
International Journal of Applied Engineering Research

ISSN 0973-4562 Volume 10, Number 4 (2015) pp. 9947-9956

© Research India Publications

http://www.ripublication.com

SSL-Heartbleed Bug

MythiliBoopathi

Vellore Institute of Technology, Vellore

nmythili@vit.ac.in

Mohit Panwar

Vellore Institute of Technology, Vellore

Mohitpanwar10@yahoo.com

Mamatva Goel

Vellore Institute of Technology, Vellore

Mamatva@Yahoo.com

Abstract

This paper describes the Heartbeat Extension for the Transport Layer Security

(TLS) and Datagram Transport Layer Security (DTLS) protocols and

heatbleed vulnerability in later versions of OpenSSL(Secure Socket Layer).

Keywords: TLS, HeartBeat Extension, HeartBleed, openSSL, Buffer

Overflow, Security.

Introduction

The Secure Sockets Layer (SSL) is a specification used to protect sensitive data that

passes from computer to computer on the internet. An internet user actually uses this

technology all the time. When using google.com, one can use http:\\google.com, or

https:\\google.com. The https:\\ signifies that the communication between client and

server is secure and no one else can see what is being sent back and forth (another

way one can tell that a site is using it is by seeing a lock icon right beside the url of

the website you visit). This specification doesn’t have a problem but a mistake has

9948 MythiliBoopathi

been found in an implementation. Open SSL’s implementation is actually open source

which means source code is available for everyone in the world to read. This bug

actually affects any web server that uses this Open SSL.

 The primary goal of the TLS Protocol is to provide privacy and data integrity

between two communicating applications. The protocol is composed of two layers:

the TLS Record Protocol and the TLS Handshake Protocol. TLS is based on reliable

protocols, but there is not necessarily a feature available to keep the connection alive

without continuous data transfer.

 The Heartbeat Extension provides a new protocol for TLS/DTLS allowing to keep

alive the connection without performing a renegotiation.

Heartbeat Extension

The user can use the new HeartbeatRequest message, which has to be answered by the

peer with a HeartbeartResponse immediately.

 The support of Heartbeats is indicated with Hello Extensions. A peer cannot only

indicate that its implementation supports Heartbeats, it can also choose whether it is

willing to receive HeartbeatRequest messages and respond with HeartbeatResponse

messages or only willing to send Heartbeat Request messages. The former is indicated

by using peer_allowed_to_send as the HeartbeatMode; the latter is indicated by using

peer_not_allowed_to_send as the Heartbeat mode. This decision can be changed with

every renegotiation. Heartbeat Request messages must not be sent to a peer indicating

peer_not_allowed_to_send. If an endpoint that has indicated peer_not_allowed_to_

send receives a Heartbeat Request message, the endpoint should drop the message

silently and may send an unexpected_message Alert message.

 The format of the Heartbeat Hello Extension is defined by:

 enum {

 peer_allowed_to_send,

 peer_not_allowed_to_send,

 } HeartbeatMode;

 struct {

 HeartbeatMode mode;

 } HeartbeatExtension;

 Upon reception of an unknown mode, an error Alert message using

illegal_parameter as its AlertDescription must be sent in response.

SSL-Heartbleed Bug 9949

9949

Heartbeat Protocol

The Heartbeat protocol is a new protocol running on top of the Record Layer. The

protocol itself consists of two message types:

 HeartbeatRequest and HeartbeatResponse.

 enum {

 heartbeat_request,

 heartbeat_response,

 } HeartbeatMessageType;

 A Heartbeat Request message can arrive almost at any time during the lifetime of a

connection. Whenever a Heartbeat Request message is received, it should be

answered with a corresponding HeartbeatResponse message.

 However, a HeartbeatRequest message should not be sent during handshakes. If a

handshake is initiated while a HeartbeatRequest is still in flight, the sending peer must

stop the TLS retransmission timer for it. The receiving peer should discard the

message silently, if it arrives during the handshake. In case of DTLS,

HeartbeatRequest messages from older epochs should be discarded.

 There must not be more than one HeartbeatRequest message in flight at a time. A

Heartbeat Request message is considered to be in flight until the corresponding

HeartbeatResponse message is received, or until the TLS retransmit timer expires.

 When using an unreliable transport protocol like the Datagram Congestion Control

Protocol (DCCP) or UDP, HeartbeatRequest messages must be retransmitted using

the simple timeout and retransmission scheme DTLS uses for flights. In particular,

after a number of retransmissions without receiving a corresponding

HeartbeatResponse message having the expected payload, the DTLS connection

should be terminated. The threshold used for this should be the same as for DTLS

handshake messages. Please note that after the timer supervising a HeartbeatRequest

messages expires, this message is no longer considered in flight. Therefore, the

Heartbeat Request message is eligible for retransmission. The retransmission scheme,

in combination with the restriction that only one HeartbeatRequest is allowed to be in

flight, ensures that congestion control is handled appropriately in case of the transport

protocol not providing one, like in the case of DTLS over UDP.

 When using a reliable transport protocol like the Stream Control Transmission

Protocol (SCTP) or TCP, HeartbeatRequest messages only need to be sent once. The

transport layer will handle retransmissions. If no corresponding HeartbeatResponse

message has been received after some amount of time, the DTLS/TLS connection

may be terminated by the application that initiated the sending of the

HeartbeatRequest message.

9950 MythiliBoopathi

Heartbeat Request and Response Messages

The Heartbeat protocol messages consist of their type and an arbitrary payload and

padding.

 struct {

 HeartbeatMessageType type;

 uint16 payload_length;

 opaque payload[HeartbeatMessage.payload_length];

 opaque padding[padding_length];

 } HeartbeatMessage;

 The total length of a HeartbeatMessage must not exceed 2^14 or max_fragment_

length when negotiated.

 Type: The message type, either heartbeat_request or

 heartbeat_response.

 Payload_length: The length of the payload.

 Payload: The payload consists of arbitrary content.

 Padding: The padding is random content that must be ignored by the receiver. The

length of a HeartbeatMessage is TLSPlaintext.length for TLS and

DTLSPlaintext.length for DTLS. Furthermore, the length of the type field is 1 byte,

and the length of the payload_length is 2. Therefore, the padding_length is

TLSPlaintext.length - payload_length - 3 for TLS and DTLSPlaintext.length -

payload_length - 3 for DTLS. The padding_length MUST be at least 16.

 The sender of a HeartbeatMessage MUST use a random padding of at least 16

bytes. The padding of a received HeartbeatMessage message MUST be ignored.

 If the payload_length of a received HeartbeatMessage is too large, the received

HeartbeatMessage must be discarded silently.

 When a HeartbeatRequest message is received and sending a

 HeartbeatResponse is not prohibited as described elsewhere in this document, the

receiver must send a corresponding HeartbeatResponse message carrying an exact

copy of the payload of the received HeartbeatRequest.

 If a received HeartbeatResponse message does not contain the expected payload,

the message must be discarded silently. If it does contain the expected payload, the

retransmission timer must be stopped.

SSL-Heartbleed Bug 9951

9951

Use Case

Each endpoint sends HeartbeatRequest messages at a rate and with the padding

required for the particular use case. The endpoint should not expect its peer to send

HeartbeatRequests. The directions are independent.

 Liveliness Check: Sending HeartbeatRequest messages allows the sender to make

sure that it can reach the peer and the peer is alive. Even in the case of TLS/TCP, this

allows a check at a much higher rate than the TCP keep-alive feature would allow.

Besides making sure that the peer is still reachable, sending HeartbeatRequest

messages refresh the NAT state of all involved NATs.

 HeartbeatRequest messages should only be sent after an idle period that is at least

multiple round-trip times long. This idle period should be configurable up to a period

of multiple minutes and down to a period of one second. A default value for the idle

period should be configurable, but it should also be tuneable on a per-peer basis.

Heartbleed Bug

The type of bug that Heart Bleed is categorized as is called a buffer overflow, where

more data is read from memory then what should have been. Buffer overflow bugs are

actually pretty common and have been around for more than 25 years. Software

companies are constantly fixing buffer overflow bugs and they can be pretty easy to

miss when reviewing code.

9952 MythiliBoopathi

Example how the Heartbleed bug works:

Client1: Server, are you still there? If so, reply "POTATO" (6 letters). #the server's

memory is shown.

Server: POTATO # server shows the same memory content but POTATO is

highlighted.

Client1: Server, are you still there? If so, reply "BIRD" (4 letters). #The server's

memory is shown.

Server: BIRD # Server shows the same memory content but now with BIRD

highlighted.

Client1: Server, are you still there? If so, reply "HAT" (500 letters). # The server's

memory is shown.

Server: “HAT. Client2 requests the "missed connections" page. Administrator wants

to set server's key to "14835038534". Client3 wants pages about "snakes but not too

long". Client4 wants to change account password to ‘CoHoBaSt’. “ # Server shows

the same memory content, highlighting the first 500 letters of the memory beginning

at HAT.

Client1 writes this all details down.

SSL-Heartbleed Bug 9953

9953

Figure 1: Example demonstration of the attack

 The TLS and DTLS implementations in OpenSSL 1.0.1 before 1.0.1g do not

properly handle Heartbeat Extension packets, which allows remote attackers to obtain

sensitive information from process memory via crafted packets that trigger a buffer

over-read, as demonstrated by reading private keys, related to d1_both.c and t1_lib.c,

aka the Heartbleed bug.

In order to coordinate recovery from this bug I have classified the compromised

secrets to three categories:

1) primary key data- Leaked secret keys allows the attacker to decrypt any past

and future traffic to the protected services and to impersonate the service at

will. Any protection given by the encryption and the signatures in the X.509

certificates can be bypassed. Recovery from this leak requires patching the

vulnerability, revocation of the compromised keys and reissuing and

redistributing new keys. Even doing all this will still leave any traffic

intercepted by the attacker in the past still vulnerable to decryption. All this

has to be done by the owners of the services.

2) secondary key data – This includes the user credentials (user names and

passwords) used in the vulnerable services. Recovery from this leaks requires

owners of the service first to restore trust to the service according to steps

9954 MythiliBoopathi

described above. After this users can start changing their passwords and

possible encryption keys according to the instructions from the owners of the

services that have been compromised. All session keys and session cookies

should be invalidated and considered compromised.

3) protected data . This is the actual content handled by the vulnerable services. It

may be personal or financial details, private communication such as emails or

instant messages, documents or anything seen worth protecting by encryption.

Only owners of the services will be able to estimate the likelihood what has

been leaked and they should notify their users accordingly. Most important

thing is to restore trust to the primary and secondary key material as described

above.

Affected Devices and Softwares

 OpenSSL 1.0.1 through 1.0.1f (inclusive) are vulnerable

 Debian Wheezy (stable), OpenSSL 1.0.1e-2+deb7u4

 Ubuntu 12.04.4 LTS, OpenSSL 1.0.1-4ubuntu5.11

 CentOS 6.5, OpenSSL 1.0.1e-15

 Fedora 18, OpenSSL 1.0.1e-4

 OpenBSD 5.3 (OpenSSL 1.0.1c 10 May 2012) and 5.4 (OpenSSL 1.0.1c 10

May 2012)

 FreeBSD 10.0 - OpenSSL 1.0.1e 11 Feb 2013

 OpenSUSE 12.2 (OpenSSL 1.0.1c)

 Android 4.1.1 (OpenSSL 1.0.1c)

 3.1.10 Ruby (when compiled with OpenSSL)

Limitations of the Attack

 IDS/IPS can detect the attack but cannot block the attack unless

heartbeatrequests are blocked altogether.

 Attacker can only obtain 64k of OpenSSL memory.

Mitigation of The Attack

 Upgrade the OpenSSL version to 1.0.1g

 Request revocation of the current SSL certificate to your software vendor.

SSL-Heartbleed Bug 9955

9955

 Regenerate the private key.

 Use two-factor authentication

 Recompile OpenSSL package in Ruby with the handshake removed from the

code by compile time option -DOPENSSL_NO_HEARTBEATS

 Perfect Forward Secrecy- When used in the memo Perfect Forward Secrecy

(PFS) refers to the notion that compromise of a single key will permit access

to only data protected by a single key. For PFS to exist the key used to protect

transmission of data MUST NOT be used to derive any additional keys, and if

the key used to protect transmission of data was derived from some other

keying material, that material MUST NOT be used to derive any more keys.

We need to disable compression at the HTTP level. In the apache

configuration file(httpd.conf) edit the following section

 <Location />

 SetEnvIfExpr "%{HTTPS} == 'on'" no-gzip

 </Location>

Summary

Information Security over Internet is the most vital component in information security

because it is responsible for securing all information passed through Internet nodes.

SSL is the secure communications protocol of choice for a large part of the Internet

community. The Transport Layer Security (TLS) protocol was released to create a

standard for private communications. The protocol "allows client/server applications

to communicate in a way that is designed to prevent eavesdropping, tampering or

message forgery." The Heartbeat Extension provides a new protocol for TLS/DTLS

allowing to keep alive the connection without performing a renegotiation.

 In the Heartbeat Extension, the client sends a request to the server comprising of a

echo message and the size of the echo message, to keep-alive the connection between

the client and the server. Then the server sends a response comprising of the message

of length specified in the request from client.

 The attacker(authenticated client) can send a request forged with an echo message

and size larger than the echo message. The client does not verify the size specified in

the request against the message actual size and sends a response with sensitive

information in the current memory.

 This probably can lead to the leak of the private key using which attacker can

decipher all the traffic between the client and the server.

9956 MythiliBoopathi

Conclusion

The SSL/TLS handshake protocol has a vulnerability and worrisome feature,

especially in versions which have been recently revised. Heartbeat Extension must be

irradiated from the OpenSSL or the above mentioned solutions should be obliged for

the secure connection to server. Furthermore, these are not universal weaknesses:

different implementations may or may not be vulnerable. Nonetheless, if the

specification does not explicitly warn of an attack (or prevent it directly), it seems

reasonable to over destructive criticism. SSL and TLS are evoked as not effective

methods of securing sensitive communications, as the aggregate of larger amounts of

information should be properly secured.

References

[1] CVE-2014-0160

[2] "THE SSL PROTOCOL". Netscape Corporation. 2007. Archived from the

original on 14 June 1997.

[3] OpenSSL Security Advisory (published 7th of April 2014, ~17:30 UTC)

[4] HEARTBLEED.COM

[5] Yan Zh~Why the Web Needs Perfect Forward Secrecy

[6] https://www.eff.org/deeplinks/2014/04/why-web-needs-perfect-forward-

secrecy

[7] https://www.ietf.org/rfc/rfc2246.txt

[8] http://www.ietf.org/rfc/rfc2409.txt

[9] David Wagner~Analysis of the SSL 3.0 protocol

[10] University of California, Berkeley

[11] https://www.schneier.com/paper-ssl-revised.pdf

[12] Demonstration of CVE-2014-0160 by Jared Stafford

(jspenguin@jspenguin.org)

[13] A. Freier, P. Karlton, P. Kocher (August 2011). "The Secure Sockets

Layer (SSL) Protocol Version 3.0".

[14] [RFC6066].

