Lo
orthogonal array is preferred to design the experiments.

Taguchi method is useful for studying the interactions between the parameters, and
also it is a powerful design of experiments tool, which provides a simple, efficient and
systematic approach to determine optimal cutting parameters. In Taguchi, Signal to
Noise (S/N) ratio represents quality characteristics for the observed data. The term
signal refers to desirable value and noise represents the undesirable value. The high
value of S/N ratio corresponds to a better performance of the parameter in the
presence of noise factors. Since minimum value of surface roughness is always
preferred, the smaller-the-better characteristic of S/N ratio is chosen, which is given in
Equation 1. The influence of cutting parameters on surface roughness is studied using



12596 R. Rekha

S/N ratio, and ANOVA is used to determine the significant process parameter and the
contribution of each process parameter towards the output characteristic.

n = —101log,o (%Z{:l Riz)i =12..r 1)

Where 1 is the Signal-to-Noise ratio, R; is the value of surface roughness for the i"
trial and r is the number of trials.

Regression analysis

Regression analysis is a statistical technique for modeling and analyzing several
variables, when the focus is on the relationship between a dependent variable and one
or more independent variables. It is used when a continuous dependent variable from
a number of independent variables is to be predicted. For nonlinear regression the
second and higher derivatives are not zero, and thus an iterative process is required to
calculate the optimal parameter values. Based on the model of name “Ratio of
Quadratics™ a regression model for surface roughness is developed in the form given
below:

Ry a+bx+cy+dz+ex?+ fy?+ gz? (2)

The size of the coefficient for each independent variable (x, y, z) of the model
gives the size of the effect that variable has on dependent variable, and the sign on the
coefficient (positive or negative) gives the direction of the effect. In this work, the
nonlinear regression is used to develop a surface roughness model for cylindrical
grinding operation.

Genetic Algorithm (GA)

The genetic algorithm is an adaptive search and optimization algorithm that mimics
the principles of natural genetics and natural selection [25]. The searching process in
GA stimulates the natural evolution and enables intelligent exploitation of a random
search [18]. GA produces ever-improving solutions based on the rule ‘the best one
survives’. The most important feature that distinguishes GA from other algorithms is
selection [23]. Generally, the GA mechanism consists of three fundamental
operations: reproduction, crossover, and mutation. Reproduction is the random
selection of copies of solutions from the population, according to their fitness value,
to create one or more offspring. Crossover defines how the selected chromosomes are
recombined to create new structures for possible inclusion in the population. Mutation
is a random modification of a randomly selected chromosome. Its function is to
guarantee the possibility to explore the space of solutions for any initial population.
Both crossover and mutation occur at every cycle, according to an assigned
probability. The aim of the three operations is to produce a sequence of populations
that, on the average, tends to improve the search towards optimal solution [22]. Every
good optimization method needs to balance the extent of exploration and exploitation
of information. If solutions obtained are exploited too much, premature convergence
is expected. On the other hand, if too much importance is given for exploration,
information obtained thus has not been properly used. These issues can be controlled
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in GA by varying the parameters involved in the genetic operators. Therefore, GA
provides an ideal platform for performing flexible search [31].

Particle Swarm Optimization (PSO)

Particle Swarm Optimization is a population based stochastic optimization technique
developed by Dr.Eberhart and Dr.Kennedy in 1995, inspired by social behavior of
birds flocking [32]. This PSO algorithm [25] initializes a number of particles
randomly and searches for optimal solution. At the end of every iteration each particle
is updated by following two ‘best’ values. One best value is population best called
pbest, which is the best solution achieved by the particle in the generation. Another
‘best’ value is global best called gbest, which is the best solution obtained so far by
any particle. After finding the two ‘best’ values, the particle updates its velocity and
positions with following equations (3) and (4) [32].

v[ 1=wx*v[ 1+cl*rand( )=
(pbest[ ]—present[ 1)+

c2 xrand() * (gbest[] — prsentl[])
©)
present[] = present[] + v[] 4)

Where V[] is the velocity for the i particle which represents the distance to be
traveled by the particle from the current position, o is the inertia weight which is
usually 0.8 to 0.9, Rand() is a random number between (0 to 1), c1& c2 are learning
factors usually O to 2, present [] is the location of the i particle i.e., particle position,

pbest [] is the best previous position of the i particle and gbest[] is the index of
the best particle among all the particles in the population.

In comparison with other heuristic algorithms, PSO has less number of parameters
to be tuned by the user. PSO has been found to be an attractive algorithm for the
reasons that the concepts are very simple, coding is very easy, computational burden
is less and there is fast convergence and high accuracy [27, 33].

Experimental Details

The literature survey reveals that the grinding variables greatly influence the surface
roughness of the workpiece. To comprehend the relationship between the grinding
conditions and their influence on surface roughness, and develop an empirical model,
a series of experiments have been conducted. The work material and the experimental
work done are explained below.

Work Material

The experiment is conducted on AISI 316 Stainless Steel, which is widely used in
applications requiring good corrosion resistance, resistance to pitting from chloride
ion solutions, and high strength at elevated temperatures [7].
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It is an austenitic chromium nickel stainless steel containing molybdenum. The
chemical composition of the workpiece is listed in Tablel. Literature survey shows
that limited work has been carried out on AISI 316. To be specific, one work deals
with EDM process parameter optimization [28] and the other with surface grinding
performance under cryogenic cooling [7]. This forms the basis for attempting more
research work on this material.

Experimental set up and procedure

Experiments were conducted on the cylindrical grinding machine as shown in Fig.2,
on austenitic steel AISI 316 of 40mm diameter to determine the effect of machining
parameters on surface finish. Grinding wheel (A60N5V10C) used for this
experimental work had aluminum oxide abrasives with vitrified bond.

Table 1: Chemical composition of the work piece (AISI 316)

C Mn Si p S Cr Mo Ni N
0.08 2.0 0.75 0.045 0.03 18.0 3.0 14.0 0.10

Table 2: Controllable factors and their levels

Cutting Levels
parameters 1 2 3
Vyw (m/min) 70 98 126

f (mm/rev) 0.073 0.093 0.113
d (mm) 0.003 0.004 0.005

The initial dimensions of the wheel were 580mm in diameter and 50mm in width.
A single point diamond dresser was used for dressing the grinding wheel before the
conduct of each experiment.

Figure 2: Experimental set up for cylindrical grinding
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Figure 3: Measurement of surface roughness
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Table 3 Ly orthogonal array and experimental results for surface roughness

SILNo Vym/min  fmm/rev  dmm Rapm SIN
Ratio

1. 1 1 1 0.79 2.04746
2. 1 2 2 0.76 2.38373
3. 1 3 3 0.84 1.51441
4. 2 1 2 0.60 4.43697
5. 2 2 3 0.58 4.73144
6. 2 3 1 0.67 3.47850
7. 3 1 3 0.71 2.97483
8. 3 2 1 0.75 2.49877
9. 3 3 2 0.73 2.73354

The grinding parameters selected for investigation were work speed (V,,), feed rate
() and depth of cut (d). The ranges of parameters are given in Table 2. The other
factors such as of abrasive, workpiece and spark out were kept constant. The surface
roughness (R,) of the job was evaluated on the Taly surface test instrument as shown
in Fig.3. The average of ten readings was taken to determine the surface roughness
value for every experimental run and recorded as shown in Table 3.

Results and Discussions

The objective of this work was to investigate the effect of cylindrical grinding
parameters on surface roughness of AISI stainless steel and to develop an empirical
model for surface roughness and to optimize the grinding parameters (work speed,
feed rate and depth of cut) in order to achieve minimum value of the surface
roughness. This has been accomplished by using the above mentioned methodologies.
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Effect of Grinding Parameters on Surface Roughness of AISI 316 Stainless Steel
The effect of controllable factors (Vy, f, d) on surface roughness is investigated using
S/N ratio approach. The S/N ratio for the measured surface roughness value is
calculated using the Eqg. 1 and presented in Table 3. The mean S/N ratio of surface
roughness obtained for different levels of the machining parameters and the rank
obtained by the parameters are given in Table 4. It is evident from Table 4 that the
work speed is the dominant parameter followed by the feedrate and depth of cut since
the maximum mean S/N ratio is obtained for level 2 of work speed (4.216) and then
for level 2 of feedrate (3.205) and level 2 of depth of cut (3.185). This also establishes
the fact that level 2 of work speed, feedrate and depth of cut will result in minimum
surface roughness of AISI stainless steel during cylindrical grinding. Experiments
were conducted to validate the result and it was found that a work speed of 98m/min,
a feedrate of 0.093mm/rev and a depth of cut of 0.004mm produced a surface
roughness of 0.51um which is comparatively less than other experimental values
given in Table 3. The results match with that presented in literature [17, 18, and 35].
The response graphs given in Fig. 4 elucidate the influence of each machining
parameter on the surface roughness. These figures show the ideal machining
conditions (the level with the highest point on the graphs), and also the relative effect
of each parameter on the surface roughness (the general slope of the line) [17]. In the
S/N ratio effects graphs, the slope of the line which connects between the levels
illustrates the power of influence of each control factor. The work speed is discovered
to have a strong effect on surface roughness and its S/N ratios. The feed rate and
depth of cut have a smaller effect, as confirmed by the shallow slope of the lines.

Table 4 S/N ratio response table for surface roughness

Level  Cutting Parameters
Vi f d
1 1.982 3.153 2.675
2 4,216 3.205 3.185
3 2.736 2.575 3.074
Delta 2.234 0.629 0.510
Rank 1 2 3
Main Effects Plot (data means) for S/NRatio
° gz /\\ .—/4\\.
v /

Figure 4: S/N ratio response graph for surface roughness




Application of Regression Analysis and Evolutionary Algorithms For et.al. 12601

Table 5: ANOVA table for surface roughness
Source DOF Sumofsquare  Mean square F-ratio  P-value

Vw 2 0.0497 0.0248 36.66 0.027
f 2 0.0047 0.0023 3.46 0.224
d 2 0.0025 0.0012 1.84 0.353
Error 2 0.0013 0.0007

Total 8 0.058

The results of S/N ratio are confirmed with analysis of variance (ANOVA)
conducted for surface roughness. The results of ANOVA as shown in Table 5 exhibits
a P — value of 0.027 for work speed, which expresses the significance of work speed
on surface roughness. ANOVA also proves that work speed is a greater influencing
parameter than feedrate and depth of cut.

Empirical Modeling of Surface Roughness

The empirical model for surface roughness is developed based on experimental data
given in Table 3, in order to generalize the result. In the regression analysis using
SPSS software, the iteration run stopped after 3 model evaluations and 2 derivative
evaluations because the relative reduction between successive parameter estimation
was at most PCON = 1.00E-008. The coefficient values obtained from the analysis
depicts that increase in work speed and decrease in feedrate and depth of cut reduces
the surface roughness. From the observed data for surface roughness, the response
function has been achieved in the following quadratic form:

R, = 3.219 — 0.0398V,, — 4.588f — 226.667d + 1.9119 1074V, % +
26.632f2 + 26670d?

()

The sum of the squares of the residuals given in Table 6, are calculated to
ensure the best fit. The R? of the regression is the fraction of the variation in the
dependent variable that is predicted by the independent variables. It gives an estimate
of goodness of fit of the function.

_ Residual Sum of Squares
R2=1-( ) (6)

Corrected Sumof Squares

The ‘R* value obtained in the analysis is 0.977 which means that 97.7% of the
variation of the operating parameters can be explained by the variation of the surface
roughness.
Table 6: ANOVA table for the quadratic model

Source Sum of squares Degree of freedom Mean squares
Regression 4.651 7 0.664
Residual 0.001 2 0.001
Uncorrected 4,652 9

total

Corrected total ~ 0.058 8
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Similarly linear and cubic models were developed, which are summarized in Table
7. Among all the models, quadratic model has shown better R? value and the surface
roughness predicted using this model is found to be very nearer to the experimental
value. Hence quadratic model is proposed for further analysis.

To further validate, surface roughness values are predicted using the proposed
model and compared with the experimental values. The predicted values were found
to be very close to the experimental values with a maximum deviation of 20.38% as
shown in Fig.5. Thus, the model can be used to predict the surface roughness for any
values of process parameters.

Table 7: Summary of surface roughness models

Source  Model R* Surafce roughness, R, %
(um) Deviation
Experimental  Predicted
value value
Linear R, = 0.776 — 0.001V, 0.189 051 0.733 43.14
—-1.167 f —13.333d
Quadrat R, = 3.219 — 0.0398V}, — 0.977 0.51 0.477 6.47
Ic 4588f — 226.667d + 1.9119 =
107%V,,% + 26.632f2 +
26670d?
Cubic R, = 0.252 0.51 0.706 38.43

1(.1682 V0206 £0.1494-00078

1

e

3 08

a

2 06

=

S

O 0.4 .

P —o—Experimental value

£ 02 —=—Predicted value

3 0

0 2 4. 6 8 10

Trial number

Figure 5: Validation of experimental results for surface roughness

Computational results of GA

The optimal grinding parameters are found to be 103.730 m/min work speed, 0.086
mm/rev feedrate, 0.004 mm depth of cut for a minimum surface roughness of 0.47703
pm. These values are predicted based on genetic algorithm. The developed empirical
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model, Equation 5 is used as the fitness function for determining the surface
roughness value of each new individual.

The optimization was run for a 1000 number of iterations with a population size of
100. Trials were conducted for different settings of the GA operators to investigate the
search process.

Table 8: GA operators and search result

Genetic algorithm operators Result
Trial  Scaling- Crossover Mutation Exploit Exploration Conver Consi Refere
No.  Selection Function- Function  ation gence  stenc  nce
Function Fraction y
1. Rank-Roulette  Single Uniform-  Good Good Poor Poor  Fig.6a
Point-0.6 0.01
2. Rank-Roulette  Single Uniform-  Good Good Good Poor  Fig.6b
Point-0.8 0.01
3. Rank-Roulette  Single Uniform-  Good Very Good  Poor Good  Fig.6c
Point-0.8 0.1
4. Rank-Roulette  Two Point- Uniform- Good Very Good  Poor Good Fig.7d
0.8 0.1
5. Rank-Roulette  Single Gaussian  Very Beyond Very Very  Fig.6e
Point-0.8 Good Boundary Good Good
Conditions
6. Proportional-  Single Gaussian  Very Beyond Very Very  Fig.6f
Tournament Point-0.8 Good Boundary Good Good
Conditions
7. Proportional-  Single Uniform-  Very Good Good Poor  Fig.6g
Tournament Point-0.8 0.01 Good
8. Rank- Single Uniform-  Good Good Good Very Fig.6h
Tournament Point-0.8 0.01 Poor
9. Proportional-  Single Uniform-  Good Very Good  Poor Good  Fig.6i
Roulette Point-0.6 0.1

The GA operators namely scaling function, selection function, crossover function,
crossover fraction, mutation function and mutation fraction were varied during each
trial and the simulation was observed. The simulation results obtained from selected
trials are given in Fig. 6 and presented in Table 8. On comparison of trials 2, 7 and 8,
it is found that Rank-Tournament selection method performs better in eliminating bad
solutions and replacing good solutions thereby improving the convergence in search.
But the search sometimes gets struck in sub-optimal conditions and hence the
consistency of the result is poor. Conversely Rank-Roulette method always produces
optimal solution with good consistency in the result but convergence in the search is
poor.

Crossover operator enhances the exploration and mutation operator diversifies the
search. On the analysis of various trials it was found that the higher fraction of
crossover (0.1 -1.0) and mutation (0.01 — 0.1) produced best solution with consistency
in the result, but of course the convergence in the search was poor.
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Figure 6: Results obtained from GA for various parameter settings

Though Trial 3 with single point crossover and Trial 4 with two point crossover
produced similar results, the computational effort and time for single point crossover
was found to be comparatively less. The Gaussian mutation function instigated a
diversified search with good convergence ending at an optimal solution but the only
downside was that the initial search occurred beyond the boundary conditions. This
can be overcome by providing the necessary constraints. Among all the trials the
suitable genetic algorithm parameters can be suggested as:

Scaling Function : Rank

Selection Function : Roulette

Crossover Function : Single point operator
Crossover Fraction 0.8

Mutation Fraction 0.1

These parameters exhibited a very good exploration, good exploitation of
information and consistency in the result as presented in Table 8. Z.H.Deng et al. [20]
had also applied roulette wheel selection based on ranking algorithm with 0.7 as
uniform crossover probability and 0.03 as uniform mutation probability.
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Figure 7: Results obtained from PSO for various values of learning factors (C1 and
C2) and inertia weight ()

It was reported that for these GA parameters the predicted values were with a
percentage error ranging between + 10%. This is similar to the result obtained in
present work and an example is shown in Table 10. T.S Lee et al. [26] reported that
tournament based selection with 0.85 as crossover probability and 0.3 as mutation
probability yielded better results, which is contrary to the result obtained in the
present work. This difference may be due to the higher fraction of mutation

probability.

Computational results of PSO
The optimal grinding parameters predicted using PSO are 104.091 m/min work speed,
0.086 mm/rev feedrate, 0.004 mm depth of cut for a minimum surface roughness of
0.46850 um. The developed regression model, Equation 5 is used as the objective
function for determining the surface roughness value of each new particle generated.
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The particles are randomly generated in the search space to facilitate effective
exploration. As Genetic algorithm, PSO algorithm was also run for 1000 iterations for
a population size of 100. The optimization was run for various settings of inertia
weight and learning factors. The details of various trials are given in Table 9 and
Fig.7.

Table 9: PSO operators and search result

Trial PSO algorithm  Result
No. operators

Inertia  Learning  Exploitation Exploration Convergence  Consistency Reference
weight  factor

, W C1=C2
1. 0.8 0.5 Good Poor Poor Poor Fig.7a
2. 0.8 1.0 Very Good Good Good Good Fig.7b
3. 0.8 15 Very Good Good Poor Good Fig.7c
4. 0.8 2.0 Good Good Poor Poor Fig.7d
5. 0.85 0.5 Very Good Good Very Good Very Good Fig.7e
6. 0.85 1.0 Very Good Good Good Poor Fig.7f
7. 0.85 15 Very Good Very Good Very Good Very Good Fig.7g
8. 0.85 2.0 Good Good Good Good Fig.7h
9. 0.9 0.5 Good Poor Good Poor Fig.7i
10. 0.9 1.0 Very Good Poor Good Poor Fig.7j
11. 0.9 15 Very Good Good Good Good Fig.7k
12. 0.9 2.0 Very Good Very Good  Good Good Fig.7l
13. 0.95 0.5 Very Good Good Good Poor Fig.7m
14, 0.95 1.0 Very Good Good Good Poor Fig.7n
15. 0.95 15 Very Good Good Good Poor Fig.7p
16. 0.95 2.0 Poor Good Good Good Fig.7q

Table 10: Prediction of optimal parameters for a given surface roughness value using

GA and PSO
Algorithm Work speed, Feedrate, Depth  of Surface % Error % of
Vy (M/min)  f(mm/rev) cut, roughness, Accuracy
d (mm) Ra (um)
GA 98.39 0.101 0.004 0.49172 3.58 96.42
PSO 97.001 0.093 0.004 0.49368 3.20 96.8
Experiment 98 0.093 0.004 0.51

Inertia weight ‘o’ regulates the trade-off between exploration and exploitation
competency. The optimization was performed for various values of ® and it was
found that an inertia weight of 0.85 produced optimal solution for all values of C; and
C,. C; and C; are the learning factors which accelerate the search direction towards
the optimal solution. From the optimization analysis it was found that the learning
factors C; = C, = 1.5 produced optimal solution consistently for most of the values of
inertia weight. Among all the trials the suitable PSO parameters can be suggested as:

Inertia weight 0 =0.85

Learning factors :C1=C,=15
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The particle swarm optimization process converged between the iteration numbers
5 to 19 for any value of learning factor and inertia weight. The Fig.7 presents the
iteration number at which the convergence of search commenced for a value of C1,
C2 and o. The inferences of this analysis are in agreement with that published in
literature [26].

Comparison of Results

The optimal machining parameters for minimum surface roughness obtained using
GA and PSO are compared and found that the surface roughness value achieved using
PSO is better than that of GA. As stated in literatures [25-26] it is realized that PSO
algorithm is more comfortable and yields optimal results when compared to GA. This
is because the underlying concepts of PSO are very simple and it is easy to relate with
the problem, and so coding for PSO is very easy. In PSO, comparatively less number
of parameters are used hence tuning of the program is very simple. PSO involves less
computation and provides optimal results. The exploration is very good in both GA
and PSO, but PSO proves better because of very good exploitation of the solution and
very good convergence with consistency in the result obtained. To validate the
performance of GA and PSO, surface roughness was predicted for a set of input
parameters and compared with experimental value as presented in Table 10. The % of
error for PSO was found to be less than GA.

Conclusions
From this experimental and analytical work the following conclusions are drawn:

e The results of S/N ratio and ANOVA reveal that work speed has a greater
effect on surface roughness than feedrate and depth of cut.

e Regression analysis is a useful tool in developing an empirical model for
surface roughness. The developed model has an accuracy of 97.7% and can be
used for prediction of surface roughness in cylindrical grinding of AISI 316
stainless steel.

e The regression analysis also reveals the fact that increase in workspeed and
decrease in feedrate and depth of cut reduces the surface roughness.

e The optimal grinding parameters predicted using GA are 103.730 m/min work
speed, 0.086 mm/rev feedrate, 0.004 mm depth of cut for a minimum surface
roughness of 0.47703 pm.

e The optimal grinding parameters predicted using PSO are 104.091 m/min
work speed, 0.086 mm/rev feedrate, 0.004 mm depth of cut for a minimum
surface roughness of 0.46850 pum.

e GA exhibited a diversified search and generated new population at random
and progressed towards optimal solution by its mechanism of reproduction,
crossover and mutation. But the tuning of algorithm was difficult due to a
greater number of parameters and their wide range. Convergence of the search
was also poor. The results of GA were less accurate when compared with
PSO.
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e PSO algorithm was observed to be an effective evolutionary technique due to
its wide search and fast converging characteristics which generates optimal
results consistently with an accuracy of 96.8%. The tuning of the algorithm
was found easy due to less number of parameters.

e PSO is suggested as comfortable and effective tool in solving optimization
problems.

e Above all, this procedure can be adopted as an effective tool for predicting the
optimal parameters for other machining processes also.
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