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Abstract

Differential Evolution (DE) is a recent addition to the repository of Evolutionary
Algorithms (EAs) under Evolutionary Computing Techniques. As similar to other
EAs, DE also used for optimization based on population of members. During
population optimization the classical DE faces major problem of premature
convergence, which causes the sample members to converge early to a local optimum
though there is a global optimum in the search space. This paper presents methods to
reduce the effect premature convergence and achieve better optimal solutions. There
are few works in the literature for same reason by altering the control parameters of
DE viz., scaling factor (F) and crossover rate (CR). However, we propose methods to
make suitable amendments in the population level directly after detecting premature
convergence during the search of DE. These methods can be added as an additional
component to DE algorithm. The proposed components are to replace the population
members with distinct highest objective function values with random members, to
replace the population members with distinct lowest objective function values with
random members, to replace members in random fashion and to increase the
population size dynamically to counter the early convergence of the population. The
above mentioned techniques are implemented and added with classical DE. The
performance efficacy of DE with added components is verified on implementing it
over a set of Benchmarking Function Suite with functions of different characteristics.
The experimental results proved that DE with above components added is able to
achieve better optimum values than the classical DE.
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1. Introduction

Differential Evolution (DE) is one of the recent additions in Evolutionary Algorithm
(EA) employed to optimize real parameter, real valued functions using stochastic,
population-based optimization algorithm, proposed by Storn and Price in 1995 (Stron
and Price, 1995). The underlying idea behind DE is to generate mutated parameter
vectors by adding the weighted difference vector to another sample vector in the
population. It is followed by a recombination operation between the mutant vector
and the target vector, which produces the trail vector. Through selection, the fitness
value of the resultant trial vector is compared with the fitness value of the parent
vector. The member with the good objective function value is transferred to the next
generation. DE in-turn consists of many variants based on multiple ways of mutation
and recombination. Some of the variants result in suboptimal solutions caused by
premature convergence. The premature convergence can occur due to loss of
population diversity and it prevents the algorithm from reaching global optimum. This
paper presents a method to detect the premature convergence early than it happen and
also propose four methods to achieve better optimal solutions when premature
convergence happens. The paper is organized as follows. Section 2 describes related
papers briefly followed by the details of design of experiment in Section 3. Section 4
mentions the experimental results and inferences and finally Section 5 concludes the
work.

2. Related Works

Different authors developed various techniques to overcome the problem of
suboptimal solutions. Following is a brief mention about some methods proposed by
different authors.

Jouni Lampinen and Ivan Zelinka presented (Lampienen and Zelinka, 2000)
the possible reasons for the premature convergence and stagnation problems of
Differential Evolution. One of the reasons for the premature convergence to occur is
losing the diversity in the population (search space). The techniques of adaptive
evolutionary algorithms and hybrid evolutionary algorithms (Grosan and Abraham,
2007) have been implemented for DE (Vanaret et al, 2013) to avoid the effect of
premature convergence. As an attempt, hybridizing DE with the popular branch-and-
bound technique (as a local search guide) was experimented in (Vanaret et al, 2013),
and proved the efficiency of the hybrid DE algorithm. Lu et al., proposed adaptive
hybrid differential evolution algorithm (AHDE) integrated with a local random search
operator (LRS) (Lu et al, 2010) to achieve near global solution. This combination of
DE and local random search could balance the global exploration and local
exploitation.

Understanding the search behavior of DE, in maintaining population diversity,
during its evolution is a possible scope to find some strategies to avoid the problem of
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premature convergence and stagnation. Various theoretical attempts have been made
in the literature to understand the search behavior of the DE algorithm by measuring
the population diversity during the evolution. A theoretical expression to measure the
population diversity from generation to generation for a DE variant DE/rand/1/bin
was derived by Zaharie in (Zaharie, 2001). Later, this expression was extended to few
more variants of DE in (Jeyakumar and Shunmuga Velayutham, 2010) and
(Thangavelu et al, 2015). However, all these theoretical studies did not comment on
the solutions to premature convergence problem.

There are numerous works found in the literature to improve the efficiency of
DE algorithm by the virtue of avoiding premature convergence and stagnation
problem. Few interesting works are presented below.

Sé et al., proposed a modification to the standard mechanisms in DE algorithm
by introducing a probability selection of a new member (Sa et al, 2008). Though the
probability of success shown by the modified DE is higher it relaxes the greedy
selection scheme of the DE algorithm. Little selective pressure prohibits the DE to
converge to an optimum in a reasonable time.

Josef Tvrdik adopted competitive variants of DE such as DEBR18 which
performed apparently better than standard DER (Tvrdik, 2006). This competition
revolves around 18 fixed settings of F and C contributing to no further change.
Moreover, variant DERADP3 using F adaptive search had less reliability.

Rahnamayan et al., proposed Opposition-Based Learning (OBL) (Rahnamayan
et al, 2008) to improve the convergence rate of DE. It depends on a new control
parameter, the jumping rate to force to jump on a new solution candidate. This method
performs better over high-dimensional problems with large population size but still
high jumping rates are not recommended to achieve optimum solution.

Mallipeddi et al., suggested an ensemble of mutation strategies and parameter
values for DE (EPSDE) (Mallipeddi et al, 2011). It consists of a pool of diverse
characterized mutation strategies along with a pool of values for each of the
associated control parameters. EPSDE focuses on employing different mutation
strategies with different parameter settings during different strategies of evolution.

Zheng et al., developed behavioral metrics to investigate DE s search behavior
as a function of parameter values (Zheng et al, 2014). The measured statistics serve as
the guidance for parameter-tuning and appropriate take-up of DE to improve
performance.

Instead of controlling and adjusting the parameters either dynamically or
statically, this paper in contrast to other works presents the techniques presented in
Table 1 to improve the solutions at the situation of premature convergence. Rather
than altering the parameters we propose methods to directly control the population
members of the search space and improve the suboptimal solutions.

When premature convergence happens the suboptimal solution produced
remains constant in all the subsequent generations. Hence, a threshold value t is fixed
such that whenever the objective function value remains the same for at least t (taken
as 50 after considering various samples) generations then one of the methods
described in Table 1 is performed to recover the population from premature
convergence or to produce better optimal solutions.
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Method 1 suggests that, on the detection of premature convergence, we
identify three population members in the current generation with good objective
function values on condition that they are distinct from each other. We then replace
these members with random population members and are carried forward to the next
generation along with the existing members. We chose members with distinct
objective function values to maintain the diversity in the population. If the diversity is
lost at an early stage then the algorithm converges quickly to a suboptimal solution
Thus the Method 1 makes an alternation in the population with the aim of altering the
search direction of DE to escape from the local optimum.

Table 1. List of methods to achieve better optimal solutions during premature
convergence

Method Method
No.

1 To replace three population members of distinct highest objective function
values

2 To replace three population members of distinct lowest objective function
values

3 To replace three population members randomly in the sample

4 To increase the population size once, during a run

Similarly to Method 1, Method 2 also updates the population. However, by
replacing three population members with distinct worst objective function values by
three new random members. The Method 3 replaces any three random members in the
population with any other random vectors in the current generation.

On contrary to Method 1, 2 and 3 which are altering the population by
replacing selected candidates by new random candidates, the Method 4 increases the
population size dynamically from 100 to 300 by adding random members to the
existing population at once during the run on identifying the premature convergence.

3. Design of Experiments

The scaling factors (F), population size (NP) and crossover rate (CR) are the essential
control parameters of DE algorithm. The population size (NP) is fixed as 100 for all
proposed methods except for method 4 where the population has been increased to
300 after the identification of premature convergence. The scaling factor (F) is
confined to the interval [0.3, 0.9) by following (Jeyakumar and Shunmuga
Velayutham, 2010b) and a new F value is generated for each generation. To
experiment the nature of the proposed methods we have chosen a small benchmarking
function suite of 5 functions with different optimization characteristics. The details of
the benchmarking functions are presented in Table 2. Table 3 shows the crossover rate
(CR) for all the 5 test functions, by following (Jeyakumar and Shunmuga Velayutham,
2010b). As DE is stochastic in nature 10 independent runs were performed with
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random population initialization for every run against each method listed in Table 1. A
run will be stopped before the maximum number of generations is reached if the

tolerance error of 1x 10 s obtained with respect to the global optimum. The
maximum number of generations is kept as 1000 in all the runs.

Table 2. Description of Benchmarking Functions

f1 — Sphere model f, — Schwefel’s Problem 1.2
n . 2
n l
2
X) = X
f;p( ) ; ' fsenz (%) =Z zxf
—-100 < x; <100;x" = (=1 \J=1
(0.0,...0) —100 < x; <100;x" = (0,0, ...,0);
f,(x") =0 f2(x") = 0;
f;3 - Schwefel’s Problem 2.21 f4 - Generalized Rosenbrock's Function
foenz(x) = max{[x;|, 1 < i for () = Xieq]|100 (41 — x7)% + (x; — 12|
<n} —30 < x; <30;x* = (0,0,...,0);
—100 < x; < 100;x* = £,(x*) = 0;
(OJOJ 10)! f3(x*) = 01.

fs — Generalized Restrigin’s Function

forp(x) = Z:[xl2 — 10cos(2mx;) + 10]

512 < x; <512:x" = (0,0,..,0); fo(x") =0;

The functions f; to fs are grouped by the feature - unimodal separable,
unimodal nonseparable, multimodal separable and multimodal nonseparable. The
experiments are carried out by considering all the four proposed methods on a
function from each of the features. Function f; and f; are selected from unimodal
separable, f, is selected from unimodal nonseparable, fs is selected from multimodal
separable and f, from multimodal nonseparable.

Table 3. CR values assigned to each test function

Function|CR
fi 0.9
fs 0.9
fa 0.5
s 0.9
fs 0.1

4. Results and Discussion
As an initial attempt, the superiority of the proposed methods is validated with two
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different variants of classical DE algorithms viz. DE/best/1/exp and DE/best/2/exp.
The experimental results of implementing the identified variants with the proposed
methods as added components over the chosen benchmarking problems are presented
in Table 4 to 13 and Figures 1 to 4. The variants DE/best/1/exp is chosen for our
experiment, since it was found to be often falling in premature convergence in our
empirical analyis. The tables are using the notations OV, OV, OV,, OV, and OV, and
the Figures are using the notations OV-h, OV-1, OV-r, OV-p and OV-n. The meanings
of the notations are described in Table 4.

Table 4. The notations used in the Tables and Graphs.

Notation in|Notation in Meaning
table figure
OVh OV-h Objective function value when Method 1 is used
oV, OV-I Objective function value when Method 2 is used
OV, OV-r Objective function value when Method 3 is used
oV, OV-p Objective function value when Method 4 is used
OV, OV-n Obijective function value when no recovery method is used

Generation wise results of the DE variant DE/best/1/exp on f, presented in
Table 5 shows that objective function values obtained by dynamic increase in
population size gives the best possible result of 1.69E-10 (near to the tolerance value
of 1 x 10™%) . There was a rapid jump in values from 400 to 600 generations. The next
better result was given by the method of replacing population member with distinct
good objective function values by random method. Method of replacing members
with worst objective function values did not give promising results, comparatively.
The results in Table 5 show an interesting anomaly in DE with OV, method that from
generations 900 to 2000 there are spikes in the convergence of objective function
values. This is due to the random nature of the method as we are replacing existing
members randomly with random members.

All the four methods are tested on f, for 10 independent runs. Table 6 shows
the average objective function value for 10 runs and it is noticed from the results that
method of dynamic increase in population size gives better result.
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Table 5. Generation wise objective function values on DE/best/1/exp on function
f

Generation| OV oV, OV, oV, oV,
1 135560 |75499.58|85545.23|101639.70|115000
100 3526.31 | 3804.85 | 3199.15 | 3189.83 | 3290
200 1298.75 | 1878.48 | 1242.57 | 1655.87 | 599
300 820.73 | 1633.84 | 418.87 | 1163.99 | 534
400 372.77 | 1054.73 | 211.88 | 1118.40 | 455

500 39.19 | 270.65 | 136.99 | 51.4068 | 451
600 12.81 | 145.65 | 134.72 0.09 450
700 11.06 | 141.23 0.46 0.01 445
800 10.90 | 140.52 0.06 0.00 435
900 0.01 140.48 0.07 | 1.37E-05 | 434
1000 0.00 14047 | 21.79 | 3.04E-7 | 416
1100 0.00 14045 | 5746 | 2.11E-8 | 416
1200 0.00 140.45 | 32.28 | 1.03E-09 | 416
1300 0.00 14045 | 2.286 | 4.06E-10 | 416
1400 0.00 140.45 0.86 | 3.53E-10 | 416

1500 6.85E-5 | 140.45 0.48 | 3.52E-10 | 416
1600 6.51E-05| 140.45 049 | 3.51E-10 | 416
1700 6.50E-5 | 14045 | 14.61 | 3.35E-10 | 416
1800 6.50E-5 | 140.45 145 | 1.76E-10 | 416
1900 6.50E-5 | 140.45 0.47 | 1.69E-10 | 416
2000 6.50E-5 | 140.45 0.38 | 1.69E-10 | 416

Table 6. Experimental Results for DE/best/1/exp on function f,

Run|Generation| OV, | OV, | OV, | OV, [0V,
1 2000 0.00 | 140 | 0.38 |1.69E-10| 416
2 2000 160 |5.72] 16.6 |3.73E-09| 826
3 2000 38 [3050|6.35| 0.00 |1.18
4 2000 0.07 | 205 | 3.18 |6.5E-011| 98
5 2000 7.69 [1270| 3.14 - 476
6 2000 0.00 | 143 | 1.01 - 1.60
7 2000 128 | 4.2 | 225 - 795
8 2000 28.3 | 189 | 0.90 - 3.36
9 2000 5.89 | 156 |23.80 - 324
10 2000 20.2 | 23.3|61.20 - 19.1

Average 38.81| 519 |34.16] 0.00 |296

Figure 1 shows the convergence of objective function values of the variant
DE/best/1/exp plotted for f, based on the results in Table 5. It compares the objective
values achieved through 4 methods with the objective values attained when no
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recovery method is used. The graph shows that all the 4 proposed methods
outperformed the solution obtained when no recovery method is used.
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Figure 1. Convergence of Objective Function Values for DE/best/1/exp for

function f»

Table 7 shows the experimental results of implementing DE/best/1/exp on
function f,. The results show that the Method 5 has shown competitive results

compared to other methods.

Table 7. Experimental Results for DE/best/1/exp on function f,

Run|Generation| OV, | OV, | OV, | OV, | OV,
1 2000 |68.81| 47300 |47.10| 0.01 |633000
2 2000 |27.82] 3080 | 111 |67.10| 91100
3 2000 4570 | 505 | 160 | 3.99 | 49700
4 2000 170 |285000/82.70| 3.99 | 206000
5 2000 288 | 722000 74.9 | 5.73 | 213000
6 2000 |71.63]538000(96.70| 67 | 23800
7 2000 1770 | 25900 | 101 | 3.99 |510000
8 2000 8.94 |139000|14.40|28.10 449000
9 2000 438 [247000|47.60| 0.08 |246000
10 2000 1420 | 81200 | 3460 | - 208

Average 883 1208899| 420 | 20 |242181

The objective function values measured generation wise is presented in Table
8. The results reiterate that the method of increasing population size gives better result
than other methods. In the search of optimum value with dynamic population increase
method, a faster jump in objective functions value between the generations 600 and

700 can be noticed.
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Figure 2. Convergence of Objective Function Values for DE/best/1/exp for

function f,

Table 8. Generation wise objective function values on DE/best/1/exp against

function f,

Generation| OV, oV, OV, oV, OVy
1 2.2E+08|1.8E+08 | 1.1E+08 | 2.2E+08 | 2.7E+08
100 601577 |2061901| 323997 | 124981 | 1410000
200 392794 | 844576 |51478.61|74640.15| 975000
300 390124 | 831121 |33515.48|65694.79| 954000
400 364446 | 830778 |33176.26|65126.99| 640000
500 364379 | 830679 |32965.68|64811.26 | 634000
600 2210.83 | 830655 |32947.26|64728.89| 634000
700 1875.14 | 830653 [32930.37| 13.92 | 640000
800 104.57 | 830652 [32926.60| 9.97 | 634000
900 98.23 | 830652 |30441.23| 5.58 | 634000
1000 93.88 | 830640 |30439.20| 2.62 | 640000
1100 90.79 | 830576 |30436.99| 0.47 | 634000
1200 88.35 | 830575 |30273.37| 0.05 | 634000
1300 85.84 | 830575 | 365.20 0.02 | 640000
1400 84.27 | 830575 | 285.48 0.01 | 634000
1500 70.74 | 830575 | 58.39 0.01 | 634000
1600 69.34 | 830575 | 53.16 0.01 | 640000
1700 68.94 | 830575 | 48.86 0.01 | 634000
1800 68.83 | 830575 | 48.82 0.01 | 634000
1900 68.80 | 830571 | 49.24 0.01 | 633000
2000 68.78 |47258.6| 47.13 0.01 | 633000
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Figure 2 plots the objective function value convergence for the variant
DE/best/1/exp on f4. It is observed from Table 8 and Figure 2 that, with Method 2, the
objective function values from generation 1200 stood constant. But after the
generation 1900 there was a sudden decrease in the solution. It is also worth noticing
that, while all other methods achieved better results, the one with no methods to
recover is locked at a suboptimal solution of 633000.

The Table 9 presents the results recorded for DE/best/1/exp on fs. Even though
the performance differences between the methods are not significant in this case, DE
with Method 1 shows better result comparatively. Table 10 shows the objective
function value recorded generation wise. The results show negligible differences
among the methods. Only the Method 1 and Method 4 are showing better results than
the classical DE.

Table 9. Experimental Results for DE/best/1/exp on function fs

Generation | OV, |OV,| OV, |0V, |0V,
2000 329 1394|387 | 322 | 375
2000 328 |364 | 402 | 357 | 345
2000 329 |372|378 | 340 | 340
2000 313 380|366 | 324 | 344
2000 318 /404|390 | 365 | 366
2000 308 |403|350 | 371 | 350
2000 276 (361|406 | 300 | 382
2000 344 368|395 | 348 | 387
2000 334 1341|383 | 358|383
2000 323 /360385 | 375 | 295

Average 320 | 375|384 | 346 | 357

- T
Blo|o|N|o|ug|s|w|N|k| e
S

The result in Table 10 is plotted as convergence graph in Figure 3. The graph
shows the variant DE/best/1/exp on fs shows nearly same results on all the methods.
However, Method 1 and Method 4 performed better right from the early generations.
An interesting anomaly observed in Figure 3 is that the method of random
replacement started fluctuating from the initial generations and reached it's best value
of 336.47 at generation 800 and continued to show irregular behavior.
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Table 10. Generation wise objective function values on DE/best/1/exp against
function fs

Generation| OV, | OV, | OV, | OV, |OV,
1 436.37|450.041403.87|383.34| 419
100 378.06|414.80386.64351.16| 395
200 374.66|407.91]426.02|327.10| 395
300 371.66]398.20/413.49|322.82| 386
400 365.41]397.96|410.19|322.69 | 386
500 349.291397.69363.68 322.69 | 380
600 340.80/396.05|402.88322.69 | 380
700 340.80(395.96383.77|322.69| 376
800 340.80(395.95|336.47322.69| 376
900 335.16(395.95|356.90|322.54 | 376
1000  |334.17|395.05|354.46|322.54| 376
1100  |334.17/395.05|385.29|322.54 | 376
1200  |334.17|395.05|387.03|322.54| 376
1300  |334.17|393.90|341.42|322.54| 375
1400  |334.13|393.90|388.09|322.37| 375
1500 |334.13|393.90|425.17|322.37| 375
1600  |334.13|393.62|410.28|322.04| 375
1700  |329.18|393.62|386.90|322.04| 375
1800 |329.18|393.62|367.48|322.04| 375
1900  |329.18|393.54|354.25|322.04| 375
2000  |329.07|393.54387.20|322.04| 375
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The experimental result achieved by DE/best/1/bin variant on the f; is
presented in Table 11. It is noticed from the results that the Method 2 produced
significantly better results, with average objective function value of 0.00. Along with
Method 2, Method 4 also could achieve better result than the classical DE.
Considering the independent runs of Method 1 in Table 11, the runs 3, 4, 5 and 6
showed significant performance differences than other runs.

A close generation wise look up at run 1 can be observed in Table 12 where all
the methods performed better than the one with no recovery solution. Spikes are
observed between generations 1500 to 1700 under Method 3. However, Method 2
performed better than the rest under the variant DE/best/1/bin against f;.

When DE/best/1/exp against function f; is considered, Method 4 performed
significantly better than classical DE. This is followed by the Method 1 with average
objective function value of 4.31 and best objective function value of 5.88E-008 at run
3 as shown Table 13.DE/best/1/exp against function f; also produced a similar result
(Table 14) as the variant DE/best/1/exp against fs (Table 9).

Table 11. Experimental Results for DE/best/1/bin on function f;

Run|Generation| OV, |OV,| OV, | OV, | OV,
1 2000 200 [0.00| 263 | 230 |1460
2 2000 826 |0.00| 80.4 | 199 [1170
3 2000 120000 |0.00 |46600| 148 |1940
4 2000 1690 |0.00| 465 | 282 |1510
5 2000 117000 |0.00| 130 |94.41]1070
6 2000 100000 |0.00| 182 |98.72|2860
7 2000 527 |0.00| 446 | 534 |1070
8 2000 504 [0.00[58100| 376 |3290
9 2000 644 |0.00| 75.2 | 795 | 997
10 2000 47 10.00| 28.5 |25.53| 963

Average 34143.8]0.00{10637| 278 |1633
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Table 12. Generation wise objective function values on DE/best/1/bin against
function f;

Generation| OV, oV, OV, OV, OV,
1 44618.23|57154.15|62933.82|50657.66 | 51400
100 1618.72 |15098.86 | 2518.10 | 1354.31 | 1490
200 1558.29 | 5829.11 | 2301.51 | 1334.94 | 1480
300 1507.07 | 1585.43 | 2016.66 | 1328.71 | 1470
400 1262.32 | 472.57 | 1926.38 | 231.67 | 1460
500 1256.21 | 249.21 | 1154.78 | 230.65 | 1460
600 121759 | 63.71 | 942.78 | 230.63 | 1460
700 1151.37 | 25.93 | 517.02 | 230.34 | 1460
800 918.37 | 17.58 | 420.70 | 230.33 | 1460
900 626.83 6.10 409.61 | 230.33 | 1460
1000 608.49 2.98 401.73 | 230.17 | 1460
1100 247.75 0.83 396.81 | 230.17 | 1460
1200 200.24 0.33 370.25 | 230.17 | 1460
1300 200.24 0.14 357.18 | 230.17 | 1460
1400 200.23 0.04 357.18 | 230.17 | 1460
1500 200.23 0.02 | 2555.08 | 230.17 | 1460
1600 200.23 0.01 319.69 | 230.17 | 1460
1700 200.23 0.00 |84484.45| 230.17 | 1460
1800 200.23 0.00 264.27 | 230.17 | 1460
1900 200.23 0.00 263.39 | 230.17 | 1460
2000 200.23 0.00 263.18 | 230.17 | 1460
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Figure 4 plots the convergence of objective function values of the variant
DE/best/1/bin (using the results in Table 12) on function f;. The graph shows that the
all the four proposed methods when compared produce the better results than DE with
no recovery method. We can observe that all proposed methods achieved lower
objective function values while the DE with no recovery mechanism held in local
optimum value at an objective function value of 1460.

Table 13. Experimental Results for DE/best/1/exp on function f;

Run|Generation| OV OVi| OV, |0V,|0V,
1 2000 0.00 259 22 |0.00| 162
2 2000 0.00 129 | 48200 |{0.00(20.1
3 2000 5.88E-008|1220| 0.16 |0.00|49.9
4 2000 0.00 251 | 120 |0.00|2.01
5 2000 0.00 [1000| 0.09 [0.00|543
6 2000 0.00 801 | 0.78 |0.00| 694
7 2000 43.11 78 | 11.53 |0.00| 147
8 2000 0.00 199 | 2423 | - | 11
9 2000 0.00 A77 | 166 - |56.1
10 2000 0.00 394 | 0.08 - | 206

Average 431 461.1{4854.48/0.00| 189

Table 14. Experimental Results for DE/best/1/exp on function f3

Run |Generation| OV, | OV, | OV, | OV, | OV,
1 2000 70.5 |65.7] 80.9 | 71.7 | 79.1
2 2000 60.7 |65.7] 70.1 | 71.3 | 78.8
3 2000 66 |65.7|825|67.7|79.1
4 2000 60.8 |65.7] 83.5 | 70.3 | 79.1
5 2000 60.5 |65.7] 80.6 | 75.9 | 79.1
6 2000 67.3 |65.7| 844 | 726 | 79
7 2000 65 |65.7]83.6 | 67.9 | 79.1
8 2000 61.4 |73.6| 79.4 | 66.2 | 79.1
9 2000 69.4 |71.7| 83.9 | 66.6 | 78.3
10 2000 73 |73.8/82.6 | 725|678

Average 65.46|67.9|81.15(70.27|77.85

5. Conclusion

This paper proposed four population alteration methods. These methods were aimed
to improve the suboptimal solutions caused by premature convergence against the
conventional methods like changing the parameters either statically or dynamically.
All these methods were tested on benchmarking function suite. It is observed that for
a benchmark function and variant pair at least one of the methods gave a far better
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optimal value than the suboptimal solution produced when no recovery method is
used.

Care should be taken in Method 3 to avoid spikes such that only new sample
members with good fitness values replace the existing ones. In future, we propose to
find a procedure that transfers the results after achieving the best possible objective
value produced by Method 3 to other methods appropriately because random nature of
Method 3 has good chances of keeping diversity alive.

We also admit that the samples presented in the paper were for few
benchmarking functions on two variants. However, extending these methods to other
functions and variants will provide a better insight. This will form a subset of our
future work along with the possibility of categorizing the functions and variant pair in
an appropriate way to analyze the results and common patterns when the four
proposed methods are applied.
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