International Journal of Applied Engineering Research

ISSN 0973-4562 VVolume 10, Number 4 (2015) pp. 11545-11554
© Research India Publications

http://www.ripublication.com

Profile Based Concurrent Download and Data Sharing

K. Kirubhaharan,
Department of Computer Science
Sathyabama University, Chennai

Kk10993@gmail.com
K. Henry Arokiaraj
Department of Computer Science
SathyabamaUniversity, Chennai
jack_henry4d7@yahoo.com
Mr. PioSajin

Assistant professor
Department of Computer Science
SathyabamaUniversity, Chennai

Abstract

Cloud computing is an emerging technology widely being considered in the
field of research. Among the enormousareas within the technology of cloud,
the proposed system concentrates on improvising performance issues in file
sharing.Whereas file sharing within the nodes under a cloud with the reduced
space and timeconsuming is a challenging task. The proposed system tries to
achieve this by enabling concurrent download for the clients. These clients are
classified as high priority and low priority users using the classification
algorithm.Based on the classification generated the rate of concurrent
download is set.As we use the concurrent download concept,we implement
Load balancing algorithm to assign different intermediate servers for users and
to choose the best intermediate server for downloading the file. In case of any
interruption in the download, instead of terminating the process, the system
enables file download or upload resume concept.Introducing the technique in
cloud avoids data loss and reduces time consumption in higher rates.

Keyword: Load balancing, File sharing, Concurrent download, File resume.

Introduction

Parallel database systems have long been a famous story, as the query processing
algorithm exhibits highly parallelizable portions. By employing partition parallelism,
it has been possible to build highly scalable parallel database systems that exhibit



11546 K. Kirubhaharan

almost ideal linear speedups. To enforce partition parallelism, however, the
underlying system architecture should be contributing. In the end, shared-nothing
architectures have traditionally been used each processing node in the system
independently processes a partition of the data set. No sharing is implemented either
at load-time, with data preprocessed and partitioned and each partition shipped to
different nodes of the system or at query-time, by dynamically splitting a data set into
disjoint partitions. Though a shared-nothing architecture is still the way to go. It is
interesting to see what happens at the level of a single processing node. The reason is
that contemporary CPUs are parallel machines themselves, by placing multiple
processing cores on a single chip. However, they differ from shared-nothing machines
as there is nothing in the execution model, implementing all core process disjoint sets.
Sharing is at multiple levels of the processing stack, for example, the memory
hierarchy, or system resources. Thus, it is up to the programmer to enforce parallelism
constraints at runtime. In this paper, we present and evaluate parallel implementations
of the fundamental query processing algorithms tailored for execution on multicore
systems. The key conception of processing in multicore systems is the thread a single
execution flow supported by hardware. Multicore systems, process data by
concurrently executing multiple threads, with the resulting perspective termed
multithreaded processing. Another key concept is the hardware context: the logical
processor that executes a single thread. Different multicore chips, also known as chip
multiprocessors or CMPs, implement hardware contexts in different ways. This
results in a multitude of hardware designs. Each design has its own advantage and
disadvantage, some of which generically appear in any type of processing, whereas
others manifest specifically in the database query processing. Regardless of the
architecture, there is one main bottleneck that is aggravated when it comes to
multicore chips: access to main memory. To that end, we empirically confirm and
evaluate the three facets of the memory bottleneck in a multicore context, and exhibit
their impact on query evaluation. After finding the problems, the natural next step is
to enrich query engines with primitives that overcome these problems and specifically
target multithreaded query evaluation. We present a query engine architecture that is
based on the familiar concept of partition parallelism adapted for the multicore
setting. This design is established on a combination of data partitioning and taskbased
processing for effective parallelization, managing memory in a way that eliminates
the need for per-thread memory pools while, at the same time, allows the system to
scalably cater for the memory needs of the concurrently executing threads and data
structures which are efficiently manipulated by multiple threads without any need for
complex synchronization.

Allowing such a design in place us to implement efficient multithreaded versions
of the fundamental query processing algorithms, namely selections, projections,
partitioning, joint evaluation, sorting, and aggregation. For each algorithm we present
several alternatives. All of them use the principles of the underlying design and strive
for simplicity and hardware independence. We undertake an extensive experimental
study to compare the performance of the algorithms in a variety of scenarios, both in
terms of data and query properties and in terms of underlying hardware. Our results
show that the choice of algorithm is neither a clear nor an easy one. The optimal



Profile Based Concurrent Download and Data Sharing 11547

choice depends on the execution model of the hardware and the properties of the input
and query at hand. Coming up with a high-performing implementation of a specific
algorithm on a particular type of hardware and for a specific type of input is not our
goal. Rather, our goal is to develop and evaluate generic multithreaded query
processing primitives that can then be ported to and optimized for specific hardware.
With a good system and algorithmic designs, it is indeed possible to have predictable
and scalable performance across hardware. We believe our work serves as a starting
point toward having a powerful toolkit of multithreaded query processing solutions.

Objective

The main aim of the process is to share the data with the requested users based on
their priority status and profile based user authority. The users should be classified
based on their priority and the file access should be provided based on the
classification made. File resume should be enabled in the server and client side users
for uploading and downloading the files from the cloud resource. Security issues, yet
another challenge have to be handled.

Problem Definition

As we all know in the cloud, data security is not good as we expect and priority based
approach is not also achieved. Chunking process is not yet done in the cloud. When
the data or connection lost, we cannot resume the data packet for time saving. It has to
start downloading from the beginning.

Existing System

In the Existing System, Data Sharing and Profile based User setting are not achieved
so far in the cloud. There is no Load Balancing application is implemented so far.
Encryption of Data alone is achieved and not the Data chunking, Data security is not
as strong as we expect.

Disadvantages

Security implementation is not as good so far. Profile based User Classification is not
achieved and Data Splitting is not yet done. We cannot auto resume the data packet at
the time of connection problem.

Proposed System

In the previous method, data download and data sharing concepts are
implemented.Data is split into number of parts and stored in a different sub server.So
data is divided into different chunks and stored in a partition matrix.In
thedownloading part ,as per the request from the user,data will be downloaded from



11548 K. Kirubhaharan

the different server.Priority based method is introduced in this process.So the high
priority user gets more advantage in download.Download will start for the lowpriority
user once after the completion of data for high priority.each and every data will be
retrieved for read and write purpose without overlapping . So thenwhat we have
changed isthat We have included the Process in the real-time Cloud. Data sharing and
data download are achieved as said in the previous method. The Original data is
Encrypted using AES algorithm. So owner upload a file to the cloud,then the data
split into chunk like 8 parts and each file will be uploaded into the drop box.High
priority user can download the data concurrently but low priority user will wait till
entire data reaches the drop and they can only view.We have not given option to low
priority user to download,because according to this concept high priority users get
more advantages and benefits through this modification.If a high priority user
downloading a data packet from the drop box.If any problem occurs due to the bad
internet connection,they need not to fear about this issue.In this system we included
resume concept for uploading as well as downloading the file.So users need not to
worry about the packet loss.

Literature Survey:

Web server ,new servers,database manager and some scientific application are
becoming common.the memory allocator is often a barrier for these application and it
limits the program performance and scalability.Previous allocator had suffered this
problem of scalability and poor performance.Heap organization that announce false
sharing.Many allocators display a impressive increase in memory consumption when
face with the producer consumer pattern of object freeing and and object allocation.So
increase in memory consumption can be ranged from a P factor to unbounded
memory consumption ,this paper introduced high salable, a fast allocator that avoids
false sharing and it is memory efficient.the combination of one global heap and
preprocessor heap with a novel discipline which is done by hoard that possibly
bounds memory consumption and very low synchronization cost in the familier cases.

Scheduling query execution is a complex problem in hierarchical parallel
system.In there each sit consist of compilation of local time shared and space shared
resource and transmit information with remote sites by message passing.we create a
general approach to solve the problem,captures the complication of scheduling
distributed multi dimensional resource unit for all types of parallelism within and
crosswise queries and operator.So heuristic algorithm for different forms of the
problems,some of that are near optimal.

To build an extensive hash table of millions of elements in real time,we prove an
efficient data parallel algorithm.We study two parallel algorithms for the construction
one is cuckoo approach and other one is classical sparse perfect hashing approach,that
packs elements dumbly by allowing n element to store in one of the different possible
location. The hybrid approach uses both algorithm.we mensurate access time,
construction time and measure usage of implementations and determine real time
performance on large datasets.



Profile Based Concurrent Download and Data Sharing 11549

Architecture Diagram:

Data owner

? = -

lnequm dloud server

Resume 4 l
Request passes to cloud

Data Download

Methods

Registration

To access the network,users have to create an account and they need to login into their
account.By doing that users are able to send the requested job to cloud service
provider. Two keys have to be created.One is public key to upload a data and the other
one is private is just to download or access the data in the cloud server.so whoever
creates a login, all their details will be stored in the database of the cloud service
provider.User interface frame is designed to have a communication with the cloud
server through the network coding.Once if a user sends a request,it should be
authenticated or getting permission from the cloud service provider to access the
requested data

Cloud deployment

Cloud service providers will have more number of data in data storage. so they
maintain all the user information and includes the login details.So every information
related to the owner of the data and the user will be stored in the database. The user
request will be redirected by the cloud server to any of the queue.The virtual machine
will take care all the request in the queue. To establish a connection enables them to
communicate with the client and with the other module of the cloud network. so we
create the user interface frame for this purpose. In first in, first out manner all the user
request job will be sent by the cloud service provider.

Classifying the user according to the priority based

In this concept we are introducing two types of profiles. One is a high priority and the
other one is low priority. Based on the priority we provide the features like upload and
download. For high priority user concurrent download is possible. So by creating this,
we can reduce the load of the cloud server by doing this service.For the Low
priority,Only view option is enabled for them.So the top priority user gets more
advantage in this process.



11550 K. Kirubhaharan

Chunking process and encrypting the data

Before we put a large file on a cloud, we will chunk the data into a number of parts
like splitting a file into eight parts. So we can reduce the load of cloud server and this
is one of the benefits instead of putting a file without being chunked. We need to
provide some security to the data before uploading the data to the sub cloud servers.
Data is encrypted and chunked before upload to the cloud server. For the encryption
we are using AES algorithm and so this is very helpful to enhance the quality of the
service while user uploading or downloading the data. Everything which we do is
mainly to enhance the security in the cloud.

Concurrent data transfer

In this paper,we are implementing the concurrent data transfer processing .In that
multiprocessor executes instructions simultaneously for getting a better
performance.In a concurrent download,user need not to be waited till the entire data
reach the dropbox.So user can download the data at the same time when the owner
uploads it to the drop box.Data is split into eight number of parts so when owner
uploads a part 1 of the data to the drop box,at the same time user can access the part 1
of the data.Unlike the high priority users,low priority users have to wait till the entire
data packet reach the drop box.this concurrent download helps to reduce waiting and
downloading time for the high priority users.

Load balancing

Users requested job is to be handled by the cloud service provider.So the cloud
service provider passes the request to the sub cloud server.In the sub cloud server only
each part of the data will be stored.Based on the user’s request,the data owners
retrieve the data through the cloud server.the load balancing in which users job
request will be assigned to any of the sub cloud server which contains the required
data and with the help of load balancing approach,user’s request is passed to the
concerned sub cloud server contains minimum load to handle.We are using four
intermediate server.From that we select the best one to process the user’s request.

Resuming the data packet

As we all know that data packet loss is a common issue in the cloud.When user tries
to download a large data,usually connection lost or any connection oriented problems
may occur.So by introducing the concept of resuming the data while download and
upload in the dropbox,it avoids the data loss for the users.As we know that each data
is split into no of parts while uploading as well as downloading.When the connection
terminates at the time of uploading or downloading part 3 to the drop box,with the
help of resume upload or download,it is possible sending the request of packet loss to
the main server and we can regain the lost process.This seems to be the effective
modification that we have applied for the top priority user.



Profile Based Concurrent Download and Data Sharing 11551

Conclusion

We presented design primitives and parallel pattern-based implementations of the

fundamental query processing operators and evaluated their performance in a variety

of settings and execution environments. Our evaluation shows that it is indeed
possible to effectively use pattern-based parallelism for efficient query processing. As

a general set of guidelines, our results show

1. That synchronization should be minimized: data structures like the partition
matrix reduce the need for synchronization and significantly speed up even
simple operations like selections;

2. That the less uniform a distribution is, the more appropriate techniques like
size-bound partitioning become;

3. That multiple passes are not detrimental so long as they are all performed in
parallel: for instance, for machines with many hardware contexts, Multipass
Algorithms based on a count-partitioning will likely perform well; and

4. That deeper memory hierarchy’s make up for a wrong choice of algorithm:
they improve the utility of the higher level caches. Our study reinforces the
notion that the optimal choice of algorithm is quite sensitive to the hardware,
the number of threads used, and to perturbations of the input parameters. This
verifies the increased complexity of the problem and the need for elaborate
analytical cost models.

Reference

[1] R. Acker et al., “Parallel Query Processing in Databases on Multicore
Architectures,” Proc. Eighth Int’l Conf. Algorithms and Architectures
Parallel Processing (ICA3PP), 2008.

[2] D.A. Alcantara et al., “Real-Time Parallel Hashing on the GPU,” Proc.
ACM SIGGRAPH, 20009.

[3] E.D. Berger et al, “Hoard: A Scalable Memory Allocator for
Multithreaded Applications,” Proc. Ninth Int’l Conf. Architectural
Support Programming Languages and Operating Systems (ASPLOS),
2000.



11552 K. Kirubhaharan

[4] S. Blanas et al., “Design and Evaluation of Main Memory Hash Join
Algorithms for Multi-Core CPUs,” Proc. ACM SIGMOD Int’l Conf.
Management of Data, 2011.

[5] R.D. Blumofe et al, “Cilk: An Efficient Multithreaded Runtime
System,” Proc. Fifth ACM SIGPLAN Symp. Principles and Practice
Parallel Programming (PPoPP), 1995.

[6] L. Bouganim et al., “Dynamic Load Balancing in Hierarchical Parallel
Database Systems,” Proc. 22th Int’l Conf. Very Large Data Bases
(VLDB), 1996.

[7] L. Bouganim et al., “Load Balancing for Parallel Query Execution on
NUMA Multiprocessors,” Distributed and Parallel Databases, vol. 7,
no. 1, pp. 99-121, 1999.

[8] M.-S. Chen et al., “Scheduling and Processor Allocation for Parallel
Execution of Multi-Join Queries,” Proc. Eighth Int’l Conf. Data Eng.
(ICDE), 1992.

[9] J. Chhugani et al., “Efficient Implementation of Sorting on Multi-Core
SIMD CPU Architecture,” Proc. VLDB Endowment, vol. 1, no. 2, pp.
1313-1324, 2008.

[10] J. Cieslewicz and K.A. Ross, “Adaptive Aggregation on Chip
Multiprocessors,” Proc. 33rd Int’l Conf. Very Large Data Bases
(VLDB), 2007.

[11] M. Cole, Algorithmic Skeletons: Structured Management of Parallel
Computation. MIT Press, 1989.

[12] D.J. DeWitt, “The Wisconsin Benchmark: Past, Present, and Future,”
Benchmark Handbook for Database and Transaction Systems, Morgan
Kaufmann, 1993.

[13] D.J. DeWitt and J. Gray, “Parallel Database Systems: The Future of
High Performance Database Systems,” Comm. ACM, vol. 35, no. 6,
pp. 85-98, 1992.

[14] D.J. DeWitt et al., “The Gamma Database Machine Project,” IEEE
Trans. Knowledge Data Eng., vol. 2, no. 1, pp. 44-62, Mar. 1990.

[15] R. Fang et al, “GPUQP: Query Co-Processing Using Graphics
Processors,” Proc. ACM SIGMOD Int’l Conf. Management of Data,
2007.

[16] P. Garcia and H.F. Korth, “Database Hash-Join Algorithms on
Multithreaded Computer Architectures,” Proc. Third Conf. Computing
Frontiers (CF), 2006.

[17] P. Garcia and H.F. Korth, “Pipelined Hash-Join on Multithreaded
Architectures,” Proc. Third Int’l Workshop Data Management New
Hardware (DaMoN), 2007.

[18] M.N. Garofalakis and Y.E. loannidis, “Multi-Dimensional Resource
Scheduling for Parallel Queries,” Proc. ACM SIGMOD Int’1 Conf.
Management of Data, 1996.



Profile Based Concurrent Download and Data Sharing 11553

[19] M.N. Garofalakis and Y .E. Toannidis, “Parallel Query Scheduling and
Optimization with Time- and Space-Shared Resources,” Proc. 23rd
Int’l Conf. Very Large Data Bases (VLDB), 1997.

[20] G. Graefe, “Volcano - An Extensible and Parallel Query Evaluation
System,” IEEE Trans. Knowledge and Data Eng., vol. 6, no. 1, pp.
120-135, Feb. 1994.

[21] B. He et al., “Relational Query Coprocessing on Graphics Processors,”
ACM Trans. Database Systems, vol. 34, no. 4, article 21, 2009.

[22] R. Johnson et al., “To Share or Not to Share?” Proc. 33rd Int’l Conf.
Very Large Data Bases (VLDB), 2007.

[23] C. Kim et al., “Sort Vs. Hash Revisited: Fast Join Implementation on
Modern Multi-Core CPUs,” Proc. VLDB Endowment, vol. 2, no. 2,
pp. 1378-1389, 2009.

[24] M. Kitsuregawa et al., “Application of Hash to Data Base Machine and
Its Architecture,” New Generation Computing, vol. 1, no. 1, pp. 63-74,
1983.

[25] K. Krikellas et al., “Modeling Multithreaded Query Execution on Chip
Multiprocessors,” Proc. Int’l Workshop Accelerating Data
Management Systems Using Modern Processor and Storage
Architectures (ADMS ’10), 2010.

[26] K. Krikellas et al., “Scheduling Threads for Intra-Query Parallelism on
Multicore Processors,” Technical Report EDI-INF-RR-1345, Univ. of
Edinburgh, 2010.

[27] R. Lee et al., “MCC-DB: Minimizing Cache Conflicts in Multi-Core
Processors for Databases,” Proc. VLDB Endowment, vol. 2, no. 1, pp.
373-384, 2009.

[28] B. Liu and E.A. Rundensteiner, “Revisiting Pipelined Parallelism in
Multi-Join Query Processing,” Proc. 31st Int’l Conf. Very Large Data
Bases (VLDB), 2005.

[29] M.-L. Lo et al, “On Optimal Processor Allocation to Support
Pipelined Hash Joins,” Proc. ACM SIGMOD Int’] Conf. Management
of Data, 1993.

[30] S. Manegold, P. Boncz, and M.L. Kersten, “Generic Database Cost
Models for Hierarchical Memory Systems,” Proc. 28th Int’l Conf.
Very Large Data Bases (VLDB), 2002.

[31] S. Manegold, M.L. Kersten, and P. Boncz, “Database Architecture
Evolution: Mammals Flourished Long Before Dinosaurs Became
Extinct,” Proc. VLDB Endowment, vol. 2, pp. 1648-1653, 2009.

[32] R. Pagh and F.F. Rodler, “Cuckoo Hashing,” J. Algorithms, vol. 51,
pp. 122-144, 2004.

[33] L. Qiao et al., “Main-Memory Scan Sharing for Multi-Core CPUs,”
Proc. VLDB Endowment, vol. 1, pp. 610-621, 2008.

[34] J. Reinders, Intel Threading Building Blocks: Outfitting C++ for
Multi-Core Processor Parallelism. O’Reilly, 2007.



11554 K. Kirubhaharan

[35] K.A. Ross and J. Cieslewicz, “Optimal Splitters for Database
Partitioning with Size Bounds,” Proc. Int’l Conf. Database Theory
(ICDT), 20009.

[36] E.J. Shekita et al, “Multi-Join Optimization for Symmetric
Multiprocessors,” Proc. 19th Int’l Conf. Very Large Data Bases
(VLDB), 1993.

[37] J.S. Vitter, “Random Sampling with a Reservoir,” ACM Trans. Math.
Software, vol. 11, pp. 37-57, 1985.

[38] F.M. Waas and J.M. Hellerstein, “Parallelizing Extensible Query
Optimizers,” Proc. ACM SIGMOD Int’l Conf. Management of Data,
2009.

[39] D. Xu, C. Wu, and P.-C. Yew, “On Mitigating Memory Bandwidth
Contention through Bandwidth-Aware Scheduling,” Proc. 19" Int’l
Conf. Parallel Architectures and Compilation Techniques (PACT),
2010.

[40] J. Zhou et al., “Improving Database Performance on Simultaneous
Multithreading Processors,” Proc. 31st Int’l Conf. Very Large Data
Bases (VLDB), 2005.



