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Abstract: 

 

Visco-elastic substances exhibit a dual nature of behaviour by showing signs of both 

viscous fluids and elastic solids. visco-elasticity can be modelled by combining 

Newton's law for viscous fluids (stress / rate of strain) with Hook's law for elastic 

solids (stress / strain), as given by the original Maxwell model and extended by the 

convected Maxwell models for the nonlinear visco-elastic fluids. The behaviour of 

visco-elastic fluids is drastically different from that of Newtonian and inelastic non-

Newtonian fluids. This includes the presence of normal stresses in shear flows, 

sensitivity to deformation type, and memory effects such as stress relaxation and 

time-dependent viscosity. Visco-elastic fluids are those that show partial elastic 

recovery upon the removal of a deforming stress. Such materials possess properties of 

both viscous fluids and elastic solids. The complexity of visco-elasticity is 

phenomenal and the subject is notorious for being extremely difficult and challenging. 
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The constitutive equations for visco-elastic fluids are much too complex to be treated 

in a general manner. 
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Introduction: 

A common feature of visco-elastic fluids is stress relaxation after a sudden shearing 

displacement where stress overshoots to a maximum then starts decreasing 

exponentially and eventually settles to a steady-state value. This phenomenon also 

takes place on cessation of steady shear flow where stress decays over a finite 

measurable length of time. This reveals that visco-elastic fluids are able to store and 

release energy in contrast to inelastic fluids which react instantaneously to the 

imposed deformation [1, 6 and 13]. A defining characteristic of visco-elastic materials 

associated with stress relaxation is the relaxation time which may be defined as the 

time required for the shear stress in a simple shear flow to return to zero under 

constant strain condition. Hence for a Hookean elastic solid the relaxation time is 

infinite, while for a Newtonian fluid the relaxation of the stress is immediate and the 

relaxation time is zero. Relaxation times which are infinite or zero are never realized 

in reality as they correspond to the mathematical idealization of Hookean elastic 

solids and Newtonian liquids. In practice, stress relaxation after the imposition of 

constant strain condition takes place over some finite non-zero time interval [16]. 

These features underlie the observed peculiar visco-elastic phenomena such as 

rod-climbing (Weissenberg effect), die swell and open-channel siphon [13]. Most 

visco-elastic fluids exhibit shear-thinning and an elongational viscosity that is both 

strain and extensional strain rate dependent, in contrast to Newtonian fluids where the 

elongational viscosity is constant and in proportion to shear viscosity [2]. The 

behaviour of visco-elastic fluids at any time is dependent on their recent deformation 

history, that is they possess a fading memory of their past. Indeed a material that has 

no memory cannot be elastic, since it has no way of remembering its original shape. 
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Consequently, an ideal visco-elastic fluid should behave as an elastic solid in 

sufficiently rapid deformations and as a Newtonian liquid in sufficiently slow 

deformations. The justification is that the larger the strain rate, the more strain is 

imposed on the sample within the memory span of the fluid [1, 13, 2]. Many materials 

are visco-elastic but at different time scales that may not be reached. Dependent on 

the time scale of the flow, visco-elastic materials show mainly viscous or elastic 

behaviour. The particular response of a sample in a given experiment depends on the 

time scale of the experiment in relation to a natural time of the material. Thus, if the 

experiment is relatively slow, the sample will appear to be viscous rather than elastic, 

whereas, if the experiment is relatively fast, it will appear to be elastic rather than 

viscous. At intermediate time scales mixed visco-elastic response is observed. 

Therefore the concept of a natural time of a material is important in characterizing the 

material as viscous or elastic. The ratio between the material time scale and the time 

scale of the flow is indicated by a non-dimensional number: the Deborah or the 

Weissenberg number [9]. 

Further complications arise from the confusion created by the presence of 

other phenomena such as wall effects and polymer-wall interactions, and these appear 

to be system specific [11]. Therefore, it is doubtful that a general fluid model capable 

of predicting all the flow responses of visco-elastic systems with enough 

mathematical simplicity or tractability can emerge in the foreseeable future [6, 4]. 

Understandably, despite the huge amount of literature composed in the last few 

decades on this subject, the overwhelming majority of these studies have investigated 

very simple cases in which substantial simplifications have been made using basic 

visco-elastic models.  

 

 

Formulation and Solution: 

Important aspects of non-Newtonian flow in general and visco-elastic flow in 

particular through porous media are still presenting serious challenge for modeling 

and quantification. There are intrinsic difficulties in characterizing non-Newtonian 
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effects in the flow of polymer solutions and the complexities of the local geometry of 

the porous medium. This geometry gives rise to a complex and pore space dependent 

flow field in which shear and extension coexist in various proportions that cannot be 

quantified. Flows through porous media cannot be classified as pure shear flows as 

the converging-diverging passages impose a predominantly extensional flow fields 

especially at high flow rates. The extension viscosity of many non-Newtonian fluids 

also increases dramatically with the extension rate. As a consequence, the relationship 

between the pressure drop and flow rate very often do not follow the observed 

Newtonian and inelastic non-Newtonian trend. Further complications arise from the 

fact that for complex fluids the stress depends not only on whether the flow is a 

shearing, extensional, or mixed type, but also on the whole history of the velocity 

gradient [5, 10, 12, 14, 15 and 17].  

The Oldroyd-B model is a simple form of the more elaborate and rarely used 

Oldroyd 8-constant model which also contains the upper convected, the lower 

convected, and the co-rotational Maxwell equations as special cases. Oldroyd-B is the 

second simplest nonlinear visco-elastic model and is apparently the most popular in 

visco-elastic flow modeling and simulation. It is the nonlinear equivalent of the linear 

Jeffreys model, as it takes account of frame invariance in the nonlinear regime. 

Oldroyd-B model can be obtained by replacing the partial time derivatives in the 

differential form of the Jeffreys model with the upper convicted time derivatives  

 

     (1.5) 

 

Where  is the upper convected time derivative of the rate of strain tensor 

given by 

 

   (1.6) 
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There are many possible sets of rheological equations of state, with the right 

invariance properties for general validity under all conditions of motion and stress, 

which reduce to equations Newtonian fluid, when the velocity gradients and shear 

stresses are sufficiently small so that their squares and products to be neglected. None 

of the possible general forms of the equations of state is linear in the velocity 

gradients dvi/dxk and the stresses p'ik. The simplest are linear in the stresses alone, and 

include terms of the second degree in the stresses and velocity gradients taken and we 

confine our attention to these. Assuming isotropy and incompressibility, so that eii is 

zero, we have to consider the class of liquids whose behaviour defines the non-

Newtonian fluids. 

 (1.7) 

 

Where μ0, μ1, μ2, v1 and v2 are five more arbitrary scalar physical constants, 

each with the dimensions of time. This equation has been made symmetrical in the 

free suffixes so that it represents six distinct differential equations for the six distinct 

components p'ik in terms of the eik’s. The usual summation convention is to be 

understood for repeated suffixes, and the material derivative denoted by D/Dt is a 

total derivative following the typical fluid elements, taking into account the linear and 

angular motion of the element which are measured by the velocity vi and the vorticity 

tensor 

 

 

 

For any Cartesian tensor bik…r associated with a moving fluid, expressed as a 

function of position xi and the time t, 
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Oldroyd discussed Two particular types of liquid of this class were discussed 

by liquid A liquid B one corresponds to the values 

  (1.8)  

 

Which refers to Oldroyd liquid A and next the values which refers to liquid B  

 

 (1.9) 

 

 

Conclusion: 

1. It was shown that Oldroyd liquid B would exhibit the Weissenberg climbing 

effect when sheared at a finite rate between rotating coaxial cylinders, and that 

liquid A would show the effect in reverse, sinking down (instead of rising up) 

near the inner cylinder.  

2. It has also been shown that, with some exceptions, among them liquids A and 

B, the liquids whose behaviour is represented by equations (1.7) with μ0 = v1 

= v2=0 will show a variation of apparent viscosity with rate of shear in steady 

flow between rotating cylinders.  

3. Some of the inelastic non-Newtonian liquids considered by Rivlin are formally 

included in the class represented by equations (1.6) and (1.5), if we put. 
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Such liquids have been shown by Rivlin to be capable of exhibiting the 

Weisenberg effect. Newtonian liquids can also be regarded as a special case, in which 

all physical constants except the viscosity ηo vanish. 
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