Survey on Assisting Methodologies For The Visually Impaired People

M.Monisha¹, A.Nandhini²

¹Student of Post-Graduation, ²Assistant professor, ^{1,2}Department of Electronics and Communications, Sathyabama University, Chennai-119,India.

> ¹monijun19@gmail.com ²abnandhu@gmail.com

Abstract

This survey talks about the assistive technologies for visually impaired people. These technologies provide greater independence which enable blind user to perform their own task. This technology can be defined as any object that will help to improve the capability of people with visual disabilities. For that reason assistive technologies play a vital role in destroying barriers for people who suffer from vision loss. In this paper a survey has been done about the devices and tools implemented especially for the blind users. All these devices and tools have been helpfulfor visually impaired people and also to provide confidence and encourage for them to look at the outside environment bravely. This paper also presents a technology behind those tools and how it has been implemented.

Keywords: visually impaired, assistive tools, blind people.

Introduction

Blindness makes people feel difficult to suffer when comparing to people who suffer from normal health problems. They face a large difficulty in order to fulfill their needs. Though they are blind their sense of hearing is very sharp and strong. This is an added advantage for them. It is necessary for each and every individual to have good education, to be self-employed and to have friendly relationship with the outside environment. The problem of accessing the public busses is one of the mysterious tasks faced by the blind users because in all public busses only the bus number is displayed. Inconvenience is caused to the blind user because they have to wait for someone for help, and the worst case is during non-office hours and at less frequently used bus stop they have to wait patiently for someone to help them. So the best solution is that they can accompany someone with them for help but this creates

dependence on the other individual. The task of crossing the road is a tough challenge faced by the blind users. The problem occurs probably when they get hit by a car, fire truck horn blasts, sirens blare and also some sort of obstacle might disturb them while crossing. One of the best solution followed in foreign countries is that the user gets aware of the tone sounds and vibrations with the help of these sounds they can easily cross the road. There are many blind students emerging all over the world but the challenges faced bythe blind students are to identify the correct classroom or department, problem in listening to class lectures. are some challenges faced by the blind students .The employment opportunity play a very important role in all individuals life Without employment it is impossible for people to acquire their means and resources and thereby lead a successful life .In order to overcome all these problems this survey will tell what are the assistive devices and technology that are applied to the blind users. By using all these devices and tools will give them the confidence to sustain independently in this sort of environment like other human beings. Section II describes the assistive tools and devices that are implemented for the blind users. In Section III describes the methods that are applied for all these devices and tools. and in Section IV describes the various applications that are implemented for the blind users.

Assistive Tools and Devices

In earlier days the guide dogs have been the close friend of the visually impaired people The user will use them to go to places in the surrounding environment. But the drawback in guide dog is that they don't have to access to all the environment and also training the guide dog is little bit difficult. So Sergio I.Lopes ,Jose M.N.Vieria had implemented out three electronic mobility devices namely Mobi free cane an improved long cane, Mobi Free sunglasses, and Mobi free echo [1][2][25]. The long cane helps to detect obstacles such as holes on the road side while walking .the sunglasses are used to detect head level obstacles such as pillars, parking stand etc. The Mobi Free echo are used to detect obstacles such as wallsand bikes. But all these electronic applications will work only in outdoor localization.. Navigating in an unknown environment is very difficult for blind users a large amount of devices were implemented among which one was the RFID .The RFID based system proposed by Punitdharani[3][4][26] works well in outdoor environment .[5]Chun-hung Yang and Sheue - Ling Hwang had used GPS based navigating system which helps in broadcasting the information .[37]For reaching the destination properly at the right time the position of the user has to be estimated properly . [33][34]Koji Soeda and Shingo Aoki improvised this technique by using DGPSFrom the digital map data base the position of the user is estimated. From this technique a suitable route from initial point to destination is calculated depending on the users position and digital map data base .Jin-hee Lee and kyeongyulkim had used the zigbee module as one of the navigating system .the purpose of this module is that it determines the range and the position of the user both are calculated [6][29]. In order to travel in an unknown environment they decided to pre build a map and store the information details in the form of a database .All the information details are fed into the system before the user

starts his navigation task. The information such as floor plans, room numbers are all recorded. This sort of system had been implemented by Apostolopoulos and Fallah [7][8]. Navigation for the blind user can also be done through synthesized speech and through audio output [9][10]. A large variety of robotic based system are designed for people with visual disabilities. The mobile robot are fed with a pre-build map, navigation path, and also with a vision system so that the blind can travel without fear in an unknown environment [11][28]. Many blind students are emerging all over the world .Several tools and devices are implemented for blind students .the one such device is the use of smart phone. the purpose of using smart phone is that it has the capability of sharing the information over a network such as the internet [12][29][39].

Figure 1: Guide dog

Figure 3: Sensor Types

Figure 5: RFID

Figure 2: White cane

Figure 4: GPS

Figure 6: Smartphone

Figure 7: Step Detection

Methods Implemented For All These Assistive Devices and Tools

The task of moving from one place to another is one of the tough challenges which involves obstacle detection, accessing room numbers and door numbers, reach the destination path correctly are some of the challenges faced by the blind users in their daily lives .The GPS based device are useful to identify the location of the user [13][14][38]. The GPS does not work in indoor localization because the GPS signals are deployed inside the building .So in the outdoor environment you can keep GPS as an information source and use RFID technology for the detection of location errors.[15]Richard F.Joseph and AnandA.Godbole had implemented a method using RFID technology .[27][30]The process works with the help of RFID tag and RFID reader .The PDA baseddevice provides output information in the form of audio whereas the user can provide input in the form of speech. A wide variety of sensors are used for detecting obstacles which includes the ultrasonic sensor, infrared sensor, sonar sensor etc. Instead of using a variety of sensors [16]A.Aladren and G.Lopez. Nicolas had chosen one device named RGB-D camera. This RGB-D camera takes the information of both range information and visual information. The range based information includes a detail account of information .All the information that are collected are found to be interfaced in to the system. And this helps to identify the objects in the scene. It helps to calculate the distance between the object and the user[17][18][19]. Since the blind user suffer from visual disabilities they don't have the opportunity to look at the outside environment .[20]So Sofia Cavaco and J.ThomasHenriques had implemented a software tool which captures an image and converts the color information into sound .The converted color information includes pixels color range, the location of shapes etc. [31] This sort of application will help the user in their daily routine .It helps them in buying the clothes of their own, getting things of their own, cross the road independently .the above technology is further improvised by [21Roberto Neto and Nuno Fonseca .They applied two technology namely the optical character recognition and speech synthesis .[22]optical character recognition involves recognizing text from images such as traffic signal signs. Speech synthesis involves a text which is in digital format is converted to voice and played in the form of audio.[23] The technique of choosing the clothes by the blind users where further improved by Xiaodong Yang and Shuai Yuan has developed a camera-based prototype system that recognizes clothing patterns. Such recognition of accessing clothing pattern varities and accessing the color types helps to improve their life quality .butAutomatic camera-based clothing pattern recognition becomes a difficult task due to many clothing pattern and color designs[24]. Here, we introduce a camerabased system to help visually impaired people to recognize clothing patterns and colors. Mostly all camera based system works with the help of a sensors which includes a camera for capturing clothing images, and for the input to the blind user a headphone or microphone is used for audio output and analysis of clothing pattern recognition, and color identification we can use a mini-computer or a smartphone .The system was tested practically by the blind users and they found it to be useful However, most blind users expressed that they wanted such sort of system to support more independence in their daily life. The blind user must gain sufficient knowledge even from social networking sites say the internet.So[32].Simon Liu and Wei Ma they decided to help blind people in improving web access. This technology will be helpful even for low sighted individuals. The process works in such a way that it helps to increase the text font size alters the page display so that the text is bright even in dark background. The blind user can give commands through speech rather than using a mouse. The blind users can thereby receive the information with the help of text to speech system .the text to speech systems is been discussed above.[35][36][40]Because the internet application is very useful which enables to establish communication between people and things Maria Carmen Domingo was the first to make an overview of the internet of things for people with disabilities. She introduced a IOT architecture (Internet of things) She divided into Three categories in which all these assistive devices where introduced The first was to identify the objects with the help of sensors.actuators.RFID.andsmartphones.once identified the object it is necessary to transmit the information and thereby satisfy the users needs.

Applications

S.No	Name	Images	Application
1.	Braille Alphabet		The braille application which is represented by a sequence of raised dots.especially used for blind students.
2.	Identification of correct footwear by the blind user		The footwear application which helps blind user to identify their own footwear

3.	Blind users watching television	Television application .Blind users watch television with the help of sound effects
4.	Guide dog robot	guide dog robot application guides the blind user on the pedestrian path and also avoiding from moving obstacles.
5.	Bionic Eye Glass	The bionic eye glass application useful while walking on the roads mainly used in both indoor and outdoor application.

Conclusion

We have seen the various assistive devices and technologies that are been introduced for the blind user in which the most widely used is the GPS the GPS technology is used to estimate the position of the user. but still there are drawbacks in GPS in the circumference of a tunnel or building it is very difficult to receive the GPS signal so still advancements can be made in this field of technology .Speech synthesis technology had played a vital role because in all available devices this technique is been applied so different types of voice modules and tools can be introduced in future and also that technology can be improved in the case of security purpose for the blind user especially in the case of indoor application .because the blind users safety at home is very important

References

[1] Sergio I.Lopes, Jose M.N. Vieria, Oscar F.F. Lopes Pedro R.M. Rosa, Nuno A.S. Dias in Mobi Free: "A set of electronic mobility aids for the blind," Published in the IEEE International Conference on Software Development for enhancing accessibility and fighting info-exclusion 2012. SION

- [2] M.Esponia,S.Ungar,E.Ochaita,M.Blades,C.Spencer,Comparing methods for introducing blind and visually impaired to unknown environments,published in the Journal of Environment Psychology 1998.
- [3] N.Mahumud,R.K.Saha,R.B.Zafar,M.B.H.Bhuian,andS.S.Sarwar.Vibration and Voice Operated Navigation System For Visually Impaired Person.Department of Electrical and Electronic Engineering BRAC University Dhaka,Bangladesh.published in 3rd International Conference on Informatics, Electronics & Vision 2014.
- [4] L.Ran,S.Helal and S.Moore ,Drishiti: An Integrated indoor and outdoor blind navigation system and service .In pervasive computing and communications.published in the Second IEEE Annual Conference on 2004.
- [5] Chun-Hung Yang and Sheue-Ling Hwang ."The design and evaluation of an auditory navigation system for the blind and visually impaired.NationalTsingHua University Hsinchu,Taiwan 300 published in the proceedings of the IEEE 18th International Conference on Computer Supported Cooperative Work in Design 2014.
- [6] Jin-heeLee,KyeongyulKim,Sang-ChulLee,Byeong-Seok Shin ."Smart Backspace for Visually impaired person",Department of Computer Science and Information Technology Inha University Incheon,Korea.
- [7] SamleoL.Joseph, Chucai Yi, Jizhong Xiao, Yingli Tian ."Visual semantic parameterization -to enhance blind user perceptron for indoor navigation ", Department of Electrical Engineering The city university of newyork city college convent ave at 140th street, Newyork, USA.
- [8] NavidFallah,IlliasApostolopoulos,kostasBekris,andEelkeFolmer."The user as a sensor :navigating users with visual impairments in indoor spaces using tactile landmarks ",in the proceedings of the 2012ACM annual conference on human factors in Computing systems 2012.
- [9] Dr.JizhongXiao,KevinRamdath,manorIosilevish,DharmdeoSigh,Anastasis Tsakas in "A low cost outdoor assistive navigation system for blind people ",from the Department of Electrical Enineering ,The city college,The city university of new york convent ave&140th street,Newyork,Ny 10031,USA in the year 2013
- [10] Wilson ,Jeff,et al. "Swan:System for wearable audio navigation ."Wearable Computers.2007 11 th IEEE international symposium 2007.
- [11] Min-Fan Ricky Lee, FuHsin Steven Chiu, ChenZhuoin" Novel design of a social mobile robot for the blind disabilites", in the proceedings of the IEEE/SICE International Symposisum on System integration, Kobe International conference center, Kobe, Japan, December 15-17 2013.
- [12] HamzaA.Albri,AhmedM.Welsti,MohammedA.AlMaawali,and Ali A.AlShidhani ."NavEye : Smart Guide For Blind Students",from Sultan QaboosUniversity",in IEEE 2014.
- [13] Fernades.H,Vitor Filipe ,Paulo Costa,JoaoBarroso "Location based services for the blind supported by RFID technology ,"published in the 5th

- International Conference on Software Development and Technologies For Enhancing Acessiblity and Fighting Info-Exclusion, DSAI 2013.
- [14] S.Willis and S.Helal,"RFID information grid for blind navigational and wayfindings,"Proceedings of the 9th international symposium on wearable computers, osaka 2005.
- [15] Richard F.Joseph and AnandA.Godbole "An intelligent travelling companion for visually impaired pedestrian", from the Department of Computer Engineering Sardar Patel Institute of Technology Mumbai, India on IEEE 2014
- [16] A.Aladren,G.LopezNicolas,Member,IEEE,LuisPuig,andJosechuJ.Guerrer, Member IEEE in "Navigation Assistance For the Visually Impaired Usind RGB-D sensor With Range Expansion",in IEEE 2014.
- [17] S.Gupta ,P.Arbelaez,andJ.Malik,"Perceptual organization and recognition of indoor sensors from RGB-D images, "in Proc. IEEE conf. comput. vis. patternrecogn., june 2013
- [18] H. Takizawa, S. Yamaguchi, M. Aoyagi, N. Ezaki, and S. Mizuno, "Kinectcane: Object Recognition aids for the visually impaired, "in proc. 6th Int. Conf. HSI, june. 2013
- [19] Z. Wang, H. Liu, X. Wang, and Y.Qian, "Segment and label indoor scene based on RGB-D camera for the visually impaired, "in multimedia modelling, C. Gurrin, F. Hopfgartner, W. Hurst, H. Johansen, H. Lee, and N. O'Connor, Eds. Cham, Switzerland: springer international publishing, ser. lecture notes in computer seicence 2014.
- [20] Sofia Cavaco, J. Tomas Henriques, Michele Mengucci, Nuno Correia, Francisco Medeiros,"Colorsonification for the blind," published in International conference on health and Social Care Information Systems and Technologies 2013.
- [21] Roberto Neto and Nuno Fonseca in "Camera Reading For The Blind People," from Polytechnic institute of Leiria, Leiria 2411-901 Leiria, PORTUGAL. published in IEE international conference on health and social care information systems and technologies 2014.
- [22] Elmore,M.AndMartonosi,M.A morphological image processing suite for ocr on natural scene images ,2008.
- [23] Xiaodong Yang, Student Member, IEEE, Shuai Yuan, and YingLiTian, Senior Member, IEEE in, "Assistive Clothing Pattern Recognition for Visually Impaired People", published in IEEE transaction on Human Machine Sytems 2014.
- [24] D. Gould, "The making of a pattern," Vogue Patterns, 1996.
- [25] C.Jacquet, Y.Bellik, Y.Bourda, Electronic locomotion aids for the blind: Towards more assistive systems, in N.Ichalkaranje, A. Ichalkaranje, L.C.Jain (Eds), Intelligent Paradigms for Assistive and Preventive Healthcare, Springer 2006.
- [26] S.Koley and R.Mishra,"Voice Operated outdoor navigation system for the visually impaired persons",International Journal of Engineering Trends and Technology 2012.

- [27] L.Ran,S.Helal and S.Moore,(2004 March).Drishti: an integrated indoor/outdoor blind navigation system and service ,In Pervasive Computing and Communications,2004.PerCom 2004.Proceedings of the Second IEEE Annual Conference 2004.
- [28] M.F.R.LeeandF.H.S.Chiu,"A networked intelligent control system for the mobile robot navigation ,"in Proc.2013 IEEE/SICE International Symposium on System Integration 2013.
- [29] Y. J. Chang, C. N. Chen, L. D. Chou, and T. Y. Wang," A novel indoor wayfinding system based on passive RFID for individuals with cognitive impairements," Proc. International Conference on Pervasive Computing Technologies for Healthcare(Pervasive Health) 2008.
- [30] S. Chumkamon, P. Tuvaphanthaaphiphat, P. Keeratiwintakorn," A blind navigation system using RFID for indoor environments," 5th international conference on electrical engineering/electronics computer, telecommunications and information technology 2008.
- [31] M. Mengucci, J. T. Henriques, S. Cavaco, N. Correia, and F. Medeiros," From color to sound: Assesing the surrounding environment," in Proceedings of the conference on Digital Arts and New Media 2012.
- [32] Simon Liu, WeiMa, Dale Schalow, KeviSpruill," Improving Web Acess For visually impaired users,"published in IEEE 2004.i
- [33] Koji Soeda, ShingoAoki, Kenji Yanashima, Kazushige Magatani," Development of the visually impaired person guidance system using GPS," published in IEEE 2004.
- [34] H. Hashimoto, K. Magatani et al," The development of the navigation system for the visually impaired persons," Proceedings of the 23rd annual international conference of the IEEE engineering in medicine and biology society, 2001.
- [35] Maria Carmen Domingo," An overview of the internet of things for people with disabilities," published in the journal of network and computer applications 2011.
- [36] Shelby. Y, Hirahara. Y, Yanashima, K Magatani. K," The development of a white cane which navigates the visually impaired," In proceedings of the 29th international conference of the IEEE engineering in medicine and biology society 2007.
- [37] M. H. V. Le," Indoor navigation system for handheld devices," Worcester, massachusetts, USA, 2012.
- [38] French, R.L. 1990. In vehicle navigation-status and safety impacts. Technical papers from ITE's 1990, 1989 and 1988 conference.
- [39] "Sourceforge," Audacity, 3March 2012 [online]. Available http://www.census.gov/geo/maps-data/data/tiger.html. [Accessed 1 10 2012].
- [40] BougieT.,etal.,The impact of new technologies on the quality of life of people with disabilities,2002.