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Abstract:

Visco-elastic substances exhibit a dual nature of behaviour by showing signs of both
viscous fluids and elastic solids. visco-elasticity can be modelled by combining
Newton's law for viscous fluids (stress / rate of strain) with Hook's law for elastic
solids (stress / strain), as given by the original Maxwell model and extended by the
convected Maxwell models for the nonlinear visco-elastic fluids. The behaviour of
visco-elastic fluids is drastically different from that of Newtonian and inelastic non-
Newtonian fluids. This includes the presence of normal stresses in shear flows,
sensitivity to deformation type, and memory effects such as stress relaxation and
time-dependent viscosity. Visco-elastic fluids are those that show partial elastic
recovery upon the removal of a deforming stress. Such materials possess properties of
both viscous fluids and elastic solids. The complexity of visco-elasticity is

phenomenal and the subject is notorious for being extremely difficult and challenging.
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The constitutive equations for visco-elastic fluids are much too complex to be treated

in a general manner.
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Introduction:
A common feature of visco-elastic fluids is stress relaxation after a sudden shearing
displacement where stress overshoots to a maximum then starts decreasing
exponentially and eventually settles to a steady-state value. This phenomenon also
takes place on cessation of steady shear flow where stress decays over a finite
measurable length of time. This reveals that visco-elastic fluids are able to store and
release energy in contrast to inelastic fluids which react instantaneously to the
imposed deformation [1, 6 and 13]. A defining characteristic of visco-elastic materials
associated with stress relaxation is the relaxation time which may be defined as the
time required for the shear stress in a simple shear flow to return to zero under
constant strain condition. Hence for a Hookean elastic solid the relaxation time is
infinite, while for a Newtonian fluid the relaxation of the stress is immediate and the
relaxation time is zero. Relaxation times which are infinite or zero are never realized
in reality as they correspond to the mathematical idealization of Hookean elastic
solids and Newtonian liquids. In practice, stress relaxation after the imposition of
constant strain condition takes place over some finite non-zero time interval [16].
These features underlie the observed peculiar visco-elastic phenomena such as
rod-climbing (Weissenberg effect), die swell and open-channel siphon [13]. Most
visco-elastic fluids exhibit shear-thinning and an elongational viscosity that is both
strain and extensional strain rate dependent, in contrast to Newtonian fluids where the
elongational viscosity is constant and in proportion to shear viscosity [2]. The
behaviour of visco-elastic fluids at any time is dependent on their recent deformation
history, that is they possess a fading memory of their past. Indeed a material that has

no memory cannot be elastic, since it has no way of remembering its original shape.
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Consequently, an ideal visco-elastic fluid should behave as an elastic solid in
sufficiently rapid deformations and as a Newtonian liquid in sufficiently slow
deformations. The justification is that the larger the strain rate, the more strain is
imposed on the sample within the memory span of the fluid [1, 13, 2]. Many materials
are visco-elastic but at different time scales that may not be reached. Dependent on
the time scale of the flow, visco-elastic materials show mainly viscous or elastic
behaviour. The particular response of a sample in a given experiment depends on the
time scale of the experiment in relation to a natural time of the material. Thus, if the
experiment is relatively slow, the sample will appear to be viscous rather than elastic,
whereas, if the experiment is relatively fast, it will appear to be elastic rather than
viscous. At intermediate time scales mixed visco-elastic response is observed.
Therefore the concept of a natural time of a material is important in characterizing the
material as viscous or elastic. The ratio between the material time scale and the time
scale of the flow is indicated by a non-dimensional number: the Deborah or the
Weissenberg number [9].

Further complications arise from the confusion created by the presence of
other phenomena such as wall effects and polymer-wall interactions, and these appear
to be system specific [11]. Therefore, it is doubtful that a general fluid model capable
of predicting all the flow responses of visco-elastic systems with enough
mathematical simplicity or tractability can emerge in the foreseeable future [6, 4].
Understandably, despite the huge amount of literature composed in the last few
decades on this subject, the overwhelming majority of these studies have investigated
very simple cases in which substantial simplifications have been made using basic

visco-elastic models.

Formulation and Solution:
Important aspects of non-Newtonian flow in general and visco-elastic flow in
particular through porous media are still presenting serious challenge for modeling

and quantification. There are intrinsic difficulties in characterizing non-Newtonian
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effects in the flow of polymer solutions and the complexities of the local geometry of
the porous medium. This geometry gives rise to a complex and pore space dependent
flow field in which shear and extension coexist in various proportions that cannot be
quantified. Flows through porous media cannot be classified as pure shear flows as
the converging-diverging passages impose a predominantly extensional flow fields
especially at high flow rates. The extension viscosity of many non-Newtonian fluids
also increases dramatically with the extension rate. As a consequence, the relationship
between the pressure drop and flow rate very often do not follow the observed
Newtonian and inelastic non-Newtonian trend. Further complications arise from the
fact that for complex fluids the stress depends not only on whether the flow is a
shearing, extensional, or mixed type, but also on the whole history of the velocity
gradient [5, 10, 12, 14, 15 and 17].

The Oldroyd-B model is a simple form of the more elaborate and rarely used
Oldroyd 8-constant model which also contains the upper convected, the lower
convected, and the co-rotational Maxwell equations as special cases. Oldroyd-B is the
second simplest nonlinear visco-elastic model and is apparently the most popular in
visco-elastic flow modeling and simulation. It is the nonlinear equivalent of the linear
Jeffreys model, as it takes account of frame invariance in the nonlinear regime.
Oldroyd-B model can be obtained by replacing the partial time derivatives in the

differential form of the Jeffreys model with the upper convicted time derivatives

T+ /\1¥ = Uo (’3’ - )\2'?7>
(1.5)

v
Where ¥ is the upper convected time derivative of the rate of strain tensor

given by

gt TV VD =y (1.6)
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There are many possible sets of rheological equations of state, with the right
invariance properties for general validity under all conditions of motion and stress,
which reduce to equations Newtonian fluid, when the velocity gradients and shear
stresses are sufficiently small so that their squares and products to be neglected. None
of the possible general forms of the equations of state is linear in the velocity
gradients dvi/dxy and the stresses p'ik. The simplest are linear in the stresses alone, and
include terms of the second degree in the stresses and velocity gradients taken and we
confine our attention to these. Assuming isotropy and incompressibility, so that eii is
zero, we have to consider the class of liquids whose behaviour defines the non-
Newtonian fluids.

Dixtay ?9%@ YA ekt Pines;) + V1P7q05
— 2770(61'1,: + /\2%;1‘ - 2ﬂzeijejk+ vzeﬂeﬂ&ik) ;
(1.7)

Where o, 11, 2, V1 and v, are five more arbitrary scalar physical constants,
each with the dimensions of time. This equation has been made symmetrical in the
free suffixes so that it represents six distinct differential equations for the six distinct
components p'ik in terms of the ej’s. The usual summation convention is to be
understood for repeated suffixes, and the material derivative denoted by D/Dt is a
total derivative following the typical fluid elements, taking into account the linear and
angular motion of the element which are measured by the velocity vi and the vorticity

tensor

Wy = 1(8”7‘ évi)

*=8 ox; ox;)"

For any Cartesian tensor b, associated with a moving fluid, expressed as a

function of position x; and the time t,
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Oldroyd discussed Two particular types of liquid of this class were discussed

by liquid A liquid B one corresponds to the values

P0>0, Ay=—py>A=—pu,>0, My =¥y =Ty =1, (1.8)

Which refers to Oldroyd liquid A and next the values which refers to liquid B

7o > 0, /\1=/L1>A2=Iu2>0, Mo = V) = py = 0,

(1.9)

Conclusion:

1. It was shown that Oldroyd liquid B would exhibit the Weissenberg climbing
effect when sheared at a finite rate between rotating coaxial cylinders, and that
liguid A would show the effect in reverse, sinking down (instead of rising up)
near the inner cylinder.

2. It has also been shown that, with some exceptions, among them liquids A and
B, the liquids whose behaviour is represented by equations (1.7) with uo = v1
= v,=0 will show a variation of apparent viscosity with rate of shear in steady
flow between rotating cylinders.

3. Some of the inelastic non-Newtonian liquids considered by Rivlin are formally

included in the class represented by equations (1.6) and (1.5), if we put.

To>0, py%0, A =2, “hh=h=0=p=..
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Such liquids have been shown by Rivlin to be capable of exhibiting the

Weisenberg effect. Newtonian liquids can also be regarded as a special case, in which

all physical constants except the viscosity 1o vanish.
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