Selection Rejection Methodology For Two Dimensional Continuous Random Variables and Its Application To Two Dimensional Normal Distribution

Sachinandan Chanda

Department of Mathematics, Shillong Polytechnic, Mawlai, Shillong -793022

Abstract

In this paper we have generalized the Selection-Rejection Methodology for one dimensional continuous random variables to two dimensional continuous random variables and applied it to the two dimensional normal distribution.

Keywords: random variable, iterations, target probability distribution and proposal probability distribution.

Introduction

The Selection-Rejection Methodology for one dimensional continuous random variables was developed based on the idea of Acceptance-Rejection Method by the renowned mathematician, Von Neumann, from the University of Berlin. Von Neumann[1] came forward with his method during 1950's but later on Karl Sigman[2] from Columbia University gave the similar methodology in 2007. Again in 1989, Bernard D.Flury[3] from Indiana University came forward with the theory "Acceptance-Rejection Sampling Made Easy". D.P. Kroese[4] from University of Queensland put forward his theory of Acceptance-Rejection in 2011. Selection-Rejection Methodology can be applied to almost all statistical distributions and hence it has got immense physical significance.

Selection-Rejection Methodology For Two Dimensional Continuous Random Variables

Let X,Y be a two dimensional continuous random variable with probability distribution function f(x,y) $\forall x,y \in R$, where R =set of all real numbers. Let g(x,y) $\forall x,y \in R$ where R =set of all real numbers be another probability density function such that $\frac{f(x,y)}{g(x,y)} \le k \ \forall \ x,y \in R$, where $k \ge 1$ is a real number. By successively

selecting different values of X, Y we will try to make the ratio $\frac{f}{kg} \frac{x, y}{x, y}$ as close to 1 as possible. The probability density function f(x, y) is called target distribution and he probability density function g(x, y) is called proposal distribution.

The step by step procedure for the Selection-Rejection Methodology is as follows.

Step (1):- Let X,Y be a two dimensional continuous random variable with probability distribution function f(x,y) $\forall x,y \in R$, where R =set of all real numbers.

Step (2):- Let X',Y' be another two dimensional continuous random variable (which is independent of X,Y) with probability distribution function g x,y $\forall x,y \in R$, where R =set of all real numbers.

Step (3):- Let
$$\frac{f(X',Y')}{g(X',Y')} \le k \ \forall \ X',Y' \in R$$
, where $k \ge 1$ a real number.

Step (4):- Let $0 < R_1 < 1$ and $0 < R_2 < 1$ be two random numbers.

Step (5):- Set X' in terms of R_1 and set Y' in terms of R_2 depending on the expression obtained for the ratio $\frac{f(X',Y')}{kg(X',Y')}$.

Step (6):- If $R_1R_2 \le \frac{f(X',Y')}{kg(X',Y')}$, then set X,Y = X',Y' and select the continuous random variable X',Y'; otherwise reject the variable X',Y' and repeat the process from step (1).

The probability that the continuous random variable X', Y' is selected is $\frac{1}{k}$.

The number of iterations required to select X',Y' is k.

It may be noted that
$$0 \le \frac{f(X', Y')}{kg(X', Y')} \le 1$$

To prove that the probability for the selection of X, Y is $\frac{1}{k}$,

Proof: -
$$P$$
 Select $| X', Y' | = P \left(R_1 R_2 \le \frac{f(X', Y')}{kg(X', Y')} \right) = \frac{f(X', Y')}{kg(X', Y')} ...$
 $P(X', Y')$ is selected $= \int_{-\infty}^{x} \int_{-\infty}^{y} \frac{f(W, V)}{kg(W, V)} g(W, V) dW dV$
 $= \frac{1}{k} \int_{-\infty}^{x} \int_{-\infty}^{y} f(W, V) dW dV = \frac{1}{k} \left[\because \int_{-\infty}^{x} \int_{-\infty}^{y} f(W, V) dW dV = 1 \right]$

Hence the proof.

Since the probability of selection (i.e. success) is $\frac{1}{k}$, the number of iterations needed will follow a geometric distribution with $p = \frac{1}{k}$. So, on average it will take k iterations to generate a number.

Application To Two Dimensional Normal Distribution.

Two dimensional normal distribution is given by

$$f \ x, y = \frac{1}{\sqrt{2\pi}} e^{-\left(\frac{x^2}{2} + \frac{x^2}{2}\right)}, x \ge 0, y \ge 0, x, y \in R$$
 (1)

Here f(x, y) is the target function.

Let
$$g(x, y) = e^{-x+y}$$
, $x \ge 0$, $y \ge 0$ be the proposal distribution. (2)

Let
$$h(x, y) = \frac{f(x, y)}{g(x, y)} = \frac{1}{\sqrt{2\pi}} \exp\left(-\left(\frac{x^2 + y^2 - 2x - 2y}{2}\right)\right)$$
 (3)

With the help of differential calculus we can show that h(x,y) attains maximum at 1,1 and the maximum value of h(x,y) is $\frac{e}{\sqrt{2\pi}} \approx 1.0845$ (approximately).

Choosing
$$k = \frac{e}{\sqrt{2\pi}}$$
, we get

$$\frac{f \cdot x, y}{kg \cdot x, y} = \exp\left(-\frac{x-1^{2}}{2}\right) \times \exp\left(-\frac{y-1^{2}}{2}\right)$$
(4)

Selection-Rejection Methodology for the two dimensional distribution is as follows

Step (1):- Let X,Y be a two dimensional continuous random variable with probability distribution function f(x,y) $\forall x,y \in R$, where R =set of all real numbers.

Step (2):- Let X',Y' be a two dimensional continuous random variable with probability distribution function $g(x, y) \forall x, y \in R$, where R =set of all real numbers.

Step (3):-Let $0 < R_1 < 1$ and $0 < R_2 < 1$ be two random numbers.

Step (4):- Set
$$X' = 1 + \sqrt{-2\ln(R_1)}$$
 and $Y' = 1 + \sqrt{-2\ln(R_2)}$
Step (5):-If $R_1 R_2 \le \exp\left(-\frac{X' - 1^2}{2}\right) \times \exp\left(-\frac{Y' - 1^2}{2}\right)$, then set

X,Y = X',Y' and select X',Y'; otherwise reject X',Y' and repeat the process from Step(1).

Conclusion

Selection-Rejection Methodology is valid for any dimension of continuous random variable. In this method we approximate the target function to proposal function so that after a number of successive iterations the proposal function becomes almost equal to target function and proposal function is selected.

References

- [1] JOHN VON NEUMANN, "Various techniques used in connection with random digits, in *Monte Carlo Method*, Appl. Math. Series, vol, 12, U. S. Nat. Bureau of Standards, 1951,pp. 36-38 (Summary written by George E. Forsythe);reprinted in John von Neumann, *Collected Works*. Vol. 5, Pergamon Press; Macmillan, New York, 1963, pp. 768-770. MR 28#1104.
- [2] Karl Sigman,"Acceptance-Rejection Method", 2007, Columbia University.
- [3] BERNARD D. FLURY, "ACCEPTANCE-REJECTION SAMPLING MADE EASY", SIAM Review, Vol. No. 3. Pp 474-476, September 1990.
- [4] D.P.Kroese, "Acceptance-Rejection Method", 2011, University of Queensland.
- [5] Loernzo Pareschi, "Part III: Monte Carlo methods",2003,University of Ferrara,Italy.
- [6] WILLIAM FELLER,"An Introduction to Probability Theory and its Applications", Vol I, Wiley, New York, 1950, Lemma 2, P-131(P-166 of 2nd ed).MR 12,424.
- [7] Richard Saucier, "Computer Generation of Statistical Distributions", March 2000. *ARMY RESEARCH LABORATORY*.
- [8] J.H. Ahrens and U. Dieter, "Computer Methods for Sampling from Exponential and Normal Distributions", Comm. A.C.M 15 (1972), 873-882.
- [9] Fill, J. A. (1998), "An interruptible algorithm for perfect sampling via Markov chains. *Annals of Applied Probability*", 8(1) 131-162. MR1620346.
- [10] Fill, J. A. Machide, M., Murdoch, D.J. and Rosenthal, J. S. (1999). "Extension of Fill's perfect rejection sampling algorithm to general chains. Random *Structures and Algorithms*", **17** 219-316. MR1801136.

- [11] Gilks, W. R. and Wild, P. (1992). "Adaptive rejection sampling for Gibbs sampling". *Appl. Statist.* **41** 337-348.
- [12] Propp, J.G. and Wilson, D. B. (1996). "Exact sampling with coupled Markov chains and applications to statistical mechanics. *Random Structures and Algorithms*". **9**(1 & 2), 223-252. MR1611693.

`