Tar Mitigation In Biomass Gasification Systems Using Catalysts: An Overview

K. Shanmuganandam^{1*}, M. Venkata Ramanan¹, J.Anichai², M. Muthu Selwin¹ and S. Mohana Murugan³.

¹Institute for Energy Studies, College of Engineering, Anna University, Chennai, India.

Abstract:

Biomass gasification is one of the promising technologies for converting biomass to bioenergy. It is widely recognized that tar generated along with producer gas presents a significant impediment to the application of biomass gasification system, by getting deposited on surfaces of filters, heat exchangers, and engines, thereby reducing the component performance and invites recurring maintenance problems. Though several tar removal methods are available catalytic tar mitigation method is highly preferred due to its inherent advantages. The purpose of this review is to investigate catalytic destruction of tar formed during biomass gasification process. Furthermore the mode of application of catalyst for tar removal, their effectiveness, and the critical parameters influencing catalytic tar mitigation in biomass gasification systems have been reviewed and discussed in this paper.

Keywords: Biomass, Gasification, Catalyst, Tar mitigation.

1. Introduction

Globally attention is focused towards biomass gasification, as it holds abundant promise towards decentralized power generation[1-3]. Gasification of biomass generates producer gas, comprising of hydrogen (H₂), carbon monoxide (CO), methane (CH₄) along with numerous undesirable elements such as tar, ammonia (NH₃), ash, char and some trace contaminants. The tar formation during the biomass gasification process is one of the major problem which hinders the commercialization of this technology. Tar condenses below its dew point temperature and blocks the downstream process equipments such as engines and turbines, thereby reducing

²Department of Mechanical Engineering, Saipem India Projects Ltd, Chennai, India. ³Department of Automobile Engineering, Saveetha University, Chennai. India. *Corresponding author email: shanmugam_anandam@yahoo.com.

component performance and increases maintenance requirements [4-6]. Moreover, tars are highly carcinogenic, and creates enormous environmental pollution. Tar must be mitigated in biomass gasification systems to make it viable option for energy producers. Enormous studies have been directed towards tar mitigation in producer gas. The methods to remove tar from producer gas can be generally classified into one of the three categories: physical processes, thermal processes and catalytic processes. In physical process, filters or wet scrubbers are employed which just traps the tar, creating waste tar treatment problems and associated environmental problems. The thermal processes raise the temperature of the producer gas around 1000°C to crack the heavy aromatic tar species into hydrogen and carbon monoxide which requires tar cracking system to be constructed of expensive alloys. The catalytic tar cracking can operate at relatively lower temperatures and generates high tar removal efficiency and is recognized as the most efficient method to diminish the tar formation in the producer gas mixture [7-12]. Abu –El-Rub et al. [13] stated that catalytic tar cracking method doesn't create waste water disposal problems, but on the other hand improves the quality of producer gas. Hence the catalytic tar reduction studies in biomass gasification systems has attracted enormous interest among researchers.

The purpose of this study is to review the catalysts available for tar mitigation, their effectiveness in in-situ and ex-situ modes, and to study the influence of various parameters of catalytic tar mitigation.

2. Catalysts for tar removal in biomass gasification systems

Abu–El-Rub et al. [13] classified the tar cracking catalysts as synthetic and minerals. based on its production methods. The mineral catalysts, dolomite and olivine are cheaper but are less effective in enhancing the quality of producer gas to be employed in applications such as fuel cells, so researchers have focused their attention towards highly active synthetic catalysts. Among the synthetic catalysts the transition metals such as platinum, rhodium, ruthium and nickel posses high tar mitigation capability. Asadullah et al [14] reported the tar conversion capability of the transition metals in the following order Rh>Ru>Pd>Pt>Ni. The Rh, Ru, Pd and Pt catalysts are highly active but are costlier, so research is focused on nickel catalyst which are remarkably active and can be availed at cheaper cost. Furthermore to enhance the performance and stability of the nickel catalysts, various supports and promoters are employed 15-16]. Miyazawa et al [17] experimented with the different supports for nickel based catalysts and reported the tar destruction activity in the following order Ni/Al₂O₃> Ni/ZrO₂> Ni/ TiO₂>Ni/CeO₂> Ni/MgO. Chaiprasert et al [18] experimented with Pt. Fe and Co as promoter for nickel catalyst and concluded that Pt metal highly enhanced the performance of Ni catalyst and also suppressed the coke deposition. Coating ceramic elements such as candle filters and monoliths with catalyst layers leads to increased conversion of the tar. However monoliths are more expensive than commercial catalysts and is currently less opted for tar removal [19]. The various tar cracking reactions are detailed below[20-22].

Steam Reforming reaction

$$C_nH_m + nH_2O \rightarrow nCO + (n+m/2)H_2 \tag{1}$$

Dry reforming reaction

$$C_n H_m + n CO_2 \rightarrow 2nCO + (m/2)H_2$$
 (2)

Thermal cracking reaction

$$CnHm \rightarrow C^* + CxHy + gas$$
 (3)

Hydro cracking (or) Hydro reforming of tars

$$C_nH_m+n H \rightarrow CO+H_2+CH_4+.....+Coke$$
 (4)

Water - Gas Shift reaction

$$CO + H_2O \rightarrow CO_2 + H_2 \tag{5}$$

where C_nH_m and C_xH_v represent tar and lighter tar respectively.

The above detailed bulk catalyst suffers from disadvantages such as mass transfer resistance, larger time consumption for tar cracking, faster deactivation and creates disposal problems[23]. Of late nano catalysts are employed in tar cracking process to overcome the above stated disadvantages. The nano catalyst possess particle size in the range of 1 - 100 nm. The nano catalyst is expected to perform better than bulk catalysts as they have higher number of active sites per gram[24]. Jianfen Li et al [25-26] conducted experiments using nano Ni-La-Fe/Al₂O₃ and NiO/ γ - Al₂O₃ and reported 99% tar removal at a temperature of 800°C. The available nano catalyst based tar reduction studies are very limited and intensive research is to be carried out.

3. Strategy of catalytic tar mitigation Catalytic tar mitigation can be accomplished by two methods.

- (a) One approach involves incorporating or mixing catalyst with the feed biomass to achieve catalytic gasification. This method is one of the primary method in which tar is removed inside the gasifier itself and is termed as in-situ approach.
- (b) In the second approach, the producer gas is catalytically treated downstream of the gasifier in a secondary reactor. This method is one of the secondary methods used for tar reduction, whereby the tar is removed outside the gasifier and is termed as ex-situ approach [13].

3.1. Tar cracking effectiveness of in-situ catalysts

In-Situ tar cracking method is cheaper, as it eliminates the need for secondary catalytic converter and guard bed. In-Situ or primary catalysts are added prior to gasification and can be dry mixed with the feed material or can be wet impregnated. Generally these catalysts are non-renewable and consists of cheap disposable material. Arauzo et al. [27] reported phenomenal tar cracking capability of Ni-Mg Aluminates catalyst at 650°C during gasification of poplar feed material, but suffered deactivation due to carbon deposits. Baker et al [28] reported rapid deactivation of G- 90C catalysts due to carbon deposition on catalyst surface. Experiments conducted using nickel based catalysts also reported deactivation of catalyst due to carbon deposition [29]. Furthermore to avoid rapid deactivation of catalysts, the ex-situ approach is more predominantly employed.

3.2. Tar cracking effectiveness of ex-situ catalysts

Corella et al.[30] observed 97-99.5% tar conversion using Ni based catalysts {ICI57-3, UCIC11-9-061, Topsoe R-67, Basf (G1-50)} at 730-850°C, and no deactivation occurred up to 65 hours. Six nickel based catalysts were reported to be active, without being deactivated by coke deposition even after 12 hours[31]. Ex-Situ or secondary catalytic tar reduction has proven to be an effective approach. In addition to the main catalytic reactor the guard bed is employed to protect the tar cracking catalysts. Usage of guard bed comprising of inexpensive catalytic material upstream of metallic catalyst bed has demonstrated to improve the life of metallic catalysts. The inexpensive mineral catalysts such as dolomite used in guard bed converts the heavy tars while the metallic catalysts serves to polish the gas and reduces the tar concentrations to very low levels [12].

4. Influence of parameters on catalyst performance

Several parameters such as catalytic bed temperature, catalyst loading, space velocity, catalyst particle size, Catalyst/feed ratio, calcinations temperature, gas residence time, type of gasifying agents, equivalence ratio, and biomass feeding rate plays an vital role on influencing the effectiveness of the catalysts during tar mitigation and are detailed below.

4.1. Effect of catalytic bed temperature

Nacken et al. [32] reported increment in conversion of benzene and naphthalene model tar compound from 2% to 100% when catalyst bed temperature was increased from 700-900°C when Ni doped catalysts was used. Complete tar cracking of naphthalene model tar compound occurred at 800-900°C when nickel was loaded on a activated candle filter[33]. Bangala et al. [34] reported total napthalene model tar compound conversion at 1023 K using UCI GB-8 catalyst. Wang et al. [35] observed increment in tar conversions from 43-99 % with dolomite and nickel catalysts when catalytic bed temperature was increased from 650-850°C. Naphthalene model tar conversion reached 100% at 800°C, using Ni based catalytic filter [36]. Tar conversion increased to 98% when catalytic bed temperature was increased from 625-

850°C, when Nickel-A,B, D,E, UC-11-9-62, BASFG1-25S catalysts were used on pine wood chips[37]. Hence it is inferred that increment in catalytic bed temperatures reduces the tar content but increment in energy requirement of the catalytic reactor reduces the overall gas efficiency.

4.2. Effect of catalyst loading

Corella and Caballero et al. [38-40] has demonstrated that nickel loading of >15 wt % was very effective in removing tar in a secondary bed at 1003-1123 K. Tasaka et al. [41] reported 80 % tar conversion in secondary tar cracking using 12 wt % Co/MgO catalyst, in primary method of tar cracking. Wang et al. [42] reported increment in benzene conversion when Ni catalyst loading was increased from 3 to 15 wt %, but tar conversion remained unchanged above 15 wt%, and concluded that optimum Nickel loading is 15 Wt %. Swierzynski et al. [43] observed toluene conversion increment from 12 to 36% when catalyst loading of Nickel-olivine was increased from 1.5 to 5.7 wt %. at 560°C. Different catalyst loadings have been reported to be effective for different catalysts. Hence experiments have to be conducted to validate the exact catalyst loading for a particular catalyst.

4.3. Effect of space velocity

Dou et al [44] reported that tar conversion reached 100% for space velocities of 1000-4500h⁻¹ for Y-Zeolites on naphthalene tar compound, but above 7000h⁻¹ the activity dramatically decreased, and concluded that catalysts cannot be effectively used at high space velocity. Zhang et al [12] experimented with nickel based catalysts (ICI46-1, Z409 and RZ409) on seed corn fuel in a secondary catalytic reactor and observed that space velocity had little effect on tar cracking and gas composition. It is inferred that these contradictory statements may be valid owing to the different catalytic reactor geometry employed by researchers across the globe.

4.4. Effect of catalyst particle size

Kong et al [45] reported that 7.9 nm Ni/Al2O3 catalyst yielded lower tar than 22.1nm catalyst on toluene model tar compound, and concluded that smaller particle size of catalysts contributed to higher toluene conversion. Aznar et al [46] observed that when particle size was decreased from 2.5 to 0.5 mm lesser tar occurred, when Topsoe R-67-7H, Ni/Al₂O₄ catalysts were used on pine sawdust. Ni/dolomite catalyst size reduction from 5 to 3 mm increased the hydrogen yield[47]. The tar conversion capability of Ni/CeO₂-ZrO₂ catalyst increased from 57.7 to 62.9% when its particle size was decreased from 5 micrometer to 20nm[48]. Hence it is inferred that catalysts of smaller particle size are comparatively more active than bigger sized particles due to its inherent larger surface area.

4.5. Effect of catalyst /feed ratio

Chunfei Wu et al.[49] reported that gas yield increased from 79.1 to 91.9 % wt % when catalyst/feed ratio was increased from 0 to 2 using Ni/CeO₂ /Al₂O₃ on polypropylene feed. Manya et al. [50] reported decrement in tar from 4.75 % of feed to 2.75 % of feed when alumina quantity was increased from 0 to 8 % of feed. Hence

it is inferred that increment in catalyst/feed ratio reduces the tar, but further experiments have to be conducted to optimize the ratio for specific catalysts.

4.6. Effect of calcination temperature

Swiercznski et al.[43] experimented on Ni-olivine catalyst on toluene model tar compound with catalysts calcined at 900, 1100 &1400°C and observed that toluene conversion decreased with increasing calcination temperatures. Tar conversion decreased from 99 to 24 % when calcinations temperature increased from 900 to 1400°C. Pansare et al.[51] reported that yield of methane and benzene decreased with increase in calcinations temperature from 400-1000°C, while tungsten zirconia (WZ) was used for cracking of toluene model tar compound. Furusawa et al.[52] reported that CO/MgO catalyst yielded better results on cellulose feed when calcined at 873K.The contradictory statements may be valid owing to the different catalyst configurations employed by different researchers.

4.7. Effect of gas residence time

Maria P. Aznar et al. [46] reported 98% tar conversion for residence time of <0.1 seconds when nickel catalysts (A, B, D, E Uc-11-9-62) was used on pine wood chips. Markus Ising et al.[53] reported total tar conversion for a residence time of 0.3 to 0.4 seconds when monolithic nickel catalyst was used at 900°C on wood chips feed material. Duo Wang et al.[42] reported that 0.3 seconds was the optimum residence time for cracking benzene model tar compound using Ni/Al₂O₃ catalyst. Kazuhiko Tasaka et al.[54] reported 80 % cellulose tar conversion for a residence time of 0.06 seconds using Co/MgO catalysts. Abu-El-Rub et al.[55] reported that 0.3 seconds was the optimum residence time for cracking naphthalene & phenol model tar compound using biomass char as catalyst. Dennis Bangala et al.[34] reported that tar conversion increased when residence time was increased from 0.3 to 0.6 seconds for GB-98 catalyst for cracking naphthalene model tar compound. Hence it is inferred that higher residence time reduces tar and optimum value of residence time depends on the activity of the different catalysts.

4.8. Effect of equivalence ratio (ER)

Tomohisa Miyazawa et al.[56] reported total tar conversion at ER= 0.25-0.35 when Rh/CeO₂/SiO₂ was used for cracking tar from woody biomass. Miguel A. Caballero et al. [57] reported decrement of tar when ER was increased from 0.18 to 0.36 when pine wood chips was cracked using nickel based catalysts (BASF G1-50, ICI46-1, Topsoe R-67). Hence it is inferred that with increase in ER, the gasification process closes on towards combustion process. Hence it is concluded that with increase in ER, the tar content has to decrease, but the calorific value of the producer gas will also get reduced due to conversion of H_2 and CO into H_2 O and CO_2 .

4.9. Effect of gasifying agents

Lopamudra Devi et al. [58] reported that addition of steam, CO₂ increases naphthalene conversion, whereas addition of hydrogen reduces conversion when olivine was employed. Pattaraporn et al. [59] reported increment in steam (S/C ratio 0.2-1.0)

resulted in higher H₂ and decreased CO₂ and CH₄,whereas addition of O₂ showed increment of CO,CO₂ and decrement of H₂,when Ni/Dolomite was used for Coconut shell gasification. Steam reforming reaction gave lower tar conversion than dry reforming reaction. Hence it is inferred that tar conversion and resulting gas composition is a function of gasifying agents.

4.10. Effect of biomass feeding rate

Miyazawa et al [56] reported increment of tar from 0 to 4 % when biomass feeding was increased from 150 to 250 mg/min, when $Rh/CeO_2/SiO_2$ was used as catalyst. Gervasio et al [60] reported that when naphthalene feeding rate increased to 35 g/Nm³ tar conversion decreased from 90 to 25 % , when $LaNiO_3$ catalyst was used. Hence it is inferred that tar conversion decreases when loading of biomass is increased.

5. Limitations of catalytic tar mitigation

Spencer and Twig [61] reported that tar cracking catalysts are easily deactivated by coking, poison adsorption, attrition and sintering. Coke formation can be reduced by usage of increased steam and oxygen in gasification systems. Controlling metallic particle size, usage of promoters and additives can also reduce coking. Employing sulfur sorbent materials such as ZnO to adsorb H₂S which forms ZnS can protect the catalysts from sulfur poisoning. Usage of high strength materials such as olivine reduces attrition problem. High cost of catalyst materials is also a major limitation of catalytic tar mitigation process[11].

6. Conclusion

- 1) Catalytic tar mitigation is a widely accepted technology, which can reduce tar to acceptable levels of usage in end user devices as recommended by international standards.
- 2) Transition metals such as platinum, ruthium and rhodium. are highly active but costlier. Nickel is used as a substitute for them as it is relatively cheaper and exhibits remarkable tar cracking capability.
- 3) The mode of application of catalysts can be by in-situ approach or by ex-situ approach.
- 4) The major limitation of in-situ approach is the shorter lifetime of the catalysts due to deactivation caused by coking, sulfur poisoning, and attrition .So exsitu approach is preferred rather than in-situ approach
- 5) Increment in catalytic bed temperatures reduces the tar content but increment in energy requirement of the catalytic reactor reduces the cold gas efficiency.
- 6) Smaller catalyst particles exhibit higher activity than larger sized particles due to enhanced surface area.
- 7) Increment in catalyst/feed ratio reduces tar and further research is required to optimize the ratio for specific catalyst.
- 8) Higher residence time of the gas in catalytic reactor reduces tar.

- 9) Tar conversion decreases with increment in biomass feeding rate and tar conversion is a function of gasifying agents.
- 10) Research efforts have to be directed towards synthesis of novel catalysts comprising of newer promoters and supports to nullify deactivation problems. Research has to be conducted on catalytic tar cracking systems using combination of optimized parameters to improve the effectiveness of catalysts. Reduction of the cost of catalytic tar mitigation process provides scope for future research.
- 11) The nano catalytic tar reduction studies are very limited and needs intense investigation.

Acknowledgements:

The authors acknowledge the financial support of DST, Government of India, New Delhi to carry out this research work under PURSE scheme. One of the authors, Mr. K. Shanmuganandam is thankful to DST, Government of India, New Delhi for the award of DST PURSE fellowship

References

- [1] M.VenkataRamanan, E.Lakshmanan, R.Sethumadhavan and S.Renganarayanan., 2008. "Performance prediction and validation of equilibrium modeling for gasification of cashew nut shell char", Brazilian J. of chem. Engg. 25, 31-39.
- [2] Juan Han, Heejoon Kim.,2008. "The reduction and control technology of tar during biomass gasification/pyrolysis: An overview", Renewable and sustainable energy reviews 12, 397-416.
- [3] L.Kumararaja, P.Gopinath reddy, M. Venkata Ramanan, R. Sethumadhavan.,2010, "Experimental investigation on the changes in bed properties of a downdraft biomass gasifier". Int J. of Engg, Sci and Tech. 2, 6,98-106.
- [4] Philipp Morf, Philipp Hasler, Thomas Nussbaumer.,2002. "Mechanisms and kinetics of homogeneous secondary reactions of tar from continuous pyrolysis of wood chips", Fuel 81,843-853.
- [5] S.C. Bhattacharya, A.H.Md. Mizanur Rahman Siddique, Hoang-Luong Pham.,1999, A study on wood gasification for low tar gas production, Energy 24, 285-296.
- [6] G.Chen, J.Andries, Z.Luo, H.Spliethoff., 2003, "Biomass pyrolysis/gasification for product gas production: the overall investigation of parametric effects", Energy Conv and Mgmt 44, 1875-1884.
- [7] Dayton, D.A,2002, "Review of the literature of catalytic biomass tar destruction". National Renewable Energy Laboratory (NREL) Technical report, Golden, Colorado, Report NREL/TP-510-32815.

- [8] Anis.S and ZA. Zainal.,2011, "Tar reduction in biomass producer gas via mechanical, catalytic and thermal methods: A review", Renew and Sust Energy Rev 15 2355-2377.
- [9] David Sutton, Brian Kelleher, JulianR.H.Ross,2001, "Review of literature on catalysts for biomass gasification", Fuel Pro Technology 73,155-173.
- [10] Z.Abu El-Rub, E.A.Bramer and G.Brem,2004, "Review of catalysts for tar elimination in biomass gasification processes", Ind. Eng. Chem. Res 44,6911-6919
- [11] Matthew M.Yung, Whitney S.Jablonski and Kimberly A. Magrini -Bair,2009, "Review of catalytic conditioning of biomass -derived syngas", Energy & Fuels 23, 874-1887.
- [12] Ruiqin Zhang, Robert C. Brown, Andrew Suby, Keith Cummer.,2004, "Catalytic destruction of tar in biomass derived producer gas", Energy Conv and Mgmt 45, 995-1014
- [13] Abu-El-Rub, Bramer E.A, and Brem. G.,2004. "Review of catalysts for Tar elimination in biomass gasification processes". Ind. Eng. Chem. Res ,43, 6911-6919.
- [14] Asadullah M, Tomishige K, and Fujimoto K.,2001, "A novel catalytic process for cellulose gasification to synthesis gas" .Catalysis communications 2, 63-68.
- [15] Gerber M.A.2007. "Review of novel catalysts for biomass tar cracking and methane reforming". Pacific northwest national laboratory, PNNL-16950.
- [16] Chunbao Xu,Jaclyn Donald,Enkhsaruul Byambajav,Yasuo Ohtsuka.,2010. "Recent advances in catalysts for hot gas removal of tar and NH3 from biomass gasification". Fuel 89,1784-95.
- [17] Miyazawa T.,Kimura T,Nishikawa J, Kado S, Kunimori K, Tomishige K.2006. Catal. Today 115, 254.
- [18] Chairprasert P,Vitidsant T.,2009."Effects of promoters on biomass gasification using nickel/dolomite catalyst". Korean Journal of chemical Engineering, 26,1545-49.
- [19] Corella J, Toledo J, Padilla R. Ind .Eng.Chem.Res.,43, 2433,2004.
- [20] Orio A, Corella J,Narvaz I,1997, "Performance of different dolomite on raw hot gas cleaning from biomass gasification with air".Ind.Eng.Chem.Res.36,3800-3808.
- [21] Corella J, Toledo J.M, Aznar M.P,2002. "Improving the modeling of the kinetics of the catalytic tar elimination in biomass gasification" .Ind.Eng.Chem,Res,41,3351-3356.
- [22] Baker E.G. Mudge L.K. Brown M.D.1987. "Steam gasification of biomass with nickel secondary catalysts" .Ind Eng, Chem. .Res, 26, 1335-1339.
- [23] Mandana Akia, Farshad Yazdani, Elakemotaee, Dezhi Han. 2014., "A review on conversion of biomass to biofuel by nano catalysts", Biofuel research journal 16-25.
- [24] Fan Liang Chan, Aksat Tanksale.2014., "Review of recent developments in Ni-based catalysts for biomass gasification". Renewable and sustainable energy reviews 38,428-438.

- [25] Jianfen Li, Jianjun Liu, Shiyan Liao, Rong Yan.,2010."Hydrogen rich gas production by air steam gasification of rice husk using supported nano NiO/Al₂O₃ catalyst". International journal of hydrogen energy 35,7399-404.
- [26] Jianfen Li, Bo Xiao, Rong Yan, Xiaorong Xu.2009. "Development of a supported trimetallic catalyst and evaluation of the catalytic activity in biomass steam gasification". Bioresource technology 100, 5295-5300.
- [27] Jesus Arauzo, Desmond Radlein, Jan Piskorz and Donald S. Scott.,1997, "Catalytic pyrogasification of biomass.Evaluation of modified nickel catalysts" .Ind.Eng.Chem.Res. 36, 67-75.
- [28] Baker Eg, Mudge LK, Brown MD.1987. "Steam gasification of biomass with nickel secondary catalysts". Ind. Eng Chem Res 26,1335-39.
- [29] Sehested J.2006, "Four challenges of nickel steam reforming catalysts". Catalysis today, 111, 103-110.
- [30] Jose Corella, Alberto Orio and Jose-Manuel Toledo.1999. "Biomass gasification with air in fluidized bed: Exhaustive tar elimination with commercial steam reforming catalysts". Energy and Fuels 13,702-709.
- [31] Pfeifer C.2008." Development of catalytic tar decomposition downstream from a dual fluidized bed biomass steam gasifier". Powder technology 9, 180-185.
- [32] Manfred Nacken, Lina Ma, Karen Engelen, Steffen Heidenreich, and Gino V. Baron., 2007, "Development of a tar reforming catalyst for integration in a ceramic filter element and use in hot gas cleaning", Ind. Eng. Chem. Res 46, 1945-1951.
- [33] Hongbin Zhao, Dirk J.D Raelants and Gino V. Baron.2000, "Performance of a nickel –activated candle filter for naphthalene cracking in synthetic biomass gasification gas". Ind.Eng.Chem.Res,39, 3195-3201.
- [34] Denis N. Bangala, Nicolas Abatzoglou, Jean –Pierre Martin and Esteban Chornet. 1997. "Catalytic gas conditioning: Application to biomass and waste gasification", Ind.Eng.Chem.Res. 36,4184-4192.
- [35] Tiejun Wang, Jie Chang, and Pengmei Lv. 2005, "Novel catalyst for cracking of biomass Tar". Energy and Fuels, 19, 22-27.
- [36] Manfred Nacken, Lina Ma, Steffen Heidenreich, and Gino V. Baron. 2010. "Catalytic activity in Naphthalene reforming of two types of catalytic filters for hot gas cleaning of biomass derived syngas". Ind. Eng. Chem. Res 49, 5536-5542
- [37] Maria P .Aznar, Miguel A. Caballero, Javier Gil, Juan A. Martin and Jose Corella.1998. "Commercial steam reforming catalysts to improve biomass gasification with steam –Oxygen mixtures.2. Catalytic tar removal". Ind.Eng.Chem.Res.37, 2668-2680.
- [38] Jose Corella, Alberto Orio, and Pilar Aznar.,1998, "Biomass gasification with air in fluidized bed: Reforming of gas composition with steam reforming catalysts" .Ind.Eng.Chem.Res37,4617-4624.
- [39] Caballero M.A, Corella J, Aznar M.P, Gil J.2000. "Biomass gasification with air in fluidized bed. Hot gas clean up with selected commercial and full size nickel based catalysts". Ind.Eng.Chem. Res. 39, 1143.

- [40] Caballero M.A, Aznar M.P, Gil J, Martin J.A,1997. "Commercial steam reforming catalysts to improve biomass gasification with steam-Oxygen mixtures.1. Hot gas upgrading by the catalytic reactor". Ind.Eng.Chem.Res.36, 5227.
- [41] Kazuhiko Tasaka. Takeshi Furusuwa and Atsushi Tsutsumi.2007."Steam gasification of cellulose with Cobalt catalysts in a fluidized bed reactor", Energy and Fuels .21,590-595.
- [42] Duo Wang , Wenqiao Yuan, Wei Ji.2010."Effective syngas cleanup and reforming using Ni/Al2O3 catalyst. Int J Agri & Biol Eng. 3,2, 39-45.
- [43] Swierczynski .D, Libs.S, Courson C, Kiennemann .A.2007." Steam reforming of tar from a biomass gasification process over Ni/Olivine using toluene as a model compound". Applied Catalysis B: Environmental 74 .211-222.
- [44] Binlin Dou, Jinsheng Gao, Xingzhong Sha, Seung Wook Baek.2003. "Catalytic cracking of tar component from high temperature fuel gas". Applied Thermal Engineering 23,2229-2239.
- [45] Meng Kong, Jinhua Fei, Shuai Wang, Wen Lu Xiaoming Zheng. 2011." Influence of supports on catalytic behavior of nickel catalysts in carbon dioxide reforming of toluene as a model compound of tar from biomass gasification". Bioresource Technology 102,2004-2008.
- [46] Maria P.Aznar, Jose Corella, Jesus Delgado, Joaquin Lahoz. 1993. "Improved steam gasification of lignocellulosic residues in a fluidized bed with commercial steam reforming catalysts". Ind. Eng. Chem. Res. 32,1-10.
- [47] Wen –Zhi Li ,Yong –jie Yan,Ting –Chen Li, Zheng –Wei Ren, Miao Huang, Jun Wang, Ming-qiang Chen and Zhi –Cheng Tan.2008. "Preparation of hydrogen via catalytic gasification of residues from biomass hydrolysis with a novel high strength catalyst". Energy and Fuels 22, 1233-1238.
- [48] Hyun Ju Park, Sung Hoon Park, Jung Min Sohn, Jun Hong Park, Jong –Ki Jeon, Seung- Soo Kim, Young-Kwon Park.2010. "Steam reforming of biomass gasification tar using benzene as a model compound over various Ni supported metal oxide catalysts". Bioresource Technology. 101,S 101-S103.
- [49] Chunfei Wu, and Paul Williams's.2008."Effects of gasification temperature and catalyst ratio on hydrogen production from catalytic steam pyrolysis gasification of polypropylene". Energy and Fuels 22, 4125-4132.
- [50] Joan J. Manya, Jose L.Sanchez ,Alberto Gonzalo and Jesus Arauzo.2005."Air gasification of dried sewage sludge in a fluidized bed: Effect of operating conditions and In-Bed use of Alumina". Energy and Fuels 19,629-636.
- [51] Sourabh S.Pansare, James G. Goodwin and Santosh Gangwal.2008."Toluene decomposition in the presence of hydrogen on Tungsten –based catalysts". Ind.Eng. Chem.Res 47, 4077-4085.
- [52] Furusawa.2005."A Comparison of Co/MgO and Ni/MgO catalyst for steam reforming of Naphthalene as a model compound of tar derived from biomass gasification". Applied Catalysis A;General 278, 207-212.
- [53] Markus Ising, Javier Gil, Christoph Unger.2000. "Gasification of biomass in a circulating fluidized bed with special respect to tar reduction". First world

- conference and exhibition of Biomass for Energy and Industry, 5-9 June Sevilla, Spain.
- [54] Kazuhiko Tasaka, Takeshi Furusawa, and Atsushi Tsutsumi.2006. "Hydrogen production by biomass steam gasification in fluidized bed reactor with Co catalyst". WHEC 16/13-16 -Lyon France.
- [55] Z.Abu El-Rub, E.A .Bramer G. Brem.2008."Experimental comparison of biomass chars with other catalysts for tar reduction" .Fuel 87,2243-2252.
- [56] Tomohisa Miyazawa, Takeo Kimura, Jin Nishikawa, Kimio Kunimori, Keiichi Tomishige.2005. "Catalytic properties of Rh/CeO2/SiO2 for synthesis gas production from biomass by catalytic partial oxidation of tar". Science and Technology of advanced materials 6,604-614.
- [57] Miguel A. Caballero, Jose Corella, Maria –Pilar Aznar, and Javier Gil.2000. "Biomass gasification with air in fluidized bed. Hot gas clean up with selected commercial and full size nickel catalysts". Ind.Eng.Chem.Res 39, 1143-1154.
- [58] Lopamudra Devi, Krzysztof J.Ptasinski, and Frans J. J.G.Janssen.2005. "Decomposition of naphthalene as a biomass tar over pretreated Olivine: Effect of gas composition, Kinetic approach, and Reaction scheme". Ind.Eng.Chem.Res 44, 9096-9104.
- [59] Pattaraporn Chaiprasert and Tharapong Vitidsant.2009." Promotion of coconut shell gasification by steam reforming on Nickel-Dolomite" .American Journal of Applied Sciences 6(2); 332-336.
- [60] Gervasio C, Grieco E, and Baldi.G.2010. "Ni and Ni-FE perovskite for catalytic abatement of tar. International conference on renewable energies and power quality".(ICREPQ'10).Granada (Spain).23-25 th March.
- [61] Spencer. M, Twigg .M,2005. Annu .Rev.Mater.Res.35, 427.