

Designing Of Tube Trusses Without Gusset Plate With Joint Connections

ViktorijaAnatolievnaZinkova,

*BelgorodStateTechnologicalUniversitynamedafterV. G. Shukhov,
Russia, 308012, Belgorod, Kostyukov street, 46*

AlexanderGavrilovichYuriev,

*Belgorod State Technological University named after V. G. Shukhov,
Russia, 308012, Belgorod, Kostyukov street, 46*

ElenaVladimirovnaPeshkova,

*BelgorodStateTechnologicalUniversitynamedafterV. G. Shukhov,
Russia, 308012, Belgorod, Kostyukov street, 46*

Abstract

In this paper focus is made on the most efficient kind of rolled stock constituting the compelling alternative to its traditional kinds – this is profile in the form of a square tube. The use of such profile allows constructing transformable, rapidly-erected and light-weight structures of buildings and facilities. The stressed-deformed condition of trusses from such profile has been considered. Special attention was paid to the performance of the truss units since the truss bearing capacity is determined by the strength of its joint connections. The design solution of an assembly the chord of which has the non-common spatial orientation – is turned around its axis forming a rhombus, i. e. with its diagonal lying in the truss plane – was presented. The stress pattern has been described and the advantages of such design solution have been specified. The efficient arrangement of struts in a pin-jointed truss according to the load applied has been studied. The tendency of the material concentration at the loaded joint connections has been established.

Keywords. Steel roof truss, truss frame, tube truss, joint connection, roll-welded section, tube section, structural topology, strain potential energy, optimality criterion.

Introduction.

The analysis of dynamics of the Russian market allowed detecting the increase in investments in construction of the sports-recreational complexes, shopping and entertainment malls, business centers, warehouse and other facilities. The rapidly-erected and transformable buildings become more and more popular.

For a few decades already many dazzling sites in the European, Asian and American countries have been erected with the use of the roll-welded sections [1]. In Russia the buildings and facilities impressing with their freshness and beauty constructed with the use of the tube sectional structures appeared just recently.

One of the leaders in the Russian metallurgical industry – the Ural Pipe Works (Uraltrubprom), JSC – provides the data on the impressive volume of production and scope of delivery of products made from shaped tubes [2]. The steel structures are produced by the OJSC “Uraltrubprom” both on the basis of the standard and individual designs.

As to standard designs, in its days the plant implemented the large-scale project on design of the standard construction series “UNITEK” within the frameworks of which a shaped tube was designed.

In the development of steel structures a promising scientific-engineering direction is design and implementation of light-weight structures of buildings and facilities allowing making efficient use of material resources.

Wide use of the light-weight trusses from tube shapes due to the high construction progress rates combined with the favorable technical and economic features (high manufacturability, functional reliability and durability, minimal number of pieces and welded joints, advantages in terms of applying a coating, enhanced illumination, low air-flow resistance as well as modern architectural design) results in cheapening of construction as compared to the use of traditional materials by 25-30%, and in some cases – by 40 %.

Though featuring the above-mentioned advantages trusses are not guaranteed against crashes caused by the unit damage. This can be explained by the fact that the bearing capacity of the tube trusses is to a large extent determined by the strength of their joint connections [3]. The truss topology is also important – the arrangement of structural units and method of connecting them in order to form a geometrically stable structure.

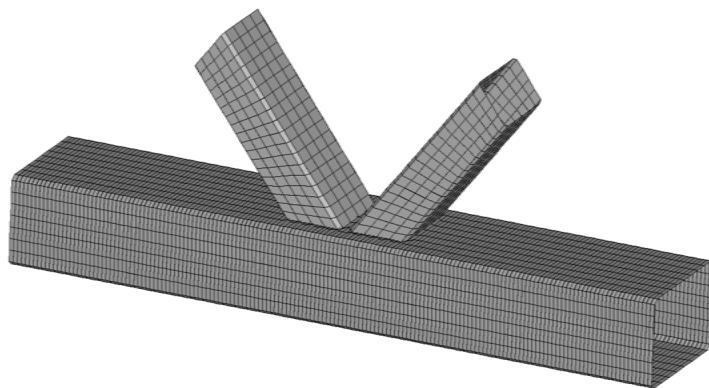
Main part.

By designing of tube trusses one should seek to put the axis of the lattice structure bars together in a single point of a joint. This allows excluding the bending moments caused by eccentricity. In reality some deviations from this arrangement are possible as the result of which bending moments may arise. They may be accounted theoretically: $M=Ne$, where N is the axial force in the bar, e – eccentricity of application.

The physical structure of a welded tube truss consists of single-piece chords to which the frame pieces are welded whereby joints are formed. Under the action of the external load the truss is distorted – the chord bending is observed. In the general

case the truss chord axis forms the curves $y=ax^3+bx^2+cx+d$. The differential equation explains the presence of bending moments in the truss chords.

$$\frac{d^2 y}{dx^2} = \frac{M_x}{EI_x} \quad (1)$$


However, in case of idealized pin-jointed trusses it is commonly supposed that in the bars forming the joint only the axial forces arise. Stress derived from these forces is taken for primary one. There reversal in the strut takes place according to the law of statics shown as balance of forces against the joint center at the chord axis. The axes of all bars shall be linear and lie in one plane.

The simplified procedures of the truss design allow using the idealized hinged joints by estimation of the axial forces in the truss elements if the ratio of the depth of such element to its length is $h/l \leq 1/10$ [4].

Structural stress concentrators in trusses are their joint connections constituting a complex spatial structure with a high stress gradient. The joint strength depends directly on the design solutions and stress pattern.

Therefore, by designing of a tube truss the stressed-deformed condition of its joints shall be thoroughly investigated.

Taking into account that in elements of a traditional tube truss the shaped structure is hollow, the axial forces in the struts without reaching the joint center of gravity are taken by the chord upper wall (Fig. 1). Thereby the transverse forces arise in the chords determined by the component of the axial force in the frame members. This results in the non-uniform distortions of the chord cross section and appearance of the local bending moments. Moreover, along with the normal stress the axial forces induce the comparable shearing stress.

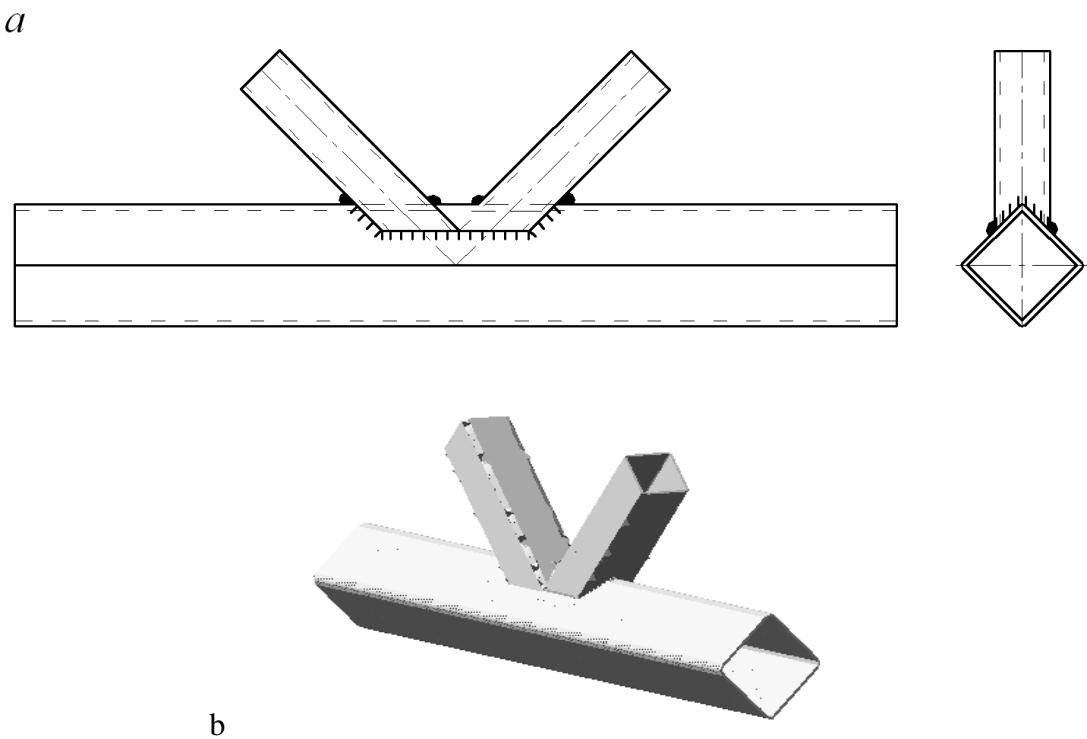


Fig. 1. Assembly of a traditional tube truss

As the struts are attached directly to the plane wall of the tube chord it is distorted at this point in a non-uniform way – along the lines of the forces action. Besides, the side chord walls are pressed under the stretched strut and buckled under the compressed one.

Taking into account the above-mentioned defects there has been designed and studied a truss unit from the roll-welded shaped structure of square section with struts directly adjacent to the chord. The X-axes of struts pass through the joint center and lie within the truss plane. The distinctive feature of such solution is that the chord cross section is turned around its axis forming a rhombus, i. e. with its diagonal lying in the truss plane. The frame members have at the point of attachment to the chord a though V-shaped cut that is completely repeating the geometry of this junction. At the same time the junction of each of the frame members with the chord is performed both along the V-shaped cut edges and the two side faces. The specified structure was acknowledged as an invention and protected by a patent [5].

The analysis of this joint accompanied by comparison of its results with the results of analysis of the traditional design (Fig. 2) revealed its efficiency due to the favorable stress distribution in the bars.

Fig. 2. **Design solution for the K-shaped joint connection of the tubular truss members without gusset plate: a – front and side view, b – axonometric projection**

According to the solution proposed the struts were attached to the chord in such a way that their ends envelop with a through V-shaped cut the two adjacent chord walls. This results in the quite close arrangement of the struts ends against the joint center and, correspondingly, against each other. Thereby the path of transfer of shear (transverse) forces passing through the chord is reduced as the result of which the

stress along the chord axis is equalized. The new method of the strut attachment prevents from loss of stability of the chord walls which is directly related to the increase in the load-carrying capability and reliability of the unit under consideration. At the same time the spare load-carrying capability is assured due to the increased yield point in the rounding area, i. e., the hardening process.

Along with that in the proposed assembly the length of the weld is increased which allows making it thinner and reduce the progress of permanent distortion and thermal stresses in the welding area. Thereby the concentration of stresses in the joint connection is reduced resulting in the more uniform stress distribution over all the truss structure. Aneasieraccesstotheassembly heel area allows making a weld joint of a higher quality with minimum efforts.

At the end of the last century the German scientists Rouks formulates the law of the “battle of elements” in a body according to which the maximum of work is performed by the minimum of material. Constant functional irritation results in strengthening of the acting organ by means of the increased substance delivery. Absence of irritation allows transferring the substance to other organs where, on the contrary, the enhanced irritation is present. This is the process of “coating” the stress field by the matter. This explains the ability of living systems to adapt to the lasting and multiple exposures of the external factors of moderate intensity by means of both functional and morphological rearrangements of separate structures and systems [6].

As has been said above, the structure formation rules arising from the principles of stationary action shall be traced both in the nature organization and the engineering structures brought to perfection.

The book [7] provides the formulations and proofs of the three theorems of the structural changes; the application of these theorems for optimization of the hinged structures topology is demonstrated. Also, the analysis of the topological changes in the structures is presented in order to identify the factors affecting their topology.

This paper provides the substantiation of the matter arrangement according to the stress field for truss structures [8, 9]. A plane truss was selected as the study subject (Fig. 3). In order to ensure the stability of its geometrical shape the two struts suffice that are indicated by dash lines until the optimal topology is found. There are four variants of their combinations. The variants of attachment of both struts within one panel resulting in the change of the truss geometrical shape are excluded [10].

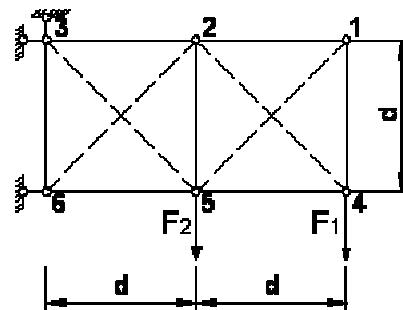


Fig. 3. Plane truss design

In the Table 1 the forces in the bars for two variants of loading and four strut combinations are presented.

Table 1 Variants of truss topology

Bars	Struts 2-4 and 3-5		Struts 2-4 and 2-6		Struts 1-5 and 3-5		Struts 1-5 and 2-6	
	$F_1 = F_2 = F$	$F_1 = F, F_2 = 2F$	$F_1 = F_2 = F$	$F_1 = F, F_2 = 2F$	$F_1 = F_2 = F$	$F_1 = F, F_2 = 2F$	$F_1 = F_2 = F$	$F_1 = F, F_2 = 2F$
1-2	0	0	0	0	F	F	F	F
2-3	F	F	$3F$	$4F$	F	F	$3F$	$4F$
4-5	$-F$	$-F$	$-F$	$-F$	0	0	0	0
5-6	$-3F$	$-4F$	$-F$	$-F$	$-3F$	$-4F$	$-F$	$-F$
1-4	0	0	0	0	F	F	F	F
2-5	$-F$	$-F$	F	$2F$	0	0	$2F$	$3F$
3-6	0	0	0	0	0	0	0	0
2-4	$\sqrt{2}F$	$\sqrt{2}F$	$\sqrt{2}F$	$\sqrt{2}F$	□	□	□	□
3-5	$2\sqrt{2}F$	$3\sqrt{2}F$	□	□	$2\sqrt{2}F$	$3\sqrt{2}F$	□	□
1-5	□	□	□	□	$-\sqrt{2}F$	$-\sqrt{2}F$	$-\sqrt{2}F$	$-\sqrt{2}F$
2-6	□	□	$-2\sqrt{2}F$	$-3\sqrt{2}F$	□	□	$-2\sqrt{2}F$	$-3\sqrt{2}F$

The optimality criterion for a truss from a uniform linear-elastic material is strength uniformity of the virtual system with the internal forces $N_i/[f_i]$ where $e[f_i]$ is the ratio of reduction of the design strength R . For the stretched bars it is equal to 1, and for the compression one it is taken on the basis of the limitation of flexibility of the chord and frame members. The required cross-section areas A_i of the compression bars shall have the corresponding minimal radii of gyration.

The above-mentioned criterion corresponds to the variational principle of structural synthesis: the potential system energy in the state of stable equilibrium reaches the absolute minimum of displacement within the functional space enhanced by means of the fields of configuration functions and (or) material elasticity modulus. In case of a uniform linear-elastic material this equals to the minimal strain potential energy [11, 12]:

$$J = \sum_{i=1}^m \frac{N_i^2 \ell_i}{2E \varphi_i^2 A_i}, \quad (2)$$

Where m is the number of bars.

In the example for the variants of loading considered

$$J_{(1)} = 7,94k_1 \frac{RFd}{E}, \quad J_{(2)} = 9,83k_2 \frac{RFd}{E}, \quad (3)$$

and the corresponding volume of material

$$V_{(1)} = 13,67k_3 \frac{Fd}{R}, V_{(2)} = 17k_4 \frac{Fd}{R}. \quad (4)$$

In the Table 2 the coefficient values k_1, k_2, k_3, k_4 for four strut combinations are presented.

Thus, in terms of the minimal strain potential energy and the related minimal consumption of material the 1st and the 3d strut combinations appeared to be the optimal ones. The 1st variant shall be preferred as the two “zero” bars 1-2 and 1-4 are not essential which enables additional saving of the material.

Table 2 Coefficients in the formulas (3) and (4)

Coefficient s	Struts 2-4, 3-5		Struts 2-4, 2-6		Struts 1-5, 3-5		Struts 1-5, 2-6	
	$F_1 = F_2 = F$	$F_1 = F, F_2 = 2F$	$F_1 = F_2 = F$	$F_1 = F, F_2 = 2F$	$F_1 = F_2 = F$	$F_1 = F, F_2 = 2F$	$F_1 = F_2 = F$	$F_1 = F, F_2 = 2F$
k_1	1		1, 049		1		1, 22	
k_2		1		1, 13		1		1, 27
k_3	1		1, 024		1		1, 19	
k_4		1		1, 098		1		1, 23

The tendency of “coating” the stress field by the matter is shown here in the “turning” of the two struts to the loaded joints. Unfavorable combinations include one strut of such a kind.

Summary.

By designing of the tube trusses the joint connections being the structural stress concentrators shall be considered individually. There has been proposed a design solution the distinctive feature of which is the non-common arrangement of the chord cross-section. It is turned around its axis forming a rhombus. Due to the favorable distribution of the internal forces this solution allows increasing the strength and reducing the unit deformability as the result of which the load-carrying capacity of the tube truss is increased. Seeking for the favorable distribution of forces in the structural bars promotes to the design of an efficient truss meeting the up-to-date requirements to lightness and reliability. The rationalization of its topology from the perspective of the variational principle of structural synthesis also contributes to this.

Conclusions.

Metallic tube trusses combine the high load-carrying capacity and lightness with the high esthetic properties. This sets them apart from trusses made from traditional shaped structures. These properties are mostly shown in case of their rational topology.

References.

1. Modern buildings from metal. Access mode: 04. 12. 2014 <http://stroyprofile.com/archive/3062>.
2. Ural Pipe Works. Access mode: 05. 12. 2014 <http://www.trubprom.com>.
3. Solodov, N. V. , 1996. In-place testing of a steel truss. News of Higher Educational Institutions. Construction: 26-28.
4. Marutyan, A. S. , 2014. Optimization of the minimum heights of roof frames and cross-shaped steel trusses including the “Pyatigorsk” type. Structural mechanics and structural analysis, 2 (253): 60-66.
5. Patent 2329361 Russian Federation, IPC⁷E 04 C 3/08. Joint connection of the tube truss members without gusset plate (variants) /V. A. Zinkova, A. A. Sokolov; applicant and patent holder BGTU named after V. G. Shukhov. - # 2006140596/03, Application 16. 11. 06; published 20. 07. 08, Bulletin # 20. – 3 p.
6. Olhoff, N. and J. Du, 2005. Topology Optimization of Structures against Vibration and Noise. In the Proceedings of the 2005 Twelfth International Congress on Sound and Vibration, pp: 1-20.
7. Mazhid, K. I. , 1979. Optimal structural design, pp. : 238.
8. Metwally Abd-El-Ahmed, 2003. Matrix Stiffness Analysis of Skeletal Structures, 2003 Cairo University Press, pp. 208.
9. Yuriev, A. G. Structure Mechanics, 2012. Belgorod Technological University Press, pp. 306.
10. Yuriev, A. G. , 2013. Natural factor of optimization of the structural topology. Journal of BGTU named after V. G. Shukhov, 5: 46-48.
11. Yuriev, A. G. , 2011. Variational Principles of Mechanics. Belgorod Technological University Press, pp: 50.
12. Variational statements of problems of structural syntheses. Date Views 05. 12. 2014 <http://www.sworld.com.ua/konfer33/421.pdf>.