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Abstract

Detection of outliers is essential to numerous databases and analytic tasks like
fraud detection and customer migration. In this paper formulated a method for
investigating outlier detection for categorical data sets. This complication is
especially tough owing to the complexity of defining a meaningful similarity
measure for categorical data. In order to solve this problem, existing work use
a new concept of holoentropy that takes both entropy and total correlation into
account. But in the existing methods the entropy methods also have lack of the
problem for outlier detection for each attribute and some clustering methods
are not used in this work for categorical data. In this paper proposes a novel
approach which combines the attributes based Kullback-Leibler divergence
(KLD) for attribute weighting process and perform the Ascent-based Monte
Carlo expectation—-Maximization (AMCEM) methods for outlier detection, in
major maximization step KLD based attribute weighting plays major
important to detect whether the selected data object is outlier or not. The
experimentation analysis of the proposed system is carried out by using real
datasets from UCI machine learning repository. The performance comparison
results of the proposed AMCEM is measured in terms of the Detection Rate
(DR), False Alarm Rate (FAR), time comparison among the number of
attributes, number of data objects, Normalized Mean Square Error (NMSE) for
error results comparison, Area Under the Curve (AUC). It shows that the
proposed AMCEM have less NMSE error, FAR, and more Detection Rate
(DR) with less time taken to complete the process.

Keywords: Expectation Maximization (EM), Monte Carlo Expectation
Maximization (MCEM), Kullback- Leibler Divergence (KLD), Ascent-based
Monte Carlo Expectation—Maximization (AMCEM), Clustering, Outlier
Detection, Large Scale Data, Attribute Weighting.
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Introduction

Outlier detection is an essential step in a variety of practical applications including
fraud detection [1], network intrusion [2-3], health system monitoring [4], and
criminal activity detection in E-commerce [5], and can also be used in scientific
research for data analysis. Data mining techniques that have been developed in earlier
work based on both supervised and unsupervised learning to solve outlier detection
problem. Unlike supervised learning methods that typically require labeled data to
classify rare events [6], unsupervised techniques detect outliers as data points that are
extremely different from the majority data based on some pre- specified measure.
These methods are typically called outlier/anomaly detection techniques, and their
success depends on the choice of similarity measures, feature selection, weighting,
and most importantly on an approach used to detect outliers.

Besides, in a supervised approach a training set should be offered with labels for
anomalies with labels of standard objects, however training set with normal object
labels alone essential for the semi-supervised approach. In order to overcome these
problems unsupervised approach does not require any object label information and it
is mostly used in earlier work. These unsupervised learning methods in outlier
detection have focused on datasets with a specific attribute type, mainly assuming that
attributes are only numerical and/or ordinal. In the case of data with categorical
attributes, techniques which take numerical data required to initially map the
categorical values to numerical values, a task which is not a simple process to a
numerical attribute [7]. A second issue is that many applications for mining outliers
require the mining of very large datasets [8].

The works carried out these methods either support unsupervised learning for
discrete data and the measurement of the attributes consider for entire data without
consideration of the attribute value and another one of the main challenges of outlier
detection algorithms are data sets with non-homogeneous densities. Clustering and
outlier detection are two major data mining tasks. They are extensively employed, for
instance, in case of bioinformatics, for the purpose of detecting functionally
dependent genes, in case of marketing, for the purpose of customer segmentation, in
case of health surveillance, for the purpose of anomaly detection, and so on.
Clustering-based outlier detection algorithms cannot properly detect the outliers in
case of noisy data and unless the number of clusters is known in advance. The
common problem with the existing methods is the lack of a formal definition for the
outlier detection problem and doesn’t support for categorical data for larger dataset.

In order to solve this problem in the unsupervised learning methods, in this work
particularly study Kullback- Leibler divergence (KLD), which captures the
distribution of the each and every categorical data attribute weighting to find the
similarity of the each and every data object based on this concept, build an Ascent-
based Monte Carlo Expectation— Maximization (AMCEM) for outlier detection and
propose a criterion for estimating the “goodness” of a subset of objects as potential
outlier candidates. Then outlier detection is formulated and number of the outliers in
the cluster for particular data object is identified in AMCEM step. Experimentation
results shows that the proposed AMCEM based system have high outlier detection
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results than the informatics theoretic approaches, high complexity of exploring the
whole outlier candidate space.

Background Study

Statistical-model based methods assume that a specific model describes the
distribution of the data. Common drawbacks include obtaining the appropriate model
for each specific dataset and application, and short of scalability with regard to data
dimensionality [7]. Distance-based techniques [9] fundamentally work out distances
between data points, accordingly become quickly unfeasible for large datasets. Knorr
et al [9] define a point as an outlier if at least p% of the points in the dataset lie further
than distance D from it. These techniques demonstrate high computational complexity
rendering them unfeasible for really large datasets. Numerous techniques might be
employed to make the k-NN queries quicker, like an indexing structure, for instance,
KD-tree, X-tree, on the other hand, these structures have been shown to collapse as
the dimensionality grows [10].

Clustering techniques can be employed to first cluster the data, so that outliers are
the points that do not belong to formed clusters. On the whole, the entire clustering-
based techniques depend on the clusters to define outliers, as a result major
concentration on optimizing clustering, not outlier detection [10]. Outlier labelling
techniques, informal tests, produce a space for outlier detection. There are two
motivations for using an outlier labelling technique. One is to discover probable
outliers as a screening device prior to conducting a formal test. The other is to
discover the extreme values away from the majority of the data not considering the
distribution. Few extremely common outlier labelling parameters are Z-score,
Standard Deviation (SD) technique, Turkey’s method, MADe method and Median
Rule [11].

Density-based methods by M. M. Breunig et al., [12] assign an outlier score to any
given data point, known as Local Outlier Factor (LOF), depending on distances in its
local neighborhood. LOF is unable to detect the four outliers for any size of the local
neighborhood. Besides, some distance-based outlier detection work has been
introduced recently [13-14]. Clearly, distance-based definitions cannot process this
category of data. On the other hand, these research attempts do offer valuable
thoughts for monitoring outliers. In [12], the authors emphasize that outlying is a
relative concept, which should be studied in local area. In [15] and [16], the outliers
are mined in subspaces, where only partial attributes are taken into account, with the
intention that the curse of dimensionality is partially overcome.

Pang-Ning Tan proposed OutRank-b[17], a graph-based outlier detection
algorithm. In this technique the graph representation of data depends upon two
approaches- the object similarity and amount of shared neighbours among objects.
Besides this a Markov chain scheme is constructed upon this graph, which allocates
an outlier score to each object. Agrwal [18] has suggested a local subspace based
outlier detection which uses different subspace for different objects. Most of the
aforementioned techniques have only concentrated on continuous real-valued data
attributes and not applied for categorical data attributes with larger dataset.
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Proposed Methodology

In this paper propose a formal optimization-based model of categorical outlier
detection, for which a new concept of Kullback- Leibler divergence, which captures
the distribution and holoentropy with correlation information of a dataset, is proposed.
Then propose an efficient Ascent-based Monte Carlo expectation—Maximization
(AMCEM) clustering algorithm for outlier detection. These approaches require only
the number of outliers as an input parameter and absolutely dispense with the
parameters for differentiating outliers typically required by existing approaches.

Measurement for Outlier Detection

Consider an data be the X containing number of the data objects as n (x, .... x,,) each
x; for 1 <i < n being a vector of categorical attributes [y;,y,, ...., ¥, ]%, Where m
represents the number of categorical and discrete data attributes, y; indicates the value
of the attribute that belongs to either categorical and discrete value represented by
(1), Y2,y - -¥n;)(1 <j<m)and n; indicates the number of distinct values in
attribute ;. In order to measure the attribute value importance by using the Kullback-
Leibler Divergence (KLD) and the holoentropy of the attribute is represented as H, (),
mutual information I,(), and total correlation C,() computed on the set X; e.g.,
L.(y;,y;) represents the mutual information between attributes y; and y;. The
holoentropy Hy (Y) can be written as follows:

Hx(y) = Hx(y1:y2: ym) =
e e ilyicy, oo y1) = He(y1) + . +He U [Ym=-1, - Y1) 1)
PV Ym—1, Y1) @)
log p(Ym|Ym-1, Y1)

The total correlation [19] is defined as the sum of mutual information of
multivariate discrete random vectors Y, denoted as C, (Y),

Ce(y) = Zz‘iz Z{r_l,...ri}C{l,...m} Ix(yrll -yri) )

= Z{rl,...ri}C{l,...m} Ix(yr1: ; yrz) + -+ Ix(yrll o Vrm )

Where 7, ...7; are attribute numbers chosen from 1 to m. I(y., ...y, ) =
L(¥ry Yoo, )= Ly, . ¥r,) is the multivariate mutual information of y,. ...y,
where L(yy, .. r,_|vi) = EA(¥rpy - ¥r,_,)|7r,) indicates the conditional mutual
information. The holoentropy HL,(Y) is described as the sum of the entropy and the

total correlation of the random vector Y, and can be given by the sum of the entropies
on all attributes,

HL,(Y) = Hy(Y) + C(Y) = Xi%y He () (4)

Holoentropy allocates equal significance to the entire attributes, while in real
applications solved this problem by formulating weighting technique which computes
the weights straightforwardly from the data and is stimulated by increased efficiency
in practical applications more willingly than by theoretical necessity.

Hym|ym=1, . y1) = — Zym,.....y1
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wy() =2 (1= ) ©)

~ 1+exp(—Hx(y1)

Even though in the holoentropy function thus sets a minimum value for each
attributes and the maximum expected number of attributes value are identified in the
KL divergence. In this work use both KL and holoentropy measure. Majorly consider
the Kullback-Leibler measure through probability function p(y;) &q(v;). Kullback-
Leibler divergence between two different attributes probability density p(y;) and
q(y;) for a specified data object x is given by,

Dy.ly; = LxcxP(¥1)log (%) (6)

The probability values of the p(y;) and q(yj) can be determined by using Parzen
windows [20]. The equation (7) shows probability calculation formula of each firefly
for given set of data.

p() = 7Sy (M522) )

where ¢ (x) defines the window function and n is the total number of data objects,
V, and h,, be the volume and edge length of a hypercube. Once the KLD is calculated
then computes the weights directly from the data and is motivated by increased
effectiveness in practical applications rather than by theoretical necessity

1
w,(y)=21-— 8
(Vi) ( 1+exP(—Dyi||yj)> (8)

Once the attribute importance value is calculated then perform the clustering
Ascent based Monte Carlo expectation—Maximization (AMCEM) to detect the outlier.

Ascent based Monte Carlo Expectation—-Maximization (AMCEM) for Outlier
Detection

The expectation—-maximization (EM) algorithm has become a highly appreciated tool
for maximizing probability models in the presence of missing data for outlier’s
detection. The troubles of E-step possibly will be surpassed by approximating the
expectation with Monte Carlo methods [21]. In the MCEM have also some drawbacks
to detect the outlier in the data object cannot typically admit both independent
sampling and Markov chain Monte Carlo (MCMC) techniques within a common
framework. Subsequently, they do not attempt to imitate certain fundamentally
appealing properties of the fundamental EM algorithm. To overcome these issues, in
this work use Ascent-based Monte Carlo expectation maximization (AMCEM) for
this process first need to define data object samples as (9). Let KLY denote a vector of
observed KLD data object results for categorical data and U denote a vector of
missing attributes data and let A be a vector of unknown categorical data. Finally,
fxryu(kly,u, 2)du denotes the probability model of the complete data to detect the
outlier in the data or clustered group (KLY,U). The objective is to obtain the
maximizer 1 of
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L(A; kly) = ffKLY,U(klyJ u, A) du )

Instead of directly maximizing equation (9), the EM algorithm operates on the so-
called Q-function. Let A(t~D be the current estimate of A. Then the t™ E-step
calculates,

Q(4; A4V = E[log{fyry.u(kly, u, D)} [kly, 2¢D] (10)

Then in the t™ M-step for outlier detection require a value A that satisfies
QP Ay = (A" for all A in the parameter space, it needs to satisfy the
following condition,

Q(A(t);l(t-l)) > Q(g(t-l);,l(t—l)) (11)

which yields a generalized EM algorithm. The ascent property is obtained with an
application of Jensen’s inequality to expression (11), i.e.

L(A®; kly) = L(2“~D; kly) (12)
Approximate the expectation in equation (10) via,

Z?;tl W(u(t’j)) log{fKLy‘U(kly,u(t'j),/l)}
ST w(utD)

@(/1; A(t—l)) =

(13)

Throughout assume that {u®D, ..., u&™)} is either,

a) A random sample categorical data selected from fy oy (ulkly, 2A¢~1)

b) Sample categorical data is obtained from a candidate w, (y;) with associated
weight values.

c) Obtained by simulating an ergodic markov chain with invariant density
fU|KLDY(u|kly:Z(t_1))

Where the importance weights are calculated from (a) and (c). The MCEM

Algorithm uses a Q function with the t™ M-step consists of finding a value of X(t) such
that

O(2©, =) > G(AC-D, Je-D) (14)

If the lower bound of the current unknown data object is positive, then new
estimated data object is accepted as cluster and if it is negative, this estimate of 1 is
rejected and considered as outlier for the cluster samples. This process is repeated
until the lower bound is positive. The upper bound on outliers (UO), the anomaly
candidate set (AS), and the normal object set (NS). Thus the data objects with positive
lower bound is considered as AS = {xilﬁyinyj > 0},the data objects with nonpositive

set is considered as,
U0 = N(AS) = Xi-1(Dy,y, > 0) (15)

A1 denotes the current sample outlier approximation results and that {u}1%

is the monte carlo sample. In equation (11) the inequality problems occurs it is solved
by using the following representation consistently with,
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AQ(Aemd, Jt=D) = g(Aemo, JE-1) (-, 7€-1)
Z;n:tl W(u(t‘j)) log{fKLY‘U(kly'u(t;j)'z(t;mt)/kly,u(t:j)'i(t_ 1))}
B T W)

Where w, (y;) is the importance of the weight value derived from (8) and sampling
directly from the fi;yy

AQ(Z(t,mt)’ j(t—l)) _ AQ(Z(t,mt)J Z(t—l)) (17)

Has a limiting normal distribution with mean 0 and a variance ¢2 that depends on
the sampling mechanism employed. It is represented as

/mt{AQ(Z(t,mt)lZ(t—l)) _ AQ(Z(t,mt),Z(t—l))} — \/m_t{AQ(Z(t),i(t-l)) _
A4Q(A®, 1¢-D)) 18)

Calculate an Asymptotic Standard Error (ASE) for expression (17). Consider z, be
such that Pr(Z > z,) = a where z is standard normal random variable. Then,

AQ(RM5Y) - zpasE (19)

(16)

If the asymptotic lower bound (19) is positive, there is sufficient evidence to
conclude whether the selected data object is outlier or not that 2™t increases the
likelihood. Thus, 1™ (=1 js accepted as the t™ parameter update, i.e. 1) =
A=V and t - t 4 1. If the lower bound is negative for data object, then the estimate
of Q is deemed swamped with Monte Carlo error and a larger sample size is needed to

estimate Q accurately. In this case, the t™ iteration is repeated with a larger sample
size.

Independent sampling
If importance sampling is employed an estimate of o2 for each categorical data object

is given by
o (Zw(u®)A(uD)) (20)
T S w®D)
> {w(u®D) A(u<t.j>)}2 , ¥ w2(u®)A(u®))
Ew@ED) AN~ (Zw@®D)AutD)} EwutD)
N ¥ w2(u®)
X w)?)
Where the sum of all range fromj =1, ... m, and
A(u(t'j)) — o fKLY,U(kly;u(t']);l(t’mt))
g fKLY,U(kly; u(®h; /i(t_l))
Calculating a reasonable Monte Carlo standard error for the outlier detection data
object results is more difficult when employ MCMC sampling because of o2 under

weaker regularity conditions [22]. The above mentioned problem is solved by
preferring the following steps,
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F(t-1) Tr— Frry.v(klyu®;2)
S (/1 A ) Z} Tlr 1 g{fKLY‘U(kly’u(t,j)j(t—ﬂ) (21)

Consistent estimate of the desired asymptotic variance is given by,
SNENPE D R VR

P A = R (22)
Now the asymptotic lower bound is changed as,

(t th) (=D sa(tme) F¢e-
A )~z R (23)

Updating the Monte Carlo sample size

With the intention of obtaining computational efficiency and circumventing rigorous
inflation of the type 1 error rate of the outlier detection results, the preliminary sample
size for each MCEM iteration should be selected, in order to go through the
appending process occasionally. For MCEM iteration ¢, let m; g4, be the starting
Monte Carlo sample size and m;.,4 be the ending Monte Carlo sample size across
MCEM iterations by taking m 1 seare = Mg seqre aSSUMe that,

6.\2
mt+1}
Mey1,stare = MAX [Me seare, 6% (2o + Zﬁ)z/{ﬁé(z(t): Z(t_l))}z] (24)

The validity of equation (24) evidently based on the quality of the normal
approximation. A meager approximation largely results in an inflated type 1 error rate
for the lower bound. The outlier factor of the specific data object from x,, denoted as
OF(x,), is defined as,

OF (x0) = X1y OF (Q(X,)) (25)

Algorithm 1: Outlier Detection using AMCEM
Input: Dataset X and number of the outlier requested o
Output: Outlier results 0S

Compute w,.(y;) for (1 <i < m) by (8)

Initially set 0S = 0

fori =1tondo

Compute OF (x,) from (25) and obtain AS by (15)

End for

If 0 > UO then

AQ(Z(HD, Z(t))~N {AQ (Z(tﬂ), Z(Q),

0=U0
Else
Build 0S by searching for the o Objects with greatest OF (x;) in AS
End if
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Experimentation Results

In this section, conduct effectiveness and efficiency tests to analyze the performance
of the proposed method AMCEM. To test effectiveness, compare the result to the
existing methods Information-Theory- Based Step-by-Step (ITB-SS) and Information-
Theory-Based Single-Pass (ITB-SP) for synthetic data sets. For the efficiency
examination, carry out evaluations on synthetic data sets to demonstrate how running
time increases with the number of objects, the number of attributes and the number of
outliers. A huge number of public real data sets, most of them obtained from UCI
[23], are employed in the evaluation, representing an extensive range of domains in
science and the humanities. The data set used is the public, categorical “soybean data”
[23], with 47 objects and 35 attributes. This data contains a very small class of 10
objects. Since the data does not have explicitly identified outliers, it is natural to treat
the objects of the smallest class as “outliers.”The Area Under the Curve (AUC) [1],
[2] and significance test are used to measure the performance. The AUC results of
different methods and the characteristics of all test data sets, such as the numbers of
objects (#n), attributes (#m) and outliers (#0), and the upper bound on outliers (#UQ),
are summarized in the upper part of Table 2.The results reported in Table 2 warrant a
number of comments. These results are evidence of the importance of capturing
attribute weights; it is also compared with the existing methods ITB-SS, ITB-SP
without weighting and with weighting. Frequent Pattern Outlier Factor (FIB),
Common-neighbor-based distance (CNB).

Table 1: AUC Results of Tested Algorithms on the Real Dataset

DATA | 4y | amt |40 | #u0 | cne | pip | UNW | 178 | g™ | 178 | JUE | Avic
ss EM

Breast 1495 |11 |45 [125 099 |0° 0894 | 0991 |0898 | oF | 0995 | 0996

Credit | 413 117 |30 | 171 [o084 |0 [oo8  [ooes 099 | DY |oow4 | 0905

Diabet | 768 | o | 268 | 340 [086 |0 [o76  [075 o084 |95 |oes | 0945

Ecoli 336 (8 |9 |14 080 |29 |ose |09 [098 |J7 | 0904 | 0996

The time consumption is measured with increasing numbers of objects, attributes
and outliers. As Figure 1 indicates, the run times of AMCEM, ITB-SP, ITB-SS, and
FIB are almost linear functions of the number of objects. Proposed AMCEM have
lower and FIB has a higher increase rate than ITB-SP and ITB-SS. From the
theoretical analysis, time complexity of CNB [24] increases quadratically with the
number of objects, which is confirmed by the experimental data of Figure 1.
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Figure 1: Results of Efficiency Real Data Sets for Data Objects Vs Methods
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Figure 2: Results of Efficiency Real Data Sets for Data Attributes Vs Methods

For the attributes increasing test, Figure 2 shows that the run times of the AMCEM,
increase rapidly with the number of attributes, which closely matches the theory that
the time complexities of FIB [25] increase quadratically with the number of attributes.
Compared with the time increase of FIB, CNB, ITB-SS, ITB-SP, the increases for the
other methods are too small to be noticeable in Figure 2.



Ascent-Based Monte Carlo Expectation— Maximization Outlier Detection et.al. 8585

—o—CNB —#—FIB ITB-SP =¢=ITB-SS ==AMCEM
120 —

90 -

80
70
60
50
40
30
20
10

0 __Wm - ™
0.1 0.2 0.3 0.4 0.5
Percentage of the outliers

Time(secs)

Figure 3: Results of Efficiency Real Data Sets for Percentage of the Outliers Vs
Methods

Figure 3 illustrates the run time as a function of the percentage of “outliers” in the
data set each method is asked to search for. The time axis is in the log (10) scale. The
run times of CNB and FIB remain almost fixed with the “outlier percentage.” Those
of ITB-SP and ITB-SS methods increase linearly, and the proposed AMCEM
increases highly but remain much lower than those of other methods even for very
high “outlier percentages.”

The Normalized Root Mean Square Error (NRMSE) is defined as,

\/Mean[()’guess Yans)?]
std[yans]

Where ygu,.ess and yans are vectors whose elements are the estimated values and the

known answer values respectively, for all data objects in the cluster s. The mean and
the standard deviation are calculated over outlier data in the entire matrix.

NRMSE = (26)

NMSE
0.2

0.15

] l 11

ITB-SP ITB-SS  AMCEM

NMSE (%)
o
H

Figure 4: NMSE for Real Datasets Vs Methods
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In Figure 4 shows the performance comparison results of the NMSE for the
existing methods such as CNB, FIB, ITB-SP, ITB-SS and proposed AMCEM
algorithm, the NMSE value of the proposed AMCEM algorithm have less NMSE
when compare to existing methods.

Correct detection rate, which is the number of outliers accurately identified by
each approach as outliers:

No of outliers correctly detected as outlier

CDR =

(27)

Total no of outlier in dataset

False alarm rate, reflecting the number of normal points erroneously identified as
outliers

No of outliers incorrectly detected as outlier

FA =

(28)

Total no of normal points in dataset

——CNB —#—FIB ITB-SP  ==¢=|TB-SS === AMCEM
1

0.9
0.8 - N i —— e
07— em—m—e————
0.6
0.5
0.4
0.3
0.2
0.1
0

L

_ Vg

J

Detection rate(%o)

0.1 0.2 0.3 0.4 0.5 0.6
Thershold value

Figure 5: Detection Rate for Real Data Sets Vs Methods

In Figure 5 shows the performance comparison results of the outlier detection rate
(DR) for the existing methods such as CNB, FIB, ITB-SP, ITB-SS and proposed
AMCEM algorithm between the threshold value of the KLD function for each
attribute. Detection Rate (DR) value of the proposed AMCEM algorithm have more
DR when compare to existing methods.
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Figure 6: False Alarm Rate for Real Datasets Vs Methods

In Figure 6 shows the performance comparison results of the False Alarm
Rate(FAR) for the existing methods such as CNB, FIB, ITB-SP, ITB-SS and
proposed AMCEM algorithm among the threshold value of the KLD function for each
attribute. False Alarm Rate (FAR) value of the proposed AMCEM algorithm have
less FAR when compare to existing methods.

Conclusion and Future Work

Outlier Detection techniques for categorical datasets have employed using hybrid
Expectation Maximization methods which combines the procedure of the Ascent
Monte Carlo method so it is named as Ascent-Based Monte Carlo Expectation—
Maximization(AMCEM) to identify those points containing irregular patterns. The
proposed weighted KLD measure the attribute value with maximum likelihood of
outlier candidates, while the efficiency of the algorithms results from the outlier factor
function. The outlier factor of an object is solely determined by the object and its
updating does not require estimating the data distribution. The proposed method is
specifically applied for UCI machine learning repository. The proposed AMCEM also
estimate an ascent property for the number of outliers and an anomaly candidate set.
This bound, acquired under an extremely practical hypothesis on the number of
feasible outliers, permits to additionally reduce the search cost. Future research
includes additionally enhancing the speed and extending for distributed datasets. In
this paper, the datasets on which the proposed approach is evaluated are of integer or
real type. As a result, in future it can be extended to work other type datasets.
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