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Abstract

Dengue is one of the challenges faced by tropical countries such as India. The
impacts of climate changes can affect dengue outbreak. From the previous
studies it is examined that there is an association between metrological
variables and dengue incidence using Time series analyses. The proposed
study is to explore a systematic approach that provides an early warning
system for dengue outbreak of a given region. . The time series data is
decomposed and estimated the trend, seasonal and irregular compounds. Time
series analysis using ARIMA and SARIMA model along with temperature
variants is found to be effective for dengue predication. The prediction is
based on the benchmark data of Dengue incidence and metrological data using
R-tool version 3.0.2. Experimental result shows that the metrological variables
(Maximum temperature, Humidity and Rainfall) significantly influence the
dengue incidence for the given dataset. Error values of the SARIMA model
provides comparatively lower with respect to ARIMA.

Keyword: Time Series analysis, ARIMA, SARIMA model, Dengue
prediction, Regression.

Introduction

Dengue infection is caused by four antigenically distinct serotypes of the dengue virus
(DENV1, DENV2, DENV3, and DENV4), and its main vector is the Aedes aegypti
mosquito. Dengue is considered the most significant arbovirus that affects humans.
Dengue is estimated to annually cause 390 million infections, including 96 million
cases of classical dengue and 20,000 deaths caused by dengue [2].
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In many parts of the tropics and subtropics, dengue is endemic, that is, it occurs
every year, usually during a season when Aedes mosquito populations are high, often
when rainfall is optimal for breeding. These areas are, however, additionally at
periodic risk for epidemic dengue, when large numbers of people become infected
during a short period [1].

Various analytic techniques like Time series analyses are often used on
metrological and Dengue incident data to provide insights on different patterns within
them which may be useful for purposes such as prevention and mitigation. Even
though daily outcome data are anticipated for time series analysis, obtaining such data
from most of the developing countries is impossible. Hence, most time series analyses
use monthly or annual data.

Tools and Techniques

The techniques used so far for dengue prediction and forecasting involved statistical,
data mining and machine learning methods. The methods such as Decision Trees,
Support Vector Machine, Genetic Algorithms, Fuzzy sets, Neural Networks and
Rough sets are classification methods that are found to be effective in diagnosis and
prognosis of the Arbovirus-Dengue. Though these methods can we used to predict the
dengue occurrence, some of them do not capture the seasonality pattern that is found
to involve in it. The seasonal variation of the ARIMA model is used with
effectiveness for Dengue outbreak prediction along with the seasonal variants.

The language R was used exhaustively used for the basis Statistical and time series
analysis. R is a multi-paradigm language which includes array, object-oriented,
imperative, functional, procedure and reflective paradigms. R is a free software
programming language and software environment for statistical computing and
graphics. The R language is widely used among statisticians and data miners for
developing statistical software and data analysis. Polls and surveys of data miners are
showing R’s popularity has increased substantially in recent years.

Statistical Model For Dengue Forcasting

(i) ARIMA Model
The ARIMA (Auto-Regressive Integrated Moving Average) model is the most
general class of model for forecasting a time series which can be stationarised by
transformation such as differencing and logging. This model is mainly used for non-
stationary time series data.[4]

A non-seasonal ARIMA model is classified as an ARIMA (p,d,q) model, where

p is the number of autoregressive terms

d is the number of non-seasonal differences

q is the number of lagged forecast errors in the prediction
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(if) SEASONAL ARIMA Model
The seasonal part of an ARIMA model has the same structure as the non-seasonal
part. A seasonal ARIMA model is classified as an ARIMA (p,d,q) x(P,D,Q).

Where

P=number of seasonal autoregressive (SAR)

D=number of seasonal differences

Q=number of seasonal moving average (SMA)

(ii1) Plotting Time Series

In R tool ts.plot () method is used to view the time series. This would allow seeing the
overall trend and nature of the time series. The time series plot of benchmark data of
dengue incidence from 2010 to 2013 is given below

dat_ts1
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Figure 1: Time Series of Dengue incidence from 2010 to 2013

There seems to be seasonal variation in the number of dengue incidence every
month and there is a peak every summer. The time series could be described using an
additive model, as the seasonal fluctuations are roughly constant in size over time and
do not seem to depend on the level of the time series, and the random fluctuations also
roughly constant in size over time. The transformation is done using the calculated
natural log of the original data and obtains the plot as below.
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Figure 2: Logged Time Series
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The size of the seasonal fluctuations and random fluctuations in the log-
transformed time series seem to be roughly constant over time, and do not depend on
the level of the time series. The log-transformed time series can be described using an
additive model.

(iv)Decomposing Time Series
Decomposing a time series is separating into its constituent components, which are
usually a trend component and an irregular component, and if it is a seasonal time
series, a seasonal component.

A seasonal time series consists of a trend component, a seasonal component and an
irregular component. Decomposing the time series means separating the time series
into these three components: that is, estimating these three components.

To estimate the trend component and seasonal component of a seasonal time series
that can be described using an additive model, use the “decompose ()” function in R.
This function estimates the trend, seasonal, and irregular components of a time series
that can be described using an additive model. The function “decompose ()” returns a
list object as its result, where the estimates of the seasonal component, trend
component and irregular component.

The time series of the number of dengue incidence per month is seasonal with a
peak every summer and described using an additive model since the seasonal and
random fluctuations seem to be roughly constant in size over time.

Table 1: Seasonal Components

Year

Jan

Feb

Mar

Apr

May

Jun

2010

68.250579

-42.6728

-41.6499

3.81956

58.0897

97.10151

2011

68.250579

-42.6728

-41.6499

3.81956

58.0897

97.10151

2012

68.250579

-42.6728

-41.6499

3.81956

58.0897

97.10151

2013

68.250579

-42.6728

-41.6499

3.81956

58.0897

97.10151

Jul

Aug

Sep

Oct

Nov

Dec

2010

60.545255

27.38206

7.945949

-8.7728

36.0353

-57.5027

2011

60.545255

27.38206

7.945949

-8.7728

36.0353

-57.5027

2012

60.545255

27.38206

7.945949

-8.7728

36.0353

-57.5027

2013

60.545255

27.38206

7.945949

-8.7728

36.0353

-57.5027
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The estimated seasonal factors are obtained for the months January-December, and
are the same for each year. The largest seasonal factor is for June about 97, and the
lowest is for January about -68, indicating that there seems to be a peak in the dengue
incidence in June and a trough in dengue incidence in January each year. Using the
“plot ()” function estimated trend, seasonal, and irregular components of the time
series are shown below.

Decomposition of additive time series
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Figure 3: Decomposition of Time Series

The plot above shows the original time series (top), the estimated trend component
(second from top), the estimated seasonal component (third from top), and the
estimated irregular component (bottom). The estimated trend component shows a
slight increase and decrease from 2010 to 2012 after which there is a steady increase
from then on.

(v) Seasonally Adjusting

A seasonal time series can be described using an additive model, seasonally adjust the
time series by estimating the seasonal component, and subtracting the estimated
seasonal component from the original time series. The plot obtained after the
adjustment is givenbelow.
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Figure 4: Seasonally Adjusted Time Series
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The seasonal variation has been removed from the seasonally adjusted time series.
The seasonally adjusted time series now just contains the trend component and an
irregular component.

Regression Model

Regression analysis is a statistical process for estimating the relationships among
variables. There are many techniques for modeling and analyzing several variables,
when the focus is on the relationship between a dependent variable and one or more
independent variables.[5]

0] Univariate Regression
In univariate regression the variation of a dependent variable with respect to one
independent variable is explained. This established, a relationship between the
dependent variable with independent variable as an equation of a straight line
Y=a+tbX.......o.oviiiiin.n (2
Where,
a is the intercept value
b is the slope value
Y is the dependent variable
X is the independent variable

(i) Multivariate Regression

The multivariate regression explains the variation of a dependent variable with respect
to more than one independent variable. The number of the independent variables and
type are determined by domain study and theory of the problem.

Y=a+boX1+ b Xo+...... bn-1Xn... (2)

Where,

a is the intercept value

bo is the coefficient value corresponding to X;

b, is the coefficient value corresponding to X, and so on...

The regression model used along with the variables is evaluated using the
summary function. The summary function with regression displays the information:
Residuals, Significance Stars, Estimated Coefficients, Standard Error of the
Coefficient Estimate, t value of Coefficient Estimate, Variable p-value, Significance
Legend, Residual std Error/Degrees of Freedom, R squared, F statistic & Resulting p
value

The above informations analyse how well the one or more independent variables
make changes on dependent variable.

(i) Residuals
The residuals are the difference between the actual value and predicted value from
regression.
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Table 2: Residual — Univariate Regression

Independent | MIN MEDIAN | MAX
Variable

Mean -140.56 -79.56 608.99
Temperature

Max -162.48 -77.08 593.15
Temperature

Min -194.28 -61.47 564.56
Temperature

Humidity -243.49 -35.21 533.27
Rainfall -151.29 -71.5 610.89

Table 3: Residual — Multivariate Regression

Independent MIN MEDIAN MAX
Variables

Mean -224.58 -56.49 487.49
Temperature+ Max

Temperature

Mean -260.17 -43.62 440.39

Temperature+ Max
Temperature+ Min
Temperature
Mean -263.9 -22.13 393.74
Temperature+ Max
Temperature+ Min
Temperature+
Humidity
Mean -254.8 -27.48 343.25
Temperature+ Max
Temperature+
Min Temperature+
Humidity+ Rainfall
Max Temperature+ | -219 -21.26 385.95
Humidity+
Rainfall
The result shows that the residual of the univariate regression with respect to the
individual variants quite high.

(i) Significance Stars
The significance stars are shorthand for significance levels, with the number of
asterisks displayed according to the p-value computed. Higher the significance starts
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higher it is unlikely that no relationship exists between the dependent and the
independent variables. The significance level here indicates how much related the
variables are in the regression model.

Table 4: Significance stars - Univariate Regression

Independent | Intercept Bo
Variable
Mean - -
Temperature
Max - -
Temperature
Min - -
Temperature
Humidity *x **
Rainfall * -

Table 5: Significance stars - Multivariate Regression

Independent Variables Intercept | Po B1 B2 |Bs | Ba
Mean Temperature+ Max | - * il

Temperature

Mean Temperature+ Max | - - * -

Temperature+ Min Temperature

Mean Temperature+ Max | * - * - ok
Temperature+ Min Temperature+
Humidity

Mean Temperature+ Max | ** - * - e
Temperature+
Min Temperature+ *
Humidity+ Rainfall
Max Temperature+ el *k kK | *
Humidity+ Rainfall

The univariate linear regression on the given data set find that the there is some
significance only in the case of trying to explain the incidence on the basis of
humidity. Thus move on to apply the multivariate regression on the dataset. Here
different combination of the independent variables to explain the dengue incidence
and it is evident from the above table that the best combination with higher level of
significance level for the explanation of the dengue incidence depending upon the
data set used is “Max Temperature + Humidity + Rainfall”.



Early Warning System For Dengue Outbreak — A Preliminary Approach et.al.

9451

Hence proceeded to analyze more on the regression based on the independent
variables namely the maximum temperature, humidity and the rainfall of the region.

(iii) Estimated Coefficients
The estimated coefficient is the value of the slope calculated by the regression. The
independent variable and their corresponding estimated coefficients are given below.

Table 6: Estimated coefficients - Multivariate Regression

Independent Estimated
Variables Coefficients
Intercept 7081.537
Max Temperature -92.017
Humidity -51.700
Rainfall 13.980

These estimated values are the approximate of how much change each of the
variables considered produce with respect to the dengue incidence. These values can
be used to predict or estimate the next value or the number of dengue incidence for
the next time period by calculating it with respect to the regression line equation.

(iv)Residual Vs Fitted Plot

The residual Vs fitted plot is used to visualize the regression. It is a scatter plot of
residuals on the y axis and fitted values on the x axis. This plot is used to detect non-
linearity, unequal error variances, and outliers.

Residuals vs Fitted
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Figure 5: Residual vs Fitted

(v) Normal Q-Q Plot
The normal Q-Q plot is used to check if the residuals are normal. A normal residual
indicates than the model suitably recognizes all the dependencies.
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Normal Q-Q
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Figure 6: Normal Q-Q

Obtained the plot of the quartiles Vs standardized residuals and it can be seen that
the residuals almost plot to a normal curve.

(v) Scale-Location Plot
A scale-location plot is similar to the residuals versus fitted values plot, but it uses the
square root of the standardized residuals.

Scale-Location
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Figure 7: Scale-Location

Thus, analysed the dengue incidence based upon the climatic variables. Selected
the suitable variables appropriate for regression and have modelled the multivariate
regression based on them.

Results and Discussion

Auto Regressive Integrated Moving Average (ARIMA) models include an explicit
statistical model for the irregular component of a time series that allows for non-zero
autocorrelations in the irregular component. The auto.arima() function can be used to
find the appropriate ARIMA model. The resultant plots and errors are given below
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Forecasts from ARIMA(0,1,0)(0,1,0)[12]
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Figure 8: Forecasts from ARIMA

Training set Error measures
ME 8.015842

RMSE 72.44531

MAE 40.1471
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Figure 9: Forecasts from SARIMA

Training set Error measures
ME 8.079875
RMSE 70.87701
MAE 39.90616

9453

The MAE measures for the average magnitude of the errors in a set of forecasts,
without considering their direction. It measures accuracy for continuous variables.
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The MAE is the average over the verification sample of the absolute values of the
differences between forecast and the corresponding observation. The MAE is a linear
score which means that all the individual differences are weighted equally in the
average.

The RMSE is a quadratic scoring rule which measures the average magnitude of
the error. The difference between forecast and corresponding observed values are
each squared and then averaged over the sample. Finally, the square root of the
average is taken. Since the errors are squared before they are averaged, the RMSE
gives a relatively high weight to large errors. This means the RMSE is most useful
when large errors are particularly undesirable.

The MAE and RMSE can be used together to diagnose the variation in the errors in
a set of forecasts. The RMSE will always be larger or equal to the MAE; the greater
difference between them, the greater the variance in the individual errors in the
sample. If the RMS=MAE, then all the errors are of the same magnitude.

Both the MAE and RMSE can range from 0 to infinity. They are negatively-
oriented scores: Lower values are better. The SARIMA model provides comparatively
lower errors with respect to ARIMA.

Conclusion

The Benchmark data for Dengue records from the year 2010 to 2013 was collected.
The error measures for the models used are determined and the predictions are made.
The regression models were used to determine the amount of influence each of the
temperature variable have on the dengue incidence. The factors were determined to be
maximum temperature, humidity and rainfall.

The time series analysis was done on the obtained data set to determine the trend,
seasonal and the random components. The decomposition estimates the seasonal
factors and obtained for the months January-December. It is observed that the largest
seasonal factor is June about 97, and the lowest is for January about -68, indicating
that there seems to be a peak in the dengue incidence in June and a trough in dengue
incidence in January each year.

When comparing the ME, RMSE, MAE error values the SARIMA model provides
comparatively lower errors with respect to ARIMA.

Future Work

The work can be enhanced by the inclusion of other factors that might influence the
disease incidence. The methods and the procedure used can also be applied to
determine the outbreaks of seasonally occurring diseases. Also it can be used for other
non-stationary time series in other fields such the stock prices.
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