
International Journal of Applied Engineering Research 
ISSN 0973-4562 Volume 10, Number 5 (2015) pp. 12593-12610 
© Research India Publications 
http://www.ripublication.com 

 
 

Application of Regression Analysis and Evolutionary 
Algorithms for Modeling and Optimization of Cylindrical 
Grinding Process Parameters for the Prediction of Surface 

Roughness of AISI 316 
 
 

R. Rekha#1, N. Baskar#2, K.Padmanaban#3, V.Venkatraman*4 

#1,#2&#3Department of Mechanical Engineering, Saranathan College of Engineering, 
Tiruchirapalli, Tamilnadu, India. 

*4Department of Mathematics,School of Humanities and Science, Sastra University, 
Thanjavur, Tamil Nadu, India. 

#1rekhame76@gmail.com, #2baskarnaresh@yahoo.co.in, 
#3krispad49@gmail.com,*4mathvvr@yahoo.co.in 

 
Abstract 

 
This paper discusses a simple and economical procedure developed for the 
prediction of optimal cylindrical grinding process parameters for surface 
roughness of AISI 316 stainless steel. With a minimum number of 
experimental data an effective regression model is developed which correlates 
the grinding process parameters (work speed, feed rate and depth of cut) with 
surface roughness. The evolutionary optimization techniques such as Genetic 
Algorithm (GA) and Particle Swarm Optimization (PSO) are employed to find 
the optimal values of process parameters with the objective of achieving 
minimum value of surface roughness. Finally, the experiments are carried out 
to identify the effectiveness of the proposed method.  
 
Keywords: Cylindrical grinding. Surface roughness. Regression analysis. 
Genetic Algorithm. Particle Swarm Optimization.  

 
 
Introduction  
The quality of a machined surface is very important for satisfying the specific 
demands of sophisticated component performance like longevity and reliability which 
are in turn dependent on the geometric, dimensional and surface characteristics. 
Surface roughness is of great importance for product quality and its function in 
manufacturing industries. It is generally regarded as an important factor in terms of 
fatigue life performance. Grinding is a widely used machining process in industry for 
close dimensional and geometric accuracies and smooth surface finish. It involves 



12594  R. Rekha 

material removal by the contact between a grinding wheel with a randomly structured 
topography and the workpiece. It is a complex manufacturing process, influenced by 
factors such as wheel, work piece, machine and process setting.  
     A lot of research work has been carried out to characterize and understand the 
grinding process [1-4], to examine the effect of coolant on surface integrity [5,6] and 
to evaluate the influence of grinding variables on surface roughness [7-9]. Attempts 
have also been made by researchers to develop a surface roughness model using 
Response Surface Methodology (RSM) [10 -11, 15-18] and Back Propagation Neural 
Network [19-21]. Since grinding is a complex manufacturing process with a lot of 
factors which influence each other, modeling can be a useful tool for understanding 
and simulating the process itself. Regression analysis is an efficient mathematical and 
statistical tool to develop an empirical model [10]. It is more practical, economical 
and relatively easy to use when compared with neural network modeling, because 
development of an adequate network structure is rather complex and needs powerful 
data processing computer and artificial intelligence technology. In this research work, 
regression analysis is employed to develop an empirical model for predicting the 
surface roughness of AISI 316 stainless steel during cylindrical grinding operation. 
     The success of any grinding operation depends upon the proper selection of 
various operating conditions like wheel speed, work speed, traverse feed, in feed, area 
of contact, grinding fluids, balancing of grinding wheels, dressing etc. Usually the 
process parameters are selected based on the operator’s experience or from the 
manufacturer’s manual, and this does not provide optimal results. Hence, optimization 
of operating parameters is an important step in machining, which will reduce the 
machining cost and ensure the quality of the final product. Researchers have worked 
on optimization of grinding process parameters using computer simulation and 
enumeration method [12-14]. Many researchers have attempted on optimization of 
process parameters for different machining processes using various evolutionary 
algorithms such as Genetic Algorithm and Particle Swarm Optimization [18-28], Ant 
Colony Optimization[25,29], Tabu Search and Simulated Annealing [25], Differential 
Evolution and Non-dominated Sorting Genetic Algorithm-II [30]. Among all these 
evolutionary techniques Genetic Algorithm (GA) and Particle Swarm Optimization 
(PSO) have been widely used as an optimization tool in various problem domains 
owing to its broad applicability, ease of use and global perspective. In this work, it is 
proposed to implement GA and PSO to optimize the machining parameters for the 
required surface roughness of AISI 316 stainless steel during cylindrical grinding 
operation.  
 
 
Proposed Methodology 
Although work has been done in modeling and optimization of cylindrical grinding 
using GA and PSO [24, 26], a different procedure is adopted in this work as presented 
in Fig.1. In the present work, effort has been taken to reduce the number of 
experiments to make the procedure more cost-effective. Experiments were carried out 
for AISI 316 stainless steel under different grinding conditions based on Taguchi’s 
design of experiments and the corresponding surface roughness values were 
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measured. Based on this experiment the effect of grinding parameters on surface 
roughness of AISI 316 stainless steel were analyzed using S/N ratio and ANOVA. 
From the data collected a multiple non-linear regression model was generated using 
SPSS (Statistical Package for Social Science) software for establishing the 
relationship of various process parameters towards surface roughness. The empirical 
model developed is subsequently used for optimization of process parameters for 
minimum surface roughness. The optimization problem was solved by using Genetic 
Algorithm (GA) and Particle Swarm Optimization (PSO). 

 

 
 

Figure 1: Flowchart for proposed methodology 
 
Design of Experiments 
To evaluate the influence of process parameters, numerous experimental runs are 
required to explore the parameter space. The experiments are planned using Taguchi’s 
Design of Experiments (DOE), which helps in reducing the number of experiments 
needed to extract meaningful conclusions [34]. Since three controllable factors 
(operating parameters) of three levels are considered in this study, Taguchi L9 
orthogonal array is preferred to design the experiments.  
     Taguchi method is useful for studying the interactions between the parameters, and 
also it is a powerful design of experiments tool, which provides a simple, efficient and 
systematic approach to determine optimal cutting parameters. In Taguchi, Signal to 
Noise (S/N) ratio represents quality characteristics for the observed data. The term 
signal refers to desirable value and noise represents the undesirable value. The high 
value of S/N ratio corresponds to a better performance of the parameter in the 
presence of noise factors. Since minimum value of surface roughness is always 
preferred, the smaller-the-better characteristic of S/N ratio is chosen, which is given in 
Equation 1. The influence of cutting parameters on surface roughness is studied using 
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S/N ratio, and ANOVA is used to determine the significant process parameter and the 
contribution of each process parameter towards the output characteristic.  

ߟ      = ݋݈ 10− ଵ݃଴ ቀ
ଵ
௥
∑ ܴ௜ଶ௥
௜ୀଵ ቁ ݅ = 1,2, …  (1)        ݎ

     Where η is the Signal-to-Noise ratio, Ri is the value of surface roughness for the ith 
trial and r is the number of trials. 
 
Regression analysis 
Regression analysis is a statistical technique for modeling and analyzing several 
variables, when the focus is on the relationship between a dependent variable and one 
or more independent variables. It is used when a continuous dependent variable from 
a number of independent variables is to be predicted. For nonlinear regression the 
second and higher derivatives are not zero, and thus an iterative process is required to 
calculate the optimal parameter values. Based on the model of name “Ratio of 
Quadratics” a regression model for surface roughness is developed in the form given 
below: 
 ܴ௔ୀ  ܽ + ݔܾ + ݕܿ + ݖ݀ + ଶݔ݁ + ଶݕ݂ + ଶݖ݃          (2)  

     The size of the coefficient for each independent variable (x, y, z) of the model 
gives the size of the effect that variable has on dependent variable, and the sign on the 
coefficient (positive or negative) gives the direction of the effect. In this work, the 
nonlinear regression is used to develop a surface roughness model for cylindrical 
grinding operation. 
 
Genetic Algorithm (GA) 
The genetic algorithm is an adaptive search and optimization algorithm that mimics 
the principles of natural genetics and natural selection [25]. The searching process in 
GA stimulates the natural evolution and enables intelligent exploitation of a random 
search [18]. GA produces ever-improving solutions based on the rule ‘the best one 
survives’. The most important feature that distinguishes GA from other algorithms is 
selection [23]. Generally, the GA mechanism consists of three fundamental 
operations: reproduction, crossover, and mutation. Reproduction is the random 
selection of copies of solutions from the population, according to their fitness value, 
to create one or more offspring. Crossover defines how the selected chromosomes are 
recombined to create new structures for possible inclusion in the population. Mutation 
is a random modification of a randomly selected chromosome. Its function is to 
guarantee the possibility to explore the space of solutions for any initial population. 
Both crossover and mutation occur at every cycle, according to an assigned 
probability. The aim of the three operations is to produce a sequence of populations 
that, on the average, tends to improve the search towards optimal solution [22]. Every 
good optimization method needs to balance the extent of exploration and exploitation 
of information. If solutions obtained are exploited too much, premature convergence 
is expected. On the other hand, if too much importance is given for exploration, 
information obtained thus has not been properly used. These issues can be controlled 
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in GA by varying the parameters involved in the genetic operators. Therefore, GA 
provides an ideal platform for performing flexible search [31]. 
 
Particle Swarm Optimization (PSO) 
Particle Swarm Optimization is a population based stochastic optimization technique 
developed by Dr.Eberhart and Dr.Kennedy in 1995, inspired by social behavior of 
birds flocking [32]. This PSO algorithm [25] initializes a number of particles 
randomly and searches for optimal solution. At the end of every iteration each particle 
is updated by following two ‘best’ values. One best value is population best called 
pbest, which is the best solution achieved by the particle in the generation. Another 
‘best’ value is global best called gbest, which is the best solution obtained so far by 
any particle. After finding the two ‘best’ values, the particle updates its velocity and 
positions with following equations (3) and (4) [32]. 
 
]ݒ ] = ߱ ∗ ]ݒ ] + ܿ1 ∗ )݀݊ܽݎ ) ∗ 
]ݐݏܾ݁݌)                ] − ]ݐ݊݁ݏ݁ݎ݌ ]) + 

               ܿ2 ∗ ()݀݊ܽݎ ∗ []ݐݏܾ݁݃) −         ([]ݐ݊݁ݏݎ݌
            (3) 

[]ݐ݊݁ݏ݁ݎ݌      = []ݐ݊݁ݏ݁ݎ݌ +  (4)         []ݒ
     Where v[] is the velocity for the ith particle which represents the distance to be 
traveled by the particle from the current position, ω is the inertia weight which is 
usually 0.8 to 0.9, Rand() is a random number between (0 to 1), c1& c2 are learning 
factors usually 0 to 2, present [] is the location of the ith particle i.e., particle position, 
     pbest [] is the best previous position of the ith particle and gbest[] is the index of 
the best particle among all the particles in the population. 
     In comparison with other heuristic algorithms, PSO has less number of parameters 
to be tuned by the user. PSO has been found to be an attractive algorithm for the 
reasons that the concepts are very simple, coding is very easy, computational burden 
is less and there is fast convergence and high accuracy [27, 33]. 
 
 
Experimental Details 
The literature survey reveals that the grinding variables greatly influence the surface 
roughness of the workpiece. To comprehend the relationship between the grinding 
conditions and their influence on surface roughness, and develop an empirical model, 
a series of experiments have been conducted. The work material and the experimental 
work done are explained below. 
  
Work Material 
The experiment is conducted on AISI 316 Stainless Steel, which is widely used in 
applications requiring good corrosion resistance, resistance to pitting from chloride 
ion solutions, and high strength at elevated temperatures [7]. 
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     It is an austenitic chromium nickel stainless steel containing molybdenum. The 
chemical composition of the workpiece is listed in Table1. Literature survey shows 
that limited work has been carried out on AISI 316. To be specific, one work deals 
with EDM process parameter optimization [28] and the other with surface grinding 
performance under cryogenic cooling [7]. This forms the basis for attempting more 
research work on this material.  
 
Experimental set up and procedure 
Experiments were conducted on the cylindrical grinding machine as shown in Fig.2, 
on austenitic steel AISI 316 of 40mm diameter to determine the effect of machining 
parameters on surface finish. Grinding wheel (A60N5V10C) used for this 
experimental work had aluminum oxide abrasives with vitrified bond.  
 

Table 1: Chemical composition of the work piece (AISI 316) 
 

C Mn Si P S Cr Mo Ni N 
0.08 2.0 0.75 0.045 0.03 18.0 3.0 14.0  0.10 

 
Table 2: Controllable factors and their levels 

 
Cutting 
parameters 

Levels 
1 2 3 

Vw (m/min) 70 98 126 

f (mm/rev)  0.073 0.093 0.113 
d (mm) 0.003 0.004 0.005 

 
     The initial dimensions of the wheel were 580mm in diameter and 50mm in width. 
A single point diamond dresser was used for dressing the grinding wheel before the 
conduct of each experiment.  
 

 
 

Figure 2: Experimental set up for cylindrical grinding 
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Figure 3: Measurement of surface roughness 
 

Table 3 L9 orthogonal array and experimental results for surface roughness 
 

Sl.No Vw m/min f mm/rev  d mm Ra µm S/N 
Ratio 

1. 1 1 1 0.79 2.04746 
2. 1 2 2 0.76 2.38373 
3. 1 3 3 0.84 1.51441 
4. 2 1 2 0.60 4.43697 
5. 2 2 3 0.58 4.73144 
6. 2 3 1 0.67 3.47850 
7. 3 1 3 0.71 2.97483 
8. 3 2 1 0.75 2.49877 
9. 3 3 2 0.73 2.73354 

 
     The grinding parameters selected for investigation were work speed (Vw), feed rate 
(f) and depth of cut (d). The ranges of parameters are given in Table 2. The other 
factors such as of abrasive, workpiece and spark out were kept constant. The surface 
roughness (Ra) of the job was evaluated on the Taly surface test instrument as shown 
in Fig.3. The average of ten readings was taken to determine the surface roughness 
value for every experimental run and recorded as shown in Table 3. 
 
Results and Discussions 
The objective of this work was to investigate the effect of cylindrical grinding 
parameters on surface roughness of AISI stainless steel and to develop an empirical 
model for surface roughness and to optimize the grinding parameters (work speed, 
feed rate and depth of cut) in order to achieve minimum value of the surface 
roughness. This has been accomplished by using the above mentioned methodologies. 
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Effect of Grinding Parameters on Surface Roughness of AISI 316 Stainless Steel 
The effect of controllable factors (Vw, f, d) on surface roughness is investigated using 
S/N ratio approach. The S/N ratio for the measured surface roughness value is 
calculated using the Eq. 1 and presented in Table 3. The mean S/N ratio of surface 
roughness obtained for different levels of the machining parameters and the rank 
obtained by the parameters are given in Table 4. It is evident from Table 4 that the 
work speed is the dominant parameter followed by the feedrate and depth of cut since 
the maximum mean S/N ratio is obtained for level 2 of work speed (4.216) and then 
for level 2 of feedrate (3.205) and level 2 of depth of cut (3.185). This also establishes 
the fact that level 2 of work speed, feedrate and depth of cut will result in minimum 
surface roughness of AISI stainless steel during cylindrical grinding. Experiments 
were conducted to validate the result and it was found that a work speed of 98m/min, 
a feedrate of 0.093mm/rev and a depth of cut of 0.004mm produced a surface 
roughness of 0.51µm which is comparatively less than other experimental values 
given in Table 3. The results match with that presented in literature [17, 18, and 35]. 
     The response graphs given in Fig. 4 elucidate the influence of each machining 
parameter on the surface roughness. These figures show the ideal machining 
conditions (the level with the highest point on the graphs), and also the relative effect 
of each parameter on the surface roughness (the general slope of the line) [17]. In the 
S/N ratio effects graphs, the slope of the line which connects between the levels 
illustrates the power of influence of each control factor. The work speed is discovered 
to have a strong effect on surface roughness and its S/N ratios. The feed rate and 
depth of cut have a smaller effect, as confirmed by the shallow slope of the lines.  
 

Table 4 S/N ratio response table for surface roughness 
 

Level   Cutting Parameters 
 Vw   f  d 

1   1.982  3.153  2.675 
2   4.216  3.205  3.185 
3   2.736  2.575  3.074 
Delta  2.234  0.629  0.510 
Rank   1   2  3 

 

 
Figure 4: S/N ratio response graph for surface roughness 
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Table 5: ANOVA table for surface roughness 
Source   DOF   Sum of square  Mean square  F- ratio  P- value 
Vw  2 0.0497  0.0248 36.66  0.027 
f  2 0.0047  0.0023  3.46  0.224 
d  2 0.0025  0.0012  1.84  0.353 
Error  2 0.0013  0.0007   
Total  8 0.058    

 
     The results of S/N ratio are confirmed with analysis of variance (ANOVA) 
conducted for surface roughness. The results of ANOVA as shown in Table 5 exhibits 
a P – value of 0.027 for work speed, which expresses the significance of work speed 
on surface roughness. ANOVA also proves that work speed is a greater influencing 
parameter than feedrate and depth of cut. 
 
Empirical Modeling of Surface Roughness  
The empirical model for surface roughness is developed based on experimental data 
given in Table 3, in order to generalize the result. In the regression analysis using 
SPSS software, the iteration run stopped after 3 model evaluations and 2 derivative 
evaluations because the relative reduction between successive parameter estimation 
was at most PCON = 1.00E-008. The coefficient values obtained from the analysis 
depicts that increase in work speed and decrease in feedrate and depth of cut reduces 
the surface roughness. From the observed data for surface roughness, the response 
function has been achieved in the following quadratic form: 
 
     ܴ௔ = 3.219 − 0.0398 ௪ܸ − 4.588݂ − 226.667݀ + 1.9119 ∗ 10ିସ ௪ܸ

ଶ + 
                  26.632݂ଶ +  26670݀ଶ                                                                                      
                                                                                                                       (5)

      
The sum of the squares of the residuals given in Table 6, are calculated to 

ensure the best fit. The R2 of the regression is the fraction of the variation in the 
dependent variable that is predicted by the independent variables. It gives an estimate 
of goodness of fit of the function.  

     ܴଶ = 1 − ቀ ோ௘௦௜ௗ௨௔௟ ௌ௨௠ ௢௙ ௌ௤௨௔௥௘௦
஼௢௥௥௘௖௧௘ௗ ௌ௨௠ ௢௙ ௌ௤௨௔௥௘௦

ቁ              (6) 

     The ‘R2’ value obtained in the analysis is 0.977 which means that 97.7% of the 
variation of the operating parameters can be explained by the variation of the surface 
roughness.  

Table 6: ANOVA table for the quadratic model 
Source Sum of squares Degree of freedom Mean squares 
Regression 4.651 7 0.664 
Residual 0.001 2 0.001 
Uncorrected 
total 4.652 9  

Corrected total 0.058 8  
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     Similarly linear and cubic models were developed, which are summarized in Table 
7. Among all the models, quadratic model has shown better R2 value and the surface 
roughness predicted using this model is found to be very nearer to the experimental 
value. Hence quadratic model is proposed for further analysis.  
     To further validate, surface roughness values are predicted using the proposed 
model and compared with the experimental values. The predicted values were found 
to be very close to the experimental values with a maximum deviation of 20.38% as 
shown in Fig.5. Thus, the model can be used to predict the surface roughness for any 
values of process parameters. 
 

Table 7: Summary of surface roughness models 
 

Source Model R2 Surafce roughness, Ra 
(µm) 

% 
Deviation 

Experimental 
value 

Predicted 
value 

Linear ܴ௔ =   0.776 − 0.001 ௪ܸ 
            −1.167 ݂ − 13.333 ݀ 

0.189  0.51 0.733  43.14 

Quadrat
ic 

ܴ௔ = 3.219 − 0.0398 ௪ܸ −
4.588݂ − 226.667݀ + 1.9119 ∗
10ିସ ௪ܸ

ଶ + 26.632݂ଶ +
26670݀ଶ  

0.977  0.51 0.477  6.47 

Cubic ܴ௔ =
 1.682 ௪ܸ

ି଴.ଶ଴଺݂଴.ଵସଽ݀ି଴.଴.଴଻଼  
0.252  0.51 0.706  38.43 

 
 

 
 

Figure 5: Validation of experimental results for surface roughness 
  
Computational results of GA 
The optimal grinding parameters are found to be 103.730 m/min work speed, 0.086 
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model, Equation 5 is used as the fitness function for determining the surface 
roughness value of each new individual.  
     The optimization was run for a 1000 number of iterations with a population size of 
100. Trials were conducted for different settings of the GA operators to investigate the 
search process. 

Table 8: GA operators and search result 
 

 
Trial 
 No. 

Genetic algorithm operators Result   
Scaling-
Selection 
Function 

Crossover 
Function-
Fraction 

Mutation 
Function 

Exploit
ation 

Exploration 
 

Conver
gence 

Consi
stenc
y  

Refere
nce 

1. Rank-Roulette Single 
Point-0.6 

Uniform-
0.01 

Good Good Poor Poor Fig.6a 

2. Rank-Roulette Single 
Point-0.8 

Uniform-
0.01 

Good Good Good Poor Fig.6b 

3. Rank-Roulette Single 
Point-0.8 

Uniform-
0.1 

Good Very Good Poor Good Fig.6c 

4. Rank-Roulette Two Point-
0.8 

Uniform-
0.1 

Good Very Good Poor Good Fig.7d 

5. Rank-Roulette Single 
Point-0.8 

Gaussian Very 
Good 

Beyond 
Boundary 
Conditions 

Very 
Good 

Very 
Good 

Fig.6e 

6. Proportional-
Tournament 

Single 
Point-0.8 

Gaussian Very 
Good 

Beyond 
Boundary 
Conditions 

Very 
Good 

Very 
Good 

Fig.6f 

7. Proportional-
Tournament 

Single 
Point-0.8 

Uniform-
0.01 

Very 
Good 

Good Good Poor Fig.6g 

8. Rank-
Tournament 

Single 
Point-0.8 

Uniform-
0.01 

Good Good Good  Very 
Poor 

Fig.6h 

9. Proportional-
Roulette 

Single 
Point-0.6 

Uniform-
0.1 

Good Very Good Poor Good Fig.6i 

 
     The GA operators namely scaling function, selection function, crossover function, 
crossover fraction, mutation function and mutation fraction were varied during each 
trial and the simulation was observed. The simulation results obtained from selected 
trials are given in Fig. 6 and presented in Table 8. On comparison of trials 2, 7 and 8, 
it is found that Rank-Tournament selection method performs better in eliminating bad 
solutions and replacing good solutions thereby improving the convergence in search. 
But the search sometimes gets struck in sub-optimal conditions and hence the 
consistency of the result is poor. Conversely Rank-Roulette method always produces 
optimal solution with good consistency in the result but convergence in the search is 
poor.  
     Crossover operator enhances the exploration and mutation operator diversifies the 
search. On the analysis of various trials it was found that the higher fraction of 
crossover (0.1 -1.0) and mutation (0.01 – 0.1) produced best solution with consistency 
in the result, but of course the convergence in the search was poor.  
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Figure 6: Results obtained from GA for various parameter settings 
 
     Though Trial 3 with single point crossover and Trial 4 with two point crossover 
produced similar results, the computational effort and time for single point crossover 
was found to be comparatively less. The Gaussian mutation function instigated a 
diversified search with good convergence ending at an optimal solution but the only 
downside was that the initial search occurred beyond the boundary conditions. This 
can be overcome by providing the necessary constraints. Among all the trials the 
suitable genetic algorithm parameters can be suggested as: 
     Scaling Function  : Rank 
     Selection Function  : Roulette 
     Crossover Function : Single point operator 
     Crossover Fraction  : 0.8 
     Mutation Fraction   : 0.1 
     These parameters exhibited a very good exploration, good exploitation of 
information and consistency in the result as presented in Table 8. Z.H.Deng et al. [20] 
had also applied roulette wheel selection based on ranking algorithm with 0.7 as 
uniform crossover probability and 0.03 as uniform mutation probability.  
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Figure 7: Results obtained from PSO for various values of learning factors (C1 and 

C2) and inertia weight (ω) 
 
     It was reported that for these GA parameters the predicted values were with a 
percentage error ranging between ± 10%. This is similar to the result obtained in 
present work and an example is shown in Table 10. T.S Lee et al. [26] reported that 
tournament based selection with 0.85 as crossover probability and 0.3 as mutation 
probability yielded better results, which is contrary to the result obtained in the 
present work. This difference may be due to the higher fraction of mutation 
probability.  
 
Computational results of PSO 
The optimal grinding parameters predicted using PSO are 104.091 m/min work speed, 
0.086 mm/rev feedrate, 0.004 mm depth of cut for a minimum surface roughness of 
0.46850 µm. The developed regression model, Equation 5 is used as the objective 
function for determining the surface roughness value of each new particle generated. 
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The particles are randomly generated in the search space to facilitate effective 
exploration. As Genetic algorithm, PSO algorithm was also run for 1000 iterations for 
a population size of 100. The optimization was run for various settings of inertia 
weight and learning factors. The details of various trials are given in Table 9 and 
Fig.7.  
 

Table 9: PSO operators and search result 
 

Trial 
No. 

PSO algorithm 
operators 

 Result   

Inertia 
weight
, w 

Learning 
factor 
C1=C2 

Exploitation Exploration Convergence Consistency  Reference 

1. 0.8 0.5 Good Poor Poor Poor Fig.7a 
2. 0.8 1.0 Very Good Good Good Good Fig.7b 
3. 0.8 1.5 Very Good Good Poor Good Fig.7c 
4. 0.8 2.0 Good Good Poor Poor Fig.7d 
5. 0.85 0.5 Very Good Good Very Good Very Good Fig.7e 
6. 0.85 1.0 Very Good Good Good Poor Fig.7f 
7. 0.85 1.5 Very Good Very Good Very Good Very Good Fig.7g 
8. 0.85 2.0 Good Good Good Good Fig.7h 
9. 0.9 0.5 Good Poor Good Poor Fig.7i 
10. 0.9 1.0 Very Good Poor Good Poor Fig.7j 
11. 0.9 1.5 Very Good Good Good Good Fig.7k 
12. 0.9 2.0 Very Good Very Good Good Good Fig.7l 
13. 0.95 0.5 Very Good Good Good Poor Fig.7m 
14. 0.95 1.0 Very Good Good Good Poor Fig.7n 
15. 0.95 1.5 Very Good Good Good Poor Fig.7p 
16. 0.95 2.0 Poor Good Good Good Fig.7q 
 
Table 10: Prediction of optimal parameters for a given surface roughness value using 

GA and PSO 
 

Algorithm Work speed,  
Vw (m/min) 

Feedrate, 
f (mm/rev)  

Depth of 
cut,  
d (mm) 

Surface 
roughness, 
Ra (µm) 

% Error % of 
Accuracy 

GA 98.39 0.101 0.004 0.49172 3.58 96.42 
PSO 97.001  0.093  0.004  0.49368 3.20 96.8 
Experiment 98 0.093 0.004 0.51   
 
     Inertia weight ‘ω’ regulates the trade-off between exploration and exploitation 
competency. The optimization was performed for various values of ω and it was 
found that an inertia weight of 0.85 produced optimal solution for all values of C1 and 
C2. C1 and C2 are the learning factors which accelerate the search direction towards 
the optimal solution. From the optimization analysis it was found that the learning 
factors C1 = C2 = 1.5 produced optimal solution consistently for most of the values of 
inertia weight. Among all the trials the suitable PSO parameters can be suggested as: 
     Inertia weight   : ω = 0.85  
     Learning factors  : C1 = C2 = 1.5 
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     The particle swarm optimization process converged between the iteration numbers 
5 to 19 for any value of learning factor and inertia weight. The Fig.7 presents the 
iteration number at which the convergence of search commenced for a value of C1, 
C2 and ω. The inferences of this analysis are in agreement with that published in 
literature [26].  
 
Comparison of Results 
The optimal machining parameters for minimum surface roughness obtained using 
GA and PSO are compared and found that the surface roughness value achieved using 
PSO is better than that of GA. As stated in literatures [25-26] it is realized that PSO 
algorithm is more comfortable and yields optimal results when compared to GA. This 
is because the underlying concepts of PSO are very simple and it is easy to relate with 
the problem, and so coding for PSO is very easy. In PSO, comparatively less number 
of parameters are used hence tuning of the program is very simple. PSO involves less 
computation and provides optimal results. The exploration is very good in both GA 
and PSO, but PSO proves better because of very good exploitation of the solution and 
very good convergence with consistency in the result obtained. To validate the 
performance of GA and PSO, surface roughness was predicted for a set of input 
parameters and compared with experimental value as presented in Table 10. The % of 
error for PSO was found to be less than GA.  
 
 
Conclusions 
From this experimental and analytical work the following conclusions are drawn: 

 The results of S/N ratio and ANOVA reveal that work speed has a greater 
effect on surface roughness than feedrate and depth of cut. 

 Regression analysis is a useful tool in developing an empirical model for 
surface roughness. The developed model has an accuracy of 97.7% and can be 
used for prediction of surface roughness in cylindrical grinding of AISI 316 
stainless steel.  

 The regression analysis also reveals the fact that increase in workspeed and 
decrease in feedrate and depth of cut reduces the surface roughness. 

 The optimal grinding parameters predicted using GA are 103.730 m/min work 
speed, 0.086 mm/rev feedrate, 0.004 mm depth of cut for a minimum surface 
roughness of 0.47703 µm. 

 The optimal grinding parameters predicted using PSO are 104.091 m/min 
work speed, 0.086 mm/rev feedrate, 0.004 mm depth of cut for a minimum 
surface roughness of 0.46850 µm. 

 GA exhibited a diversified search and generated new population at random 
and progressed towards optimal solution by its mechanism of reproduction, 
crossover and mutation. But the tuning of algorithm was difficult due to a 
greater number of parameters and their wide range. Convergence of the search 
was also poor. The results of GA were less accurate when compared with 
PSO. 
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 PSO algorithm was observed to be an effective evolutionary technique due to 
its wide search and fast converging characteristics which generates optimal 
results consistently with an accuracy of 96.8%. The tuning of the algorithm 
was found easy due to less number of parameters. 

 PSO is suggested as comfortable and effective tool in solving optimization 
problems.  

 Above all, this procedure can be adopted as an effective tool for predicting the 
optimal parameters for other machining processes also.  

 
 
References 
 

[1]. Antoniomaria Di Ilio, Alfonso Paoletti (2000) A comparison between 
conventional abrasives and superabrasives in grinding of SiC-aluminium 
composites. International Journal Machine Tools & Manufacture 40:173-
184. 

[2]. B. Anand Ronald, L. Vijayaraghvan, R. Krishnamurthy (2009) Studies on 
the influence of grinding wheel bond material on the, grindability of metal 
matrix composites. Materials and Design 30: 679-686. 

[3]. Jorge Alvareinz, Mikel Zatar, David Barrenetxea, Naria Ortega, Ivan 
Gallego (2013) Semi-discretization for stability analysis of in-feed 
cylindrical grinding with continuous workpiece speed variation. Int J Adv 
Manuf Technology, 69:113-120. 

[4]. H. Ohmori, K. Katahira, J. Komotori, M. Mizutani (2008) 
Functionalization of stainless steel surface through mirror-quality finish 
grinding, CIRP Annals-Manufacturing Technology, 57; 545-549. 

[5]. Leonardo Roberto da Silva (2007) Analysis of surface integrity for 
minimum quantity lubricant-MQL in grinding”, International Journal of 
Machine Tools & Manufacture, 47; 412-418. 

[6]. T. Tawakoli, M.J. Hadad, M.H. Sadeghi, A. Daneshi, S. Sockert, A. 
Rasifard(2009) A experimental investigation of the effects of workpiece 
and grinding parameters on minimum quantity lubrication-MQL grinding. 
International Journal of Machine Tools & Machine 49; 924-932. 

[7]. G.Manimaran, (2013) Effect of cryogenic cooling and sol-gel alumina 
wheel on grinding performance of AISI 316 stainless steel. Archives of 
civil and mechanical engineering, 13: 304-312. 

[8]. Sanjay Agarwal, P.Venkateshwara Rao (2008) Experimental investigation 
of surface / subsurface damage formation and material removal 
mechanisms in SiC grinding. International Journal of Machine Tools & 
Manufacture, 48:698-710. 

[9]. C. Thiagrarajan, R. Sivaramakrishnan S.Somasundaram (2011) Cylindrical 
grinding of SiC particles reinforced aluminium metal matrix composites. 
ARPN Journal of Engineering and Applied Sciences, Vol 6, No. 1: ISSN 
1819-6608. 



Application of Regression Analysis and Evolutionary Algorithms For et.al.  12609 

[10]. A.Di Ilio, A.Paoletti, D. D’Addona (2009) Characterization and modeling 
of the grinding process of metal matrix composites. CIRP Annals – 
Manufacturing Technology 58:291-294. 

[11]. T.J. Choi, N.Subramanya, H. Li, Y.C. Shin (2008) Generalized practical 
models plunge grinding process. International Journal of Machine Tools & 
Manufacture, 48:61-72. 

[12]. R.Gupta, K.S.Shishodia, G.S.Sekhon (2001) Optimization of grinding 
process parameters using enumeration method. Journal of Materials 
Processing Technology, 112:63-67. 

[13]. G.F.Li, L.S.Wang, L.B.Yang (2002) Multi-parameter optimization and 
control of the cylindrical grinding process. Journal of Materials Processing 
Technology, 129:232-236. 

[14]. M.N.Dhavlikar, M.S.Kulkarni, V.Mariappan (2003) Combined Taguchi 
and dual response method for optimization of centerless grinding 
operation. Journal of Materials Processing Technology, 132:90-94. 

[15]. Jae-Seob Kawak(2005) Application of Taguchi and response surface 
methodologies for geometric error in surface grinding process. 
International Journal of Machine Tools & Manufacture, 45: 327-334. 

[16]. J.S. Kwak, Y.S. Kim, (2008) Mechanical properties and grinding 
performance on aluminum-based metal matrix composites. Journal of 
materials processing technology, 201:596-600. 

[17]. Suleyman Neseli, Ilhan Asilturk, Levent Celik (2012) Determining the 
optimum process parameter for grinding operations using robust process. 
Journal of Mech Sci & Tech, 26(11):3587-3595. 

[18]. P.Krajnik, J.Kopac, A.Sluga (2005) Design of grinding factors based on 
response surface methodology. Journal of Materials Processing 
Technology, 162-163:629-636.  

[19]. Guofa Li, Jia Liu, Shuxiang Yang (2011) On-line prediction of surface 
roughness in cylindrical traverse grinding based on BP+GA algorithm. 
Mechanic Automation and Control Engineering(MACE), Second 
International Conference, 1456-1459. 

[20]. Z.H.Deng, X H Zhang, W Liu, H Cao (2009) A hybrid model using 
genetic algorithm and neural network for process parameters optimization 
in NC camshaft grinding. Int J Adv Manuf Technology, 45:859-866. 

[21]. A.K.Nandi, M.K.Banerjee (2005) FBF-NN-Based modeling of cylindrical 
plunge grinding process using GA. Journal of Materials Processing 
Technology, 162-163:655-664. 

[22]. R. Saravanan and M. Sachithanandam (2010) Genetic algorithm (GA) for 
multivariable surface grinding process optimization using a multi-
objective function model. Int J Adv Manuf Technology, 17:330-338.  

[23]. Erol Kilickap, Mesut Huseinoglu, Ahmet Yardimeden (2011) 
Optimization of drilling parameters on surface roughness in drilling of 
AISI 1045 using response surface methodology and genetic algorithm. Int 
J Adv Manuf Technology, 52:79-88. 



12610  R. Rekha 

[24]. C.Thiagrarajan, R.Sivaramakrishnan, S.Somasundaram (2012) Modeling 
and optimization of cylindrical grinding of Al/SiC composites using 
genetic algorithm. Journal of Braz Soc Mech Sci & Engg, 34:ISSN 1678-
5678. 

[25]. N.Baskar, P.Asokan, R.Saravanan, G.Prabhaharan (2005) Optimization of 
machining parameters of milling perations using non-conventional 
methods. Int J Adv Manuf Technology, 25:1078-1088. 

[26]. T.S.Lee, T.O.Ting, Y.J.Lin, Than Htay (2007) A particle swarm approach 
for grinding process optimization analysis. Int J Adv Manuf Technology, 
33; 1128-1135. 

[27]. P.Asokan, N.Baskar, K.Babu, G.Prabhaharan, R.Saravanan (2005) 
Optimization of surface grinding operations using particle swarm 
optimization technique. Journal of Manuf Sci and Engg, 127: 885-892. 

[28]. Arindam Majumder (2013) Process parameter optimization during EDM 
of AISI 316LN stainless steel by using fuzzy based multi- objective PSO. 
Journal of Mech Sci and Tech, 27: 2143-2151. 

[29]. N. Baskar, R. Saravanan, P. Asokan, G. Prabhaharan (2004) Ants colony 
algorithm for multi-objective optimization of surface grinding operations. 
Int J Adv Manuf Technology, 23:311-317. 

[30]. S.H. Yang, U. Natarajan (2010) Multi-objective optimization of cutting in 
turning process using differential evolution and non-dominated sorting 
genetic algorithm-II approaches. Int J Adv Manuf Technology, 49:773-
784. 

[31]. K. Deb, Multi-objective Optimization using Evolutionary Algorithms. 
John Wiley and Sons, USA, 2001. 

[32]. R.Saravanan, Manufacturing optimization through intelligent techniques. 
Taylor and Francis, Boca Raton, 2006. 

[33]. A Rezaee Jordehi and J.Jasni (2013) Parameter selection in particle swarm 
optimization: a survey. Journal of Experimental and Theoretical Artificial 
Intelligence, 25: 527-542. 

[34]. K.Palanikumar (2008) Application of Taguchi and response surface 
methodologies for surface roughness in machining glass fiber reinforced 
plastics by PCD tooling. Int J Adv Manuf Technology, 36:19-27. 

[35]. Jae-seob Kwak, Sung-Bo Sim, Yeong-Deng Jeong (2005) An analysis of 
grinding power and surface roughness in cylindrical grinding of hardened 
SCM 440 steel using the response surface method. International Journal of 
Machine Tools & Manufacture, 46; 304-312. 

 
 
 


