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Abstract

We study a single server queue with Poisson input, three stages of general het-
erogeneous services and deterministic vacations of constant duration. The server
provides service to customers one by one on a first come first served basis. Just
after completion of third stage of service, a customer may leave the system or may
opt to repeat the service in which case this customer rejoins the queue. Further,
just after completion of a customer’s third stage of service, the server may take a
vacation of random length or may opt to continue staying in the system to serve
the next customer. We find the time probability generating function in terms of
Laplace transforms and derive explicitly the corresponding steady state results.

AMS subject classification: 60K25, 60K30.
Keywords: Poisson arrivals, general heterogeneous service, probability generating
function, idle state, steady state, deterministic vacations, supplementary variable
technique.

1. Introduction

The queueing system with server vacations can be used to model a system wherein
the server stops working during a vacation. Such system has wide applicability in
analyzing the performance of various real life traffic situations of day-to-day as well
as industrial queues. There have been extensive studies in queues with vacations by
prominent researchers. Levy and Yechailai, Takagi, Doshi, Keilson and Servi. Gaver,
Fuhrman, Shantikumar, Cramer and Madan are a few among many authors who have
studied queues with server vacations with varying vacation policies
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An M/G/1 queue with vacation model is often referred as a tool of understanding
congestion phenomena in local networks. Since the past two or three decades,it has
emerged as an important area of study in real life problems such as telecommunication
engineering, manufacturing and production industries, computer and communication
networks etc. Several contributions have been made by dealing queueing systems of
M/G/1 type which include Bertsimas, Madan, Choudhury, Thangaraj and Vanitha etc.

The single server queue with phases of service with vacations has been paid at-
tention recently by several researchers. Presently such type of models have been the
subject matter of current research mainly due to its applications in computer and com-
munications systems. Madan (2000) have introduced the concept of two phase queueing
system by considering a single server queue under Bernoulli schedule server vacations.
Madan (2001) has studied a single server queue with two stage heterogeneous service
and deterministic server vacations. Choi and Kim (2003) have considered a two phase
queueing systems with server vacations and Bernoulli feedback. Choudhury and Madan
(2004) have studied two phase batch arrival queueing system with Bernoulli schedule
vacation.

Choudhury and Paul (2005) have dealt with an M/G/1 queue with two phases of
heterogeneous services and Bernoulli feedback. Here the queue size distribution at ran-
dom and at service completion epoch are derived. Li and Wang (2006) have studied
an M/G/1 retrial queue with two phase service and feedback where the server is sub-
ject to starting failures and breakdowns during service. Badamchi and Shankar (2008)
have considered a single server queue with two phases of heterogeneous service with
Bernoulli feedback and Bernoulli vacation.

Maragatha sundari and Srinivasan (2012) have analyzed M/G/1 feedback queue
with three stage service times with multiple server vacation. Ayyappan and Sathiya
(2013) have considered three stage batch arrival feedback queue with restricted admis-
sibility policy. In this paper, we consider a single server feedback queue with three stage
heterogenous service under Bernoulli schedule server vacations. This paper is organized
as follows. The mathematical description of our model is given in Section 2. Defini-
tions and equations governing the system are given in Section 3. The time dependent
solution have been obtained in Section 4 and the corresponding steady state results have
been explicitly in Section 5. Mean queue size and mean system size are computed in
Section 6. Mean waiting time in the queue and in the system are given in Section 7.

2. Assumptions Underlying the Model

The following assumptions describe the mathematical model

• Customers arrive at the system one by one in according to a Poisson stream with
arrival rate λ(> 0).

• Each customer undergoes three stages of heterogeneous service provided by a
single server on a first come first served basis. The service time of the three
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stages follow different general (arbitrary) distributions with distribution function
B j (v) and the density function b j (v), j = 1, 2, 3.

• After completion of third stage of service if the customer is dissatisfied with its
service for certain reason or if it received unsuccessful service, the customer may
immediately join the tail of the original queue with probability p (0 ≤ p < 1).
Otherwise the customer may depart forever from the system with probability q =
(1− p).

• Let µi (x)dx be the conditional probability of completion of the i th stage of ser-
vice during the interval (x, x + dx] given that elapsed time is x , so that

µi (x) =
bi (x)

1− Bi (x)
, i = 1, 2, 3 (2.1)

and therefore,

bi (v) = µi (v)e
−

v∫
0
µi (x)dx

, i = 1, 2, 3. (2.2)

• As soon as the third stage of a customer is complete, then with probability θ the
server decides to take a vacation and with probability 1 − θ , server continues to
be available for the next service.

• We assume that whenever the server takes a vacation, it is of constant duration
d(> 0).

• Various Stochastic Processes involved in the system are independent of each other.

3. Definitions, Notations and the Time - Dependent Equations
Governing the System

We define

W (1)
n (x, t) : Probability that at time t , the server is providing first stage of service

and there are n ≥ 0 customers in the queue excluding the one being served
and the elapsed served time of this customer is x . Consequently W (1)

n (t) =
∞∫

0

W (1)
n (x, t)dx denotes the probability that at time t , there are n customers in

the queue excluding the one customer in the first stage of service irrespective of
the value of x .

W (2)
n (x, t) : Probability that at time t , the server is providing second stage of service

and there are n ≥ 0 customers in the queue excluding the one being served
and the elapsed served time of this customer is x . Consequently W (2)

n (t) =
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∞∫
0

W (2)
n (x, t)dx denotes the probability that at time t , there are n customers in

the queue excluding the one customer in the second stage of service irrespective
of the value of x .

W (3)
n (x, t) : Probability that at time t , the server is providing third stage of service

and there are n ≥ 0 customers in the queue excluding the one being served
and the elapsed served time of this customer is x . Consequently W (3)

n (t) =
∞∫

0

W (3)
n (x, t)dx denotes the probability that at time t , there are n customers in

the queue excluding the one customer in the third stage of service irrespective of
the value of x .

Vn(t) : Probability that at time t , there are n ≥ 0 customers in the queue and the server
is away on vacation.

Qn(t) : Probability that at time t , there is no customer in the system and the server is
idle but available in the system. Finally, we assume that kr is the probability of r
arrivals during a vacation period of duration d so that,

Kr =
e−λd(λd)r

r !
, r = 0, 1, 2, . . . . (3.1)

The model is then governed by the following time dependent forward system equations
∂

∂x
W (1)

n (x, t)+
∂

∂t
W (1)

n (x, t)+ (λ+ µ1(x))W (1)
n (x, t) = λW (1)

n−1(x, t),

n = 1, 2, . . .
(3.2)

∂

∂x
W (1)

0 (x, t)+
∂

∂t
W (1)

0 (x, t)+ (λ+ µ1(x))W
(1)
0 (x, t) = 0, (3.3)

∂

∂x
W (2)

n (x, t)+
∂

∂t
W (2)

n (x, t)+ (λ+ µ2(x))W (2)
n (x, t) = λW (2)

n−1(x, t),

n = 1, 2, . . .
(3.4)

∂

∂x
W (2)

0 (x, t)+
∂

∂t
W (2)

0 (x, t)+ (λ+ µ2(x))W
(2)
0 (x, t) = 0, (3.5)

∂

∂x
W (3)

n (x, t)+
∂

∂t
W (3)

n (x, t)+ (λ+ µ3(x))W (3)
n (x, t) = λW (3)

n−1(x, t),

n = 1, 2, . . .
(3.6)

∂

∂x
W (3)

0 (x, t)+
∂

∂t
W (3)

0 (x, t)+ (λ+ µ3(x))W
(3)
0 (x, t) = 0, (3.7)
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d
dt

V0(t) = θq

∞∫
0

W (3)
0 (x, t)µ3(x)dx, (3.8)

d
dt

Vn(t) = θp

∞∫
0

W (3)
n−1(x, t)µ3(x)dx + θq

∞∫
0

W (3)
n (x, t)µ3(x)dx,

n = 1, 2, . . . , (3.9)

d
dt

Q(t) = −λQ(t)+ V0(t)K0 + q(1− θ)

∞∫
0

W (3)
0 (x, t)µ3(x)dx . (3.10)

Equations (3.2) to (3.10) are to be solved subject to the following boundary conditions:

W (1)
0 (0, t) = Q(t)λ+ V0(t)K1 + V1(t)K0 + (1− θ)q

∞∫
0

W (3)
1 (x, t)µ3(x)dx,

+(1− θ)p

∞∫
0

W (3)
0 (x, t)µ3(x)dx , (3.11)

W (1)
n (0, t) = V0(t)Kn+1 + V1(t)Kn + · · · + Vn(t)K1 + Vn+1(t)K0 +

+(1− θ)q

∞∫
0

W (3)
n+1(x, t)µ3(x)dx + (1− θ)p

∞∫
0

W (3)
n (x, t)µ3(x)dx,

n = 1, 2, . . . , (3.12)

W (2)
n (0, t) =

∞∫
0

W (1)
n (x, t)µ1(x)dx, n = 0, 1, . . . . (3.13)

W (3)
n (0, t) =

∞∫
0

W (2)
n (x, t)µ3(x)dx, n = 0, 1, . . . . (3.14)

Next, we assume that initially the system starts when there is no customer in the
system and the server is idle but available in the system so that the initial conditions are
given by

Q(0) = 1, V0(0) = 0 = Vn(0), n ≥ 0. (3.15)
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4. Generating functions of the queue length: The time-dependent
solution

In this section we obtain the transient solution for the above set of differential-difference
equations. We define the probability generating functions,

W (1)(x, z, t) =
∞∑

n=0

znW (1)(x, t),

W (1)(z, t) =

∞∑
n=0

znW (1)(t),

W (2)(x, z, t) =
∞∑

n=0

znW (2)(x, t),

W (2)(z, t) =

∞∑
n=0

znW (2)(t),

W (3)(x, z, t) =
∞∑

n=0

znW (3)(x, t),

W (3)(z, t) =

∞∑
n=0

znW (3)(t),

V (z, t) =

∞∑
n=0

znVn(t).



(4.1)

which are convergent inside the circle given by |z| ≤ 1 and define the Laplace transform
of a function f (t) as

f (s) =

∞∫
0

e−st f (t)dt, <(s) > 0. (4.2)

Taking the Laplace transforms of equations (3.2) to (3.14) and using (3.15), we obtain

∂

∂x
W
(1)
n (x, s)+ (s + λ+ µ1(x))W

(1)
n (x, s) = λW

(1)
n−1(x, s),

n = 1, 2, . . . (4.3)
∂

∂x
W
(1)
0 (x, s)+ (s + λ+ µ1(x))W

(1)
0 (x, s) = 0, (4.4)

∂

∂x
W
(2)
n (x, s)+ (s + λ+ µ2(x))W

(2)
n (x, s) = λW

(2)
n−1(x, s),

n = 1, 2, . . . (4.5)
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∂

∂x
W
(2)
0 (x, s)+ (s + λ+ µ2(x))W

(2)
0 (x, s) = 0, (4.6)

∂

∂x
W
(3)
n (x, s)+ (s + λ+ µ3(x))W

(3)
n (x, s) = λW

(3)
n−1(x, s),

n = 1, 2, . . . (4.7)
∂

∂x
W
(3)
0 (x, s)+ (s + λ+ µ3(x))W

(3)
0 (x, s) = 0, (4.8)

sV 0(s) = θq

∞∫
0

W
(3)
0 (x, s)µ3(x)dx, (4.9)

sV n(s) = θp

∞∫
0

W
(3)
n−1(x, s)µ3(x)dx + θq

∞∫
0

W
(3)
n (x, s)µ3(x)dx,

n = 1, 2, . . . , (4.10)

s Q(s) = −λQ(s)+ 1+ V 0(s)K0 + (1− θ)q

∞∫
0

W
(3)
0 (x, s)µ3(x)dx, (4.11)

W
(1)
0 (0, s) = Q(s)λ+ V 0(s)K1 + V 1(s)K0 + q(1− θ)

∞∫
0

W
(3)
1 (x, s)µ3(x)dx,

+(1− θ)p

∞∫
0

W
(3)
0 (x, s)µ3(x)dx, (4.12)

W
(1)
n (0, s) = V 0(s)Kn+1 + V 1(s)Kn + · · · + V n(s)K1 + V n+1(s)K0 +

+q(1− θ)

∞∫
0

W
(3)
n+1(x, s)µ3(x)dx + (1− θ)p

∞∫
0

W
(3)
n (x, s)µ2(x)dx,

n = 1, 2, . . . , (4.13)

W
(2)
n (0, s) =

∞∫
0

W
(1)
n (x, s)µ1(x)dx, n = 0, 1, . . . , (4.14)

W
(3)
n (0, s) =

∞∫
0

W
(2)
n (x, s)µ2(x)dx, n = 0, 1, . . . . (4.15)

Now multiplying equation (4.3) by zn and summing over n from 1 to ∞, adding to
equation (4.4) and using the generating functions defined in (4.1), we get

∂

∂x
W
(1)
(x, z, s)+ (s + λ− λz + µ1(x))W

(1)
(x, z, s) = 0, (4.16)
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Performing similar operations on equations (4.5) to (4.10) we obtain

∂

∂x
W
(2)
(x, z, s)+ (s + λ− λz + µ2(x))W

(2)
(x, z, s) = 0, (4.17)

∂

∂x
W
(3)
(x, z, s)+ (s + λ− λz + µ3(x))W

(3)
(x, z, s) = 0, (4.18)

sV (z, s) = θ(q + pz)

∞∫
0

W
(3)
(x, z, s)µ3(x)dx . (4.19)

For the boundary conditions, we multiply both sides of equation (4.11) by z, multiply
both sides of equation (4.12) by zn+1, sum over n from 1 to∞, add the two results and
use equation (4.1) to get

zW
(1)
(0, z, s) = λzQ(s)+ (1− θ)(q + pz)

∞∫
0

W
(3)
(x, z, s)µ3(x)dx

−(1− θ)q

∞∫
0

W
(3)
0 (x, s)µ3(x)dx + V (z, s)e−λd[1−z]

− V 0(s)K0.

(4.20)

Performing similar operation on equation (4.13) and (4.14),we have

W
(2)
(0, z, s) =

∞∫
0

W
(1)
(x, z, s)µ1(x)dx, (4.21)

W
(3)
(0, z, s) =

∞∫
0

W
(2)
(x, z, s)µ2(x)dx . (4.22)

Using equation (4.11), equation (4.20) become

zW
(1)
(0, z, s) = (1− θ)(q + pz)

∞∫
0

W
(3)
(x, z, s)µ3(x)dx + V (z, s)e−λd[1−z]

+[1− s Q(s)]+ λQ(s)[z − 1]. (4.23)

Integrating equation (4.16) from 0 to x yields

W
1
(x, z, s) = W

(1)
(0, z, s) e

−(s+λ−λz)x−
x∫
0
µ1(t)dt

, (4.24)
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where W
(1)
(0, z, s) is given by equation (4.23) Again integrating equation (4.24) by

parts with respect to x yields

W
(1)
(z, s) = W

(1)
(0, z, s)

[
1− b1(s + λ− λz)

s + λ− λz

]
, (4.25)

where

b1(s + λ− λz) =

∞∫
0

e−(s+λ−λz)xdb1(x) (4.26)

is the Laplace-Stieltjes transform of the first stage service time b1(x). Now multiplying
both sides of equation (4.24) by µ1(x) and integrating over x , we obtain

∞∫
0

W
(1)
(x, z, s)µ1(x)dx = W

(1)
(0, z, s)b1(s + λ− λz). (4.27)

Similarly, on integrating equations (4.17)and (4.18) from 0 to x , we get

W
2
(x, z, s) = W

(2)
(0, z, s) e

−(s+λ−λz)x−
x∫
0
µ2(t)dt

, (4.28)

W
3
(x, z, s) = W

(3)
(0, z, s) e

−(s+λ−λz)x−
x∫
0
µ3(t)dt

, (4.29)

where W
(2)
(0, z, s) and W

(3)
(0, z, s) are given by equations (4.21) and (4.22). Again

integrating equations (4.28) and (4.29) by parts with respect to x yield

W
(2)
(z, s) = W

(2)
(0, z, s)

[
1− b2(s + λ− λz)

s + λ− λz

]
, (4.30)

where

b2(s + λ− λz) =

∞∫
0

e−(s+λ−λz)xdb2(x) (4.31)

is the Laplace-Stieltjes transform of the second stage service time b2(x) and

W
(3)
(z, s) = W

(3)
(0, z, s)

[
1− b3(s + λ− λz)

s + λ− λz

]
, (4.32)

where

b3(s + λ− λz) =

∞∫
0

e−(s+λ−λz)xdb3(x) (4.33)
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is the Laplace-Stieltjes transform of the third stage service time b3(x). We see that by
virtue of equations (4.28) and (4.29)

∞∫
0

W
(2)
(x, z, s)µ2(x)dx = W

(2)
(0, z, s)b2(s + λ− λz), (4.34)

∞∫
0

W
(3)
(x, z, s)µ3(x)dx = W

(3)
(0, z, s)b3(s + λ− λz). (4.35)

By using equations (4.27) and (4.34), equations (4.21) and (4.22) reduce to

W
2
(0, z, s) = W

(1)
(0, z, s)b1(s + λ− λz), (4.36)

W
3
(0, z, s) = W

(2)
(0, z, s)b2(s + λ− λz). (4.37)

Using equations (4.36) and (4.37), equations (4.34) and (4.35) become
∞∫

0

W
(2)
(x, z, s)µ2(x)dx = W

(1)
(0, z, s)b1(s + λ− λz)b2(s + λ− λz),

(4.38)
∞∫

0

W
(3)
(x, z, s)µ3(x)dx = W

(1)
(0, z, s)b1(s + λ− λz)b2(s + λ− λz)

b3(s + λ− λz). (4.39)

By using above equation, (4.23) reduces to

W
(1)
(0, z, s) =

V (z, s)e−λd[1−z]
+ [1− s Q(s)]+ λQ(s)[z − 1]

z − (1− θ)(q + pz)b1(s + λ− λz)b2(s + λ− λz)b3(s + λ− λz)
.

(4.40)

Substituting the value of W
(1)
(0, z, s) into equation (4.25), we get

W
(1)
(z, s) =

V (z, s)e−λd[1−z]
+ [1− s Q(s)]+ λQ(s)[z − 1]

z − (1− θ)(q + pz)b1(s + λ− λz)b2(s + λ− λz)b3(s + λ− λz)[
1− b1(s + λ− λz)

s + λ− λz

]
. (4.41)

Now using equations (4.36) and (4.40), equation (4.30) become

W
(2)
(z, s) =

V (z, s)e−λd[1−z]
+ [1− s Q(s)]+ λQ(s)[z − 1]

z − (1− θ)(q + pz)b1(s + λ− λz)b2(s + λ− λz)b3(s + λ− λz)

b1(s + λ− λz)

[
1− b2(s + λ− λz)

s + λ− λz

]
. (4.42)
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Making use of equations (4.36), (4.37) and (4.40), equation (4.32) become

W
(3)
(z, s) =

V (z, s)e−λd[1−z]
+ [1− s Q(s)]+ λQ(s)[z − 1]

z − (1− θ)(q + pz)b1(s + λ− λz)b2(s + λ− λz)b3(s + λ− λz)

b1(s + λ− λz)b2(s + λ− λz)

[
1− b3(s + λ− λz)

s + λ− λz

]
. (4.43)

By virtue of equation (4.39), (4.19) can be re-written as

sV (z, s) = θ(q + pz)W
(1)
(0, z, s)b1(s + λ− λz)b2(s + λ− λz)

b3(s + λ− λz). (4.44)

Thus V (z, s), W
(1)
(z, s), W

(2)
(z, s) and W

(3)
(z, s) can be determined from equations

(4.44), (4.41), (4.42) and (4.43) respectively.

5. Steady State Solution

In this section, we shall derive the steady state probability distribution for our queueing
model. To define the steady state probabilities, we supress the argument t wherever
it appears in the time-dependent analysis. This can be obtained by applying the well-
known Tauberian property,

lim
s→0

s f (s) = lim
t→∞

f (t). (5.1)

Now multiplying both sides of equation (4.40), (4.41), (4.42), (4.43) and (4.45) by s,
taking limit as s → 0, applying property (5.1), we get

lim
s→0

sW
(1)
(0, z, s) = W (1)(0, z)

=
sV (z, s)e−λd[1−z]

+ s[1− s Q(s)]+ λs Q(s)[z − 1]

z − (q + pz)b1(s + λ− λz)b2(s + λ− λz)b3(s + λ− λz)

=
V (z)e−λd[1−z]

+ λQ[z − 1]

z − (1− θ)(q + pz)b1(λ− λz)b2(λ− λz)b3(λ− λz)
, (5.2)

W (1)(z) =
V (z)e−λd[1−z]

+ λQ[z − 1]

z − (1− θ)(q + pz)b1(λ− λz)b2(λ− λz)b3(λ− λz)[
1− b1(λ− λz)

λ− λz

]
, (5.3)
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W (2)(z) =
V (z)e−λd[1−z]

+ λQ[z − 1]

z − (1− θ)(q + pz)b1(λ− λz)b2(λ− λz)b3(λ− λz)

b1(λ− λz)

[
1− b2(λ− λz)

λ− λz

]
, (5.4)

W (3)(z) =
V (z)e−λd[1−z]

+ λQ[z − 1]

z − (1− θ)(q + pz)b1(λ− λz)b2(λ− λz)b3(λ− λz)

b1(λ− λz)b2(λ− λz)

[
1− b3(λ− λz)

λ− λz

]
, (5.5)

V (z) = θ(q + pz)W (1)(0, z)b1(λ− λz)b2(λ− λz)b3(λ− λz) (5.6)

which on using (5.2) becomes

V (z) = θ(q + pz)b1(λ− λz)b2(λ− λz)b3(λ− λz)[
V (z)e−λd[1−z]

+ λQ[z − 1]

z − (1− θ)(q + pz)b1(λ− λz)b2(λ− λz)b3(λ− λz)

]
. (5.7)

Equation (5.7) can be further simplified to

V (z) =
λθb1(λ− λz)b2(λ− λz)b3(λ− λz)(q + pz)Q[z − 1]

DR
, (5.8)

where

DR = z − (1− θ)(q + pz)b1(λ− λz)b2(λ− λz)b3(λ− λz)
+θ(q + pz)b1(λ− λz)b2(λ− λz)b3(λ− λz)[1− e−λd[1−z]]. (5.9)

Then substituting for V (z) from equation (5.8) into equations (5.3), (5.4) and (5.5)

W (1)(z) =

[
b1(λ− λz)− 1

]
Q

DR
, (5.10)

W (2)(z) =
b1(λ− λz)

[
b2(λ− λz)− 1

]
Q

DR
, (5.11)

W (3)(z) =
b1(λ− λz)b2(λ− λz)

[
b3(λ− λz)− 1

]
Q

DR
. (5.12)

where DR is given by equation (5.9).
Let W (z) = W (1)(z) + W (2)(z) + W (3)(z). Now from equations (5.10), (5.11) and

(5.12),

W (z) =

[
b1(λ− λz)b2(λ− λz)b3(λ− λz)− 1

DR

]
Q (5.13)
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We see that at z = 1, the right hand side of equations (5.8), (5.10), (5.11) and (5.12)

are of the form
0
0

. Therefore, applying L’Hopital’s rule, we obtain

W (1)(1) =
λQµ2µ3

µ1µ2µ3q − λµ2µ3 − λµ1µ3 − λµ1µ2− θλdµ1µ2µ3
, (5.14)

W (2)(1) =
λQµ1µ3

µ1µ2µ3q − λµ2µ3 − λµ1µ3 − λµ1µ2− θλdµ1µ2µ3
, (5.15)

W (3)(1) =
λQµ1µ2

µ1µ2µ3q − λµ2µ3 − λµ1µ3 − λµ1µ2− θλdµ1µ2µ3
, (5.16)

V (1) =
λθQµ1µ2µ3

µ1µ2µ3q − λµ2µ3 − λµ1µ3 − λµ1µ2 − θλdµ1µ2µ3
. (5.17)

Now to determine the only unknown constant Q, we use (5.13) to (5.16) in the normal-
izing condition

W (1)(1)+W (2)(1)++W (3)(1)+ V (1)+ Q = 1. (5.18)

and have

Q =
µ1µ2µ3[q − θλd]− λ[µ1µ2 + µ2µ3 + µ1µ3]

µ1µ2µ3[q − θλd]+ θλµ1µ2µ3
,

= 1− λ
[
θµ1µ2µ3 + µ1µ2 + µ2µ3 + µ1µ3

µ1µ2µ3[q − θλd]+ θλµ1µ2µ3

]
(5.19)

where λ < µ1µ2µ3[q − θλd].
Equation (5.19) gives the steady state probability that there is no customer in the

system and the server is idle. It is easy to verify that when there are no server vacations

then with θ = 0, equation (5.19) reduces to Q = 1 − λ
[

1
µ1q
+

1
µ2q
+

1
µ3q

]
. Also

from equation (5.19), we obtain ρ, the utilisation factor of the system as

ρ = 1− Q = λ
[
θµ1µ2µ3 + µ1µ2 + µ2µ3 + µ1µ3

µ1µ2µ3[q − θλd]+ θλµ1µ2µ3

]
< 1 (5.20)

Substituting for Q found in equation (5.19), we finally have from equations (5.8) and
(5.13)

W (z) =

[
b1(λ− λz)b2(λ− λz)b3(λ− λz)− 1

] {
1− λ

[
θµ1µ2µ3 + µ1µ2 + µ2µ3 + µ1µ3

µ1µ2µ3[q − θλd]+ θλµ1µ2µ3

]}
DR

,

(5.21)

V (z) =
λθb1(λ− λz)b2(λ− λz)b3(λ− λz)[z − 1](q + pz)Q

DR
. (5.22)
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Let Pq(z) = V (z)+W (z) denote the probability generating function of the queue length
irrespective of whether the server is away on vacation or is available in the system. Then
adding equations (5.21) and (5.22) and simplifying, we have

Pq(z) =

{
b1(λ− λz)b2(λ− λz)b3(λ− λz) [(λθ z − λθ)(q + pz)+ 1]− 1

}
Q

DR
.

(5.23)

where Q and DR are given by equations (5.19) and (5.9) respectively. We note that in
the case when there are no server vacations, we let θ = 0 in equation (5.23) and have

Pq(z) =

[
b1(λ− λz)b2(λ− λz)b3(λ− λz)− 1

z − (q + pz)b1(λ− λz)b2(λ− λz)b3(λ− λz)

][
1− λ

(
1
µ1q
+

1
µ2q
+

1
µ3q

)]
.

(5.24)

Further let P(z) denote the probability generating function of the number in the system.
Then from equations (5.19) and (5.24)

P(z) = Q + z Pq(z),

=
N
′

(z)
D′(z)

,

where

N
′

(z) = b1(λ− λz)b2(λ− λz)b3(λ− λz) {[z(λθ z − λθ)(q + pz)+ 1]

+ θ [1− e−λd[1−z]]− (q + pz)
}

Q,

D
′

(z) = z − (1− θ)(q + pz)b1(λ− λz)b2(λ− λz)b3(λ− λz)
+θ(q + pz)b1(λ− λz)b2(λ− λz)b3(λ− λz)[1− e−λd[1−z]].

In the particular case when there are no server vacations, we let θ = 0 in equation and
get

P(z) =
b1(λ− λz)b2(λ− λz)b3(λ− λz)[z − (q + pz)]

z − (q + pz)b1(λ− λz)b2(λ− λz)b3(λ− λz)
. (5.25)

6. The Expected Number in the Queue and in the System

Let Lq denote the expected number of customers in the queue. Then we have from

equation (), Lq =
d
dz

Pq(z) at z = 1. Since Pq(z) is indeterminate of the
0
0

form at

z = 1, we let Pq(z) =
N (z)
D(z)

, where N (z) and D(z) are respectively the numerator and
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denominator of the right side of equation. Then use the following well-known result in
queueing theory [see Madan (1991)].

Lq = lim
z→1

d
dz

Pq(z) = P
′

q(1) = lim
z→1

D
′

(z)N
′′

(z)− N
′

(z)D
′′

(z)
2(D′(z))2

,

= lim
z→1

D
′

(1)N
′′

(1)− N
′

(1)D
′′

(1)
2(D′(1))2

, (6.1)

where primes stand for the derivatives with respect to z.We carry out the desired deriva-
tives of the right hand side of equation at z = 1,using the fact that bi (0) = 1,−b

′

i (0) =

E(vi ) =
1
µi

and b
′′

i (0) = E(v2
i ) =

2
µ2

i
, i = 1, 2, 3, the second moment of the service

time for the i th type of service. After a lot of algebraic simplifications, we obtain

N
′

(1) = λ [E(v1)+ E(v2)+ E(v3)+ θ ] Q, (6.2)

N
′′

(1) =
{
λ2
[

E(v2
1)+ E(v2

2)+ E(v2
3)
]
+ 2λ2 [E(v1)E(v2)+ E(v2)E(v3)

+E(v1)E(v3)]+ 2λ2θ [E(v1)+ E(v2)+ E(v3)]+ 2λθp
}

Q,

(6.3)

D
′

(1) = q − λE(v1)− λE(v2)− λE(v3)− θλd, (6.4)

D
′′

(1) = −λ2
[

E(v2
1)+ E(v2

2)+ E(v2
3)
]
− 2λ2θd [E(v1)+ E(v2)+ E(v3)]

−λ2θd2
− 2pλ [E(v1)+ E(v2)+ E(v3)] . (6.5)

Substituting the above values in equation (6.1) and simplifying we finally get Lq where
Q is given by (5.19). We note that the expected number in the system is given by
L = Lq + Q, where ρ has already been found in equation (5.20).

7. The Expected Waiting Time in the Queue and in the System

The expected waiting time in the queue and in the system are given by

Wq =
Lq

λ
, (7.1)

W =
L
λ
. (7.2)
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