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Abstract 

 

Differential Evolution (DE) is a recent addition to the repository of Evolutionary 

Algorithms (EAs) under Evolutionary Computing Techniques. As similar to other 

EAs, DE also used for optimization based on population of members. During 

population optimization the classical DE faces major problem of premature 

convergence, which causes the sample members to converge early to a local optimum 

though there is a global optimum in the search space. This paper presents methods to 

reduce the effect premature convergence and achieve better optimal solutions. There 

are few works in the literature for same reason by altering the control parameters of 

DE viz., scaling factor (F) and crossover rate (CR). However, we propose methods to 

make suitable amendments in the population level directly after detecting premature 

convergence during the search of DE. These methods can be added as an additional 

component to DE algorithm. The proposed components are to replace the population 

members with distinct highest objective function values with random members, to 

replace the population members with distinct lowest objective function values with 

random members, to replace members in random fashion and to increase the 

population size dynamically to counter the early convergence of the population. The 

above mentioned techniques are implemented and added with classical DE. The 

performance efficacy of DE with added components is verified on implementing it 

over a set of Benchmarking Function Suite with functions of different characteristics. 

The experimental results proved that DE with above components added is able to 

achieve better optimum values than the classical DE. 
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1.  Introduction 
Differential Evolution (DE) is one of the recent additions in Evolutionary Algorithm 

(EA) employed to optimize real parameter, real valued functions using stochastic, 

population-based optimization algorithm, proposed by Storn and Price in 1995 (Stron 

and Price, 1995). The underlying idea behind DE is to generate mutated parameter 

vectors by adding the weighted difference vector to another sample vector in the 

population. It is followed by a recombination operation between the mutant vector 

and the target vector, which produces the trail vector.  Through selection, the fitness 

value of the resultant trial vector is compared with the fitness value of the parent 

vector. The member with the good objective function value is transferred to the next 

generation. DE in-turn consists of many variants based on multiple ways of mutation 

and recombination. Some of the variants result in suboptimal solutions caused by 

premature convergence. The premature convergence can occur due to loss of 

population diversity and it prevents the algorithm from reaching global optimum. This 

paper presents a method to detect the premature convergence early than it happen and 

also propose four methods to achieve better optimal solutions when premature 

convergence happens. The paper is organized as follows. Section 2 describes related 

papers briefly followed by the details of design of experiment in Section 3. Section 4 

mentions the experimental results and inferences and finally Section 5 concludes the 

work. 

 

 

2.  Related Works 
Different authors developed various techniques to overcome the problem of 

suboptimal solutions. Following is a brief mention about some methods proposed by 

different authors. 

 Jouni Lampinen and Ivan Zelinka presented (Lampienen and Zelinka, 2000) 

the possible reasons for the premature convergence and stagnation problems of 

Differential Evolution. One of the reasons for the premature convergence to occur is 

losing the diversity in the population (search space). The techniques of adaptive 

evolutionary algorithms and hybrid evolutionary algorithms (Grosan and Abraham, 

2007) have been implemented for DE (Vanaret et al, 2013) to avoid the effect of 

premature convergence. As an attempt, hybridizing DE with the popular branch-and-

bound technique (as a local search guide) was experimented in (Vanaret et al, 2013), 

and proved the efficiency of the hybrid DE algorithm. Lu  et al., proposed adaptive 

hybrid differential evolution algorithm (AHDE) integrated with a local random search 

operator (LRS) (Lu et al, 2010) to achieve near global solution. This combination of 

DE and local random search could balance the global exploration and local 

exploitation. 

 Understanding the search behavior of DE, in maintaining population diversity, 

during its evolution is a possible scope to find some strategies to avoid the problem of 
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premature convergence and stagnation. Various theoretical attempts have been made 

in the literature to understand the search behavior of the DE algorithm by measuring 

the population diversity during the evolution. A theoretical expression to measure the 

population diversity from generation to generation for a DE variant DE/rand/1/bin 

was derived by Zaharie in (Zaharie, 2001). Later, this expression was extended to few 

more variants of DE in (Jeyakumar and Shunmuga Velayutham, 2010) and 

(Thangavelu et al, 2015). However, all these theoretical studies did not comment on 

the solutions to premature convergence problem. 

 There are numerous works found in the literature to improve the efficiency of 

DE algorithm by the virtue of avoiding premature convergence and stagnation 

problem. Few interesting works are presented below. 

 Sá et al., proposed a modification to the standard mechanisms in DE algorithm 

by introducing a probability selection of a new member (Sa et al, 2008). Though the 

probability of success shown by the modified DE is higher it relaxes the greedy 

selection scheme of the DE algorithm. Little selective pressure prohibits the DE to 

converge to an optimum in a reasonable time. 

 Josef Tvrdík adopted competitive variants of DE such as DEBR18 which 

performed apparently better than standard DER (Tvrdik, 2006). This competition 

revolves around 18 fixed settings of F and C contributing to no further change. 

Moreover, variant DERADP3 using F adaptive search had less reliability. 

 Rahnamayan et al., proposed Opposition-Based Learning (OBL) (Rahnamayan 

et al, 2008) to improve the convergence rate of DE. It depends on a new control 

parameter, the jumping rate to force to jump on a new solution candidate. This method 

performs better over high-dimensional problems with large population size but still 

high jumping rates are not recommended to achieve optimum solution. 

 Mallipeddi et al., suggested an ensemble of mutation strategies and parameter 

values for DE (EPSDE) (Mallipeddi et al, 2011). It consists of a pool of diverse 

characterized mutation strategies along with a pool of values for each of the 

associated control parameters. EPSDE focuses on employing different mutation 

strategies with different parameter settings during different strategies of evolution. 

 Zheng et al., developed behavioral metrics to investigate DE’s search behavior 

as a function of parameter values (Zheng et al, 2014). The measured statistics serve as 

the guidance for parameter-tuning and appropriate take-up of DE to improve 

performance. 

 Instead of controlling and adjusting the parameters either dynamically or 

statically, this paper in contrast to other works presents the techniques presented in 

Table 1 to improve the solutions at the situation of premature convergence. Rather 

than altering the parameters we propose methods to directly control the population 

members of the search space and improve the suboptimal solutions. 

 When premature convergence happens the suboptimal solution produced 

remains constant in all the subsequent generations. Hence, a threshold value t is fixed 

such that whenever the objective function value remains the same for at least t (taken 

as 50 after considering various samples) generations then one of the methods 

described in Table 1 is performed to recover the population from premature 

convergence or to produce better optimal solutions. 
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 Method 1 suggests that, on the detection of premature convergence, we 

identify three population members in the current generation with good objective 

function values on condition that they are distinct from each other. We then replace 

these members with random population members and are carried forward to the next 

generation along with the existing members. We chose members with distinct 

objective function values to maintain the diversity in the population. If the diversity is 

lost at an early stage then the algorithm converges quickly to a suboptimal solution 

Thus the Method 1 makes an alternation in the population with the aim of altering the 

search direction of DE to escape from the local optimum. 

 

Table 1. List of methods to achieve better optimal solutions during premature 

convergence 

 

Method 

No. 

Method 

1 To replace three population members of distinct highest objective function 

values 

2 To replace three population members of distinct lowest objective function 

values 

3 To replace three population members randomly in the sample 

4 To increase the population size once, during a run 

 

 

 Similarly to Method 1, Method 2 also updates the population. However, by 

replacing three population members with distinct worst objective function values by 

three new random members. The Method 3 replaces any three random members in the 

population with any other random vectors in the current generation. 

 On contrary to Method 1, 2 and 3 which are altering the population by 

replacing selected candidates by new random candidates, the Method 4 increases the 

population size dynamically from 100 to 300 by adding random members to the 

existing population at once during the run on identifying the premature convergence. 

 

 

3.  Design of Experiments 

The scaling factors (F), population size (NP) and crossover rate (CR) are the essential 

control parameters of DE algorithm. The population size (NP) is fixed as 100 for all 

proposed methods except for method 4 where the population has been increased to 

300 after the identification of premature convergence. The scaling factor (F) is 

confined to the interval [0.3, 0.9) by following (Jeyakumar and Shunmuga 

Velayutham, 2010b) and a new F value is generated for each generation. To 

experiment the nature of the proposed methods we have chosen a small benchmarking 

function suite of 5 functions with different optimization characteristics. The details of 

the benchmarking functions are presented in Table 2. Table 3 shows the crossover rate 

(CR) for all the 5 test functions, by following (Jeyakumar and Shunmuga Velayutham, 

2010b). As DE is stochastic in nature 10 independent runs were performed with 
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random population initialization for every run against each method listed in Table 1. A 

run will be stopped before the maximum number of generations is reached if the 

tolerance error of 1x 10
− 12

is obtained with respect to the global optimum. The 

maximum number of generations is kept as 1000 in all the runs. 

 

Table 2. Description of Benchmarking Functions 

 

f1 – Sphere model 

 

 

 

 

f2 – Schwefel’s Problem 1.2 

 

 ; 

 

f3  - Schwefel’s Problem 2.21 

 

 

;  

f4 - Generalized Rosenbrock's Function  

 

 ; 

 

f5 – Generalized Restrigin’s Function 

 

 ;       

 

 

 The functions f1 to f5 are grouped by the feature - unimodal separable, 

unimodal nonseparable, multimodal separable and multimodal nonseparable. The 

experiments are carried out by considering all the four proposed methods on a 

function from each of the features. Function f1 and f3 are selected from unimodal 

separable, f2 is selected from unimodal nonseparable, f5 is selected from multimodal 

separable and f4 from multimodal nonseparable. 

 

Table 3. CR values assigned to each test function 

 

Function CR 

f1 0.9 

f2 0.9 

f3 0.5 

f4 0.9 

f5 0.1 

 

 

4.  Results and Discussion 

As an initial attempt, the superiority of the proposed methods is validated with two 



13584  Rachamalla Rahul Reddy, G.Jeyakumar 

different variants of classical DE algorithms viz. DE/best/1/exp and DE/best/2/exp. 

The experimental results of implementing the identified variants with the proposed 

methods as added components over the chosen benchmarking problems are presented 

in Table 4 to 13 and Figures 1 to 4.  The variants DE/best/1/exp is chosen for our 

experiment, since it was found to be often falling in premature convergence in our 

empirical analyis. The tables are using the notations OVh, OVl, OVr, OVp and OVn and 

the Figures are using the notations OV-h, OV-l, OV-r, OV-p and OV-n. The meanings 

of the notations are described in Table 4. 

 

Table 4. The notations used in the Tables and Graphs. 

 

Notation in  

table 

Notation in  

figure 

Meaning 

OVh OV-h Objective function value when Method 1 is used 

OVl OV-l Objective function value when Method 2 is used 

OVr OV-r Objective function value when Method 3 is used 

OVp OV-p Objective function value when Method 4 is used 

OVn OV-n Objective function value when no recovery method  is used 

 

 

 Generation wise results of the DE variant DE/best/1/exp on f2 presented in 

Table 5 shows that objective function values obtained by dynamic increase in 

population size gives the best possible result of 1.69E-10 (near to the tolerance value 

of 1 x 10
-12

) . There was a rapid jump in values from 400 to 600 generations. The next 

better result was given by the method of replacing population member with distinct 

good objective function values by random method. Method of replacing members 

with worst objective function values did not give promising results, comparatively. 

The results in Table 5 show an interesting anomaly in DE with OVr method that from 

generations 900 to 2000 there are spikes in the convergence of objective function 

values. This is due to the random nature of the method as we are replacing existing 

members randomly with random members. 

 All the four methods are tested on f2 for 10 independent runs. Table 6 shows 

the average objective function value for 10 runs and it is noticed from the results that 

method of dynamic increase in population size gives better result. 
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Table 5. Generation wise objective function values on DE/best/1/exp on function 

f2 

 

Generation OVh OVl OVr OVp OVn 

1 135560 75499.58 85545.23 101639.70 115000 

100 3526.31 3804.85 3199.15 3189.83 3290 

200 1298.75 1878.48 1242.57 1655.87 599 

300 820.73 1633.84 418.87 1163.99 534 

400 372.77 1054.73 211.88 1118.40 455 

500 39.19 270.65 136.99 51.4068 451 

600 12.81 145.65 134.72 0.09 450 

700 11.06 141.23 0.46 0.01 445 

800 10.90 140.52 0.06 0.00 435 

900 0.01 140.48 0.07 1.37E-05 434 

1000 0.00 140.47 21.79 3.04E-7 416 

1100 0.00 140.45 57.46 2.11E-8 416 

1200 0.00 140.45 32.28 1.03E-09 416 

1300 0.00 140.45 2.286 4.06E-10 416 

1400 0.00 140.45 0.86 3.53E-10 416 

1500 6.85E-5 140.45 0.48 3.52E-10 416 

1600 6.51E-05 140.45 0.49 3.51E-10 416 

1700 6.50E-5 140.45 14.61 3.35E-10 416 

1800 6.50E-5 140.45 1.45 1.76E-10 416 

1900 6.50E-5 140.45 0.47 1.69E-10 416 

2000 6.50E-5 140.45 0.38 1.69E-10 416 

 
Table 6. Experimental Results for DE/best/1/exp on function f2 

 

Run Generation OVh OVl OVr OVp OVn 

1 2000 0.00 140 0.38 1.69E-10 416 

2 2000 160 5.72 16.6 3.73E-09 826 

3 2000 38 3050 6.35 0.00 1.18 

4 2000 0.07 205 3.18 6.5E-011 98 

5 2000 7.69 1270 3.14 - 476 

6 2000 0.00 143 1.01 - 1.60 

7 2000 128 4.2 225 - 795 

8 2000 28.3 189 0.90 - 3.36 

9 2000 5.89 156 23.80 - 324 

10 2000 20.2 23.3 61.20 - 19.1 

Average 38.81 519 34.16 0.00 296 

 

 Figure 1 shows the convergence of objective function values of the variant 

DE/best/1/exp plotted for f2 based on the results in Table 5. It compares the objective 

values achieved through 4 methods with the objective values attained when no 



13586  Rachamalla Rahul Reddy, G.Jeyakumar 

recovery method is used. The graph shows that all the 4 proposed methods 

outperformed the solution obtained when no recovery method is used. 

 

 
 

Figure 1. Convergence of Objective Function Values for DE/best/1/exp for 

function f2 
 

 Table 7 shows the experimental results of implementing DE/best/1/exp on 

function f4. The results show that the Method 5 has shown competitive results 

compared to other methods. 

 

Table 7. Experimental Results for DE/best/1/exp on function f4 

 

Run Generation OVh OVl OVr OVp OVn 

1 2000 68.81 47300 47.10 0.01 633000 

2 2000 27.82 3080 111 67.10 91100 

3 2000 4570 505 160 3.99 49700 

4 2000 170 285000 82.70 3.99 206000 

5 2000 288 722000 74.9 5.73 213000 

6 2000 71.63 538000 96.70 67 23800 

7 2000 1770 25900 101 3.99 510000 

8 2000 8.94 139000 14.40 28.10 449000 

9 2000 438 247000 47.60 0.08 246000 

10 2000 1420 81200 3460 - 208 

Average 883 208899 420 20 242181 

 

 The objective function values measured generation wise is presented in Table 

8. The results reiterate that the method of increasing population size gives better result 

than other methods. In the search of optimum value with dynamic population increase 

method, a faster jump in objective functions value between the generations 600 and 

700 can be noticed. 
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Figure 2. Convergence of Objective Function Values for DE/best/1/exp for 

function f4 

 

Table 8. Generation wise objective function values on DE/best/1/exp against 

function f4 

 

Generation OVh OVl OVr OVp OVn 

1 2.2E+08 1.8E+08 1.1E+08 2.2E+08 2.7E+08 

100 601577 2061901 323997 124981 1410000 

200 392794 844576 51478.61 74640.15 975000 

300 390124 831121 33515.48 65694.79 954000 

400 364446 830778 33176.26 65126.99 640000 

500 364379 830679 32965.68 64811.26 634000 

600 2210.83 830655 32947.26 64728.89 634000 

700 1875.14 830653 32930.37 13.92 640000 

800 104.57 830652 32926.60 9.97 634000 

900 98.23 830652 30441.23 5.58 634000 

1000 93.88 830640 30439.20 2.62 640000 

1100 90.79 830576 30436.99 0.47 634000 

1200 88.35 830575 30273.37 0.05 634000 

1300 85.84 830575 365.20 0.02 640000 

1400 84.27 830575 285.48 0.01 634000 

1500 70.74 830575 58.39 0.01 634000 

1600 69.34 830575 53.16 0.01 640000 

1700 68.94 830575 48.86 0.01 634000 

1800 68.83 830575 48.82 0.01 634000 

1900 68.80 830571 49.24 0.01 633000 

2000 68.78 47258.6 47.13 0.01 633000 
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 Figure 2 plots the objective function value convergence for the variant 

DE/best/1/exp on f4. It is observed from Table 8 and Figure 2 that, with Method 2, the 

objective function values from generation 1200 stood constant. But after the 

generation 1900 there was a sudden decrease in the solution. It is also worth noticing 

that, while all other methods achieved better results, the one with no methods to 

recover is locked at a suboptimal solution of 633000. 

 The Table 9 presents the results recorded for DE/best/1/exp on f5. Even though 

the performance differences between the methods are not significant in this case, DE 

with Method 1 shows better result comparatively. Table 10 shows the objective 

function value recorded generation wise. The results show negligible differences 

among the methods. Only the Method 1 and Method 4 are showing better results than 

the classical DE. 

 

Table 9. Experimental Results for DE/best/1/exp on function f5 

 

Run Generation OVh OVl OVr OVp OVn 

1 2000 329 394 387 322 375 

2 2000 328 364 402 357 345 

3 2000 329 372 378 340 340 

4 2000 313 380 366 324 344 

5 2000 318 404 390 365 366 

6 2000 308 403 350 371 350 

7 2000 276 361 406 300 382 

8 2000 344 368 395 348 387 

9 2000 334 341 383 358 383 

10 2000 323 360 385 375 295 

Average 320 375 384 346 357 

 

 

 The result in Table 10 is plotted as convergence graph in Figure 3.  The graph 

shows the variant DE/best/1/exp on f5 shows nearly same results on all the methods. 

However, Method 1 and Method 4 performed better right from the early generations. 

An interesting anomaly observed in Figure 3 is that the method of random 

replacement started fluctuating from the initial generations and reached it's best value 

of 336.47 at generation 800 and continued to show irregular behavior. 
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Figure 3. Convergence of Objective Function Values for DE/best/1/exp for 

function f5 

 

Table 10. Generation wise objective function values on DE/best/1/exp against 

function f5 

 

Generation OVh OVl OVr OVp OVn 

1 436.37 450.04 403.87 383.34 419 

100 378.06 414.80 386.64 351.16 395 

200 374.66 407.91 426.02 327.10 395 

300 371.66 398.20 413.49 322.82 386 

400 365.41 397.96 410.19 322.69 386 

500 349.29 397.69 363.68 322.69 380 

600 340.80 396.05 402.88 322.69 380 

700 340.80 395.96 383.77 322.69 376 

800 340.80 395.95 336.47 322.69 376 

900 335.16 395.95 356.90 322.54 376 

1000 334.17 395.05 354.46 322.54 376 

1100 334.17 395.05 385.29 322.54 376 

1200 334.17 395.05 387.03 322.54 376 

1300 334.17 393.90 341.42 322.54 375 

1400 334.13 393.90 388.09 322.37 375 

1500 334.13 393.90 425.17 322.37 375 

1600 334.13 393.62 410.28 322.04 375 

1700 329.18 393.62 386.90 322.04 375 

1800 329.18 393.62 367.48 322.04 375 

1900 329.18 393.54 354.25 322.04 375 

2000 329.07 393.54 387.20 322.04 375 
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 The experimental result achieved by DE/best/1/bin variant on the f1 is 

presented in Table 11. It is noticed from the results that the Method 2 produced 

significantly better results, with average objective function value of 0.00. Along with 

Method 2, Method 4 also could achieve better result than the classical DE. 

Considering the independent runs of Method 1 in Table 11, the runs 3, 4, 5 and 6 

showed significant performance differences than other runs. 

 A close generation wise look up at run 1 can be observed in Table 12 where all 

the methods performed better than the one with no recovery solution. Spikes are 

observed between generations 1500 to 1700 under Method 3. However, Method 2 

performed better than the rest under the variant DE/best/1/bin against f1. 

 When DE/best/1/exp against function f1 is considered, Method 4 performed 

significantly better than classical DE. This is followed by the Method 1 with average 

objective function value of 4.31 and best objective function value of 5.88E-008 at run 

3 as shown Table 13.DE/best/1/exp against function f3 also produced a similar result 

(Table 14) as the variant DE/best/1/exp against f5 (Table 9). 

 

Table 11. Experimental Results for DE/best/1/bin on function f1 

 

Run Generation OVh OVl OVr OVp OVn 

1 2000 200 0.00 263 230 1460 

2 2000 826 0.00 80.4 199 1170 

3 2000 120000 0.00 46600 148 1940 

4 2000 1690 0.00 465 282 1510 

5 2000 117000 0.00 130 94.41 1070 

6 2000 100000 0.00 182 98.72 2860 

7 2000 527 0.00 446 534 1070 

8 2000 504 0.00 58100 376 3290 

9 2000 644 0.00 75.2 795 997 

10 2000 47 0.00 28.5 25.53 963 

Average 34143.8 0.00 10637 278 1633 
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Figure 4. Convergence of Objective Function Values for DE/best/1/bin for 

function f1 

 

Table 12.  Generation wise objective function values on DE/best/1/bin against 

function f1 

 

Generation OVh OVl OVr OVp OVn 

1 44618.23 57154.15 62933.82 50657.66 51400 

100 1618.72 15098.86 2518.10 1354.31 1490 

200 1558.29 5829.11 2301.51 1334.94 1480 

300 1507.07 1585.43 2016.66 1328.71 1470 

400 1262.32 472.57 1926.38 231.67 1460 

500 1256.21 249.21 1154.78 230.65 1460 

600 1217.59 63.71 942.78 230.63 1460 

700 1151.37 25.93 517.02 230.34 1460 

800 918.37 17.58 420.70 230.33 1460 

900 626.83 6.10 409.61 230.33 1460 

1000 608.49 2.98 401.73 230.17 1460 

1100 247.75 0.83 396.81 230.17 1460 

1200 200.24 0.33 370.25 230.17 1460 

1300 200.24 0.14 357.18 230.17 1460 

1400 200.23 0.04 357.18 230.17 1460 

1500 200.23 0.02 2555.08 230.17 1460 

1600 200.23 0.01 319.69 230.17 1460 

1700 200.23 0.00 84484.45 230.17 1460 

1800 200.23 0.00 264.27 230.17 1460 

1900 200.23 0.00 263.39 230.17 1460 

2000 200.23 0.00 263.18 230.17 1460 
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 Figure 4 plots the convergence of objective function values of the variant 

DE/best/1/bin (using the results in Table 12) on function f1. The graph shows that the 

all the four proposed methods when compared produce the better results than DE with 

no recovery method. We can observe that all proposed methods achieved lower 

objective function values while the DE with no recovery mechanism held in local 

optimum value at an objective function value of 1460. 

 

Table 13. Experimental Results for DE/best/1/exp on function f1 

 

Run Generation OVh OVl OVr OVp OVn 

1 2000 0.00 259 22 0.00 162 

2 2000 0.00 129 48200 0.00 20.1 

3 2000 5.88E-008 1220 0.16 0.00 49.9 

4 2000 0.00 251 120 0.00 2.01 

5 2000 0.00 1000 0.09 0.00 543 

6 2000 0.00 801 0.78 0.00 694 

7 2000 43.11 78 11.53 0.00 147 

8 2000 0.00 1.99 24.23 - 11 

9 2000 0.00 477 166 - 56.1 

10 2000 0.00 394 0.08 - 206 

Average 4.31 461.1 4854.48 0.00 189 

 

Table 14. Experimental Results for DE/best/1/exp on function f3 

 

Run Generation OVh OVl OVr OVp OVn 

1 2000 70.5 65.7 80.9 71.7 79.1 

2 2000 60.7 65.7 70.1 71.3 78.8 

3 2000 66 65.7 82.5 67.7 79.1 

4 2000 60.8 65.7 83.5 70.3 79.1 

5 2000 60.5 65.7 80.6 75.9 79.1 

6 2000 67.3 65.7 84.4 72.6 79 

7 2000 65 65.7 83.6 67.9 79.1 

8 2000 61.4 73.6 79.4 66.2 79.1 

9 2000 69.4 71.7 83.9 66.6 78.3 

10 2000 73 73.8 82.6 72.5 67.8 

Average 65.46 67.9 81.15 70.27 77.85 

 

 

5.  Conclusion 

This paper proposed four population alteration methods. These methods were aimed 

to improve the suboptimal solutions caused by premature convergence against the 

conventional methods like changing the parameters either statically or dynamically. 

All these methods were tested on benchmarking function suite. It is observed that for 

a benchmark function and variant pair at least one of the methods gave a far better 
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optimal value than the suboptimal solution produced when no recovery method is 

used. 

 Care should be taken in Method 3 to avoid spikes such that only new sample 

members with good fitness values replace the existing ones. In future, we propose to 

find a procedure that transfers the results after achieving the best possible objective 

value produced by Method 3 to other methods appropriately because random nature of 

Method 3 has good chances of keeping diversity alive. 

 We also admit that the samples presented in the paper were for few 

benchmarking functions on two variants. However, extending these methods to other 

functions and variants will provide a better insight. This will form a subset of our 

future work along with the possibility of categorizing the functions and variant pair in 

an appropriate way to analyze the results and common patterns when the four 

proposed methods are applied. 
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