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Abstract

This Higher siding mode control problem is to stabilize the auxiliary system
stable to the origin in a finite time. The purpose of switching control law is to
derive the non-linear plant state trajectory on to a pre specified .The Sliding
mode control is used to wheel slip control for vehicle motion. It is design to
trajectory move towards switching continuous. A non-linear control strategy
based on sliding mode, which is a standard approach to gear the parametric &
modeling uncertainties of a non-linear system is chosen for slip control. We
introduce the Robust Fuller’s Problem that is a robust generalization of the
Fuller’s problem, by solving robust fuller problem, possible to obtain feedback
laws that are higher order sliding mode algorithm of generic order. The Goal of
this paper is steer the car from a given position to the sliding surface. The
connection between the design of high order sliding modes algorithms and the
solution to some optimal control problems for a perturbed chain of integrators
has been investigated in this paper. Reaching mode to state trajectory moves
from the initial condition towards the switching surface. In an additional provide
optimal finite time reaching of the sliding manifold.

Keywords — Chattering effect, Higher Order Sliding Mode Control, Holonomic
car control, Sliding mode.

I INTRODUCTION

Sliding mode controllers are powerful tools to control uncertain systems. They are
able to achieve finite time reaching and exact keeping of a suitably chosen sliding
manifold in the state space by means of a discontinuous control. The choice of the
sliding manifold is strictly related to the control objective to be attained. In standard
formulations, the controlled system state is first steered to the sliding manifold in
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finite time, and then maintained confined to the manifold itself, giving rise to the so-
called sliding mode, so that the equilibrium point corresponding to the fulfillment of
the control objective is made asymptotically stable.

In order to overcome the chattering problem in the sliding mode higher order
sliding mode (HOSM) control was introduced in PhD dissertation the of Arie Levant
(Levantovsky). Levant systematized the second-order sliding mode algorithms and
obtained estimates of their accuracy.

The system’s trajectory is steered to the sliding manifold by the designed
higher order sliding mode controller in finite time. Higher Order Sliding Mode
(HOSM) controllers are effective in extending the good properties of standard sliding
mode controllers to systems with higher relative degree, and can be used also to
reduce the chattering effect.

1. SLIDING MODE CONTROL

Alter the dynamics of non-linear system. This is a form of variable structure control
and it is a non-linear control method that alters the dynamics of a non-linear system.
This implementation is high-frequency switching control laws. It is an electro
mechanically system for example pendulum, antennas and robotics manipulators.
Sliding mode control is robust with respect to matched internal & external
disturbances. The Sliding accuracy is proportional to the square of the switching time
del
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Fig. 1. Sliding mode controller block diagram

IIl.  SLIDING SURFACES

This section investigates Variable Structure Control (VSC) as a high-speed switched
feedback control resulting in sliding mode. The purpose of the switching control law
is to drive the nonlinear plant’s state trajectory onto a pre specified (user-chosen)
surface in the state space and to maintain the state of the plant trajectory on this
surface for subsequent time. The surface is called as a switching surface.
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When the state of the plant trajectory is “above” the surface and a feedback
path gain is one form to the different form, if the trajectory drops “below” the surface.
This surface is defining the rule of proper switching control and this surface is also
called as a sliding surface (sliding manifold). In a perfectly once intercept the
switched control maintains the plant’s state trajectory on the surface for all subsequent
time and the plant’s state trajectory slides along the surface. The most important task
is to design a switched control that will drive the plant state to the switching surface
and maintain it on the surface upon interception. A Lyapunov approach is used to
characterize this task. Lyapunov method is usually used to determine the stability
properties of an equilibrium point without solving the equation of state. Let V (x) be a
continuously differentiable scalar function defined in a domain D that contains the
origin. A function of V(x) is said to be positive definite if VV (0) = 0 and if V(x) > 0. It
is said to be negative definite if VV (0) = 0 and if V(x) < 0. Lyapunov method satisfies
that the function is positive definite when it is negative and the function is negative
definite when it is positive. In this way the stability is established.

A generalized Lyapunov function that characterized the motion of the state
trajectory to the sliding surface is defined in terms of the surface and each chosen
switched control structure is the “gains”, so that the derivative of this Lyapunov
function is negative definite and thus guaranteeing motion of the state trajectory to the
surface. After a proper design of the surface is a switched controller is constructed so
that the tangent vectors of the state trajectory point towards the surface such that the
state is driven to and maintained on the sliding surface and such controller result is
discontinuous closed-loop systems. Let a single input nonlinear system be defined as

X(N) = F (%, 0) + DGO U oo, 1)

Here x (t) is the state vector u (t) is the control input (in our case braking
torque or pressure on the pedal and x is the output state). The other states in the state
vector are the higher order derivatives of x up to the (n-1)th order. The superscript n
and x(t) shows the order of differentiation f( x ,t) and b( x ,t) are generally nonlinear
functions of time and states. The function f( x ) is not exactly known but the extent of
the imprecision on f( x ) is upper bounded by a known continuous function of x ;
similarly, the control gain b ( x ) is not exactly known but is of known sign and is
bounded by known continuous functions of x and the control problem is to get the
state x to track a specific time varying state x d in the presence of model imprecision
on f(x) and b(x). A time varying surface s (t) is defined in the state space R (n) by
equating the variable s(x; t) defined below to zero.

S(X; t) = (d/dt + 5)n-1 XTI(L) eevvvrriieierieeinnn, @)

Here, o is a strict positive constant taken to be the bandwidth of the system and
is the error in the output state where x d(t) is the desired state. The problem of
tracking the (n-1)th dimensional vector x d (t) can be replaced by a first-order
stabilization problem in s. s(x; t) verifying [2] is referred to as a sliding surface, and
the systems behavior once on the surface is called sliding mode or sliding control and
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From (2) the expression of s contains we only need to differentiate s once for the input
u to appear. Furthermore, bounds on scan be directly translated into bounds on the
tracking error vector x and therefore the scalar s represents a true measure of tracking
performance.

The set remains in the set for all future and past times. Furthermore (4) also
implies that some disturbances or dynamic uncertainties can be tolerated while still
keeping the surface an invariant set.

L
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Fig. 2. Graphical interpretations of equations (2) and (4) (n=2)

Finally satisfying guarantees that if x(t=0) is actually off xd(t=0), the surface
S(t) will be reached in a finite time smaller than the corresponding transformations of
performance measures assuming x (0) =0 is

vi>0,[s(t)|<o=>V t>0,|x0(>)(t)] <2 d)iei=0,....,n-1 3)

Where t=¢/d (n-1).In this way, an nth-order tracking problem can be replaced
by a 1st-order stabilization problem. The simplified, 1st-order problem of keeping the
scalar s at zero can now be achieved by choosing the control law u of (1) such that
outside of S(t)

(12) (dAt) s2<-m|S| cevvnverinieaninennn. 4)

Where 1 is a strictly positive constant and States that the squared “distance” to
the surface, as measured by S2, decreases along all system trajectories. Thus it
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constrains trajectories to the point towards the surface s (t). In particular, once on the
surface the system trajectories remain on the surface. In other words, satisfying the
sliding condition makes the surface an invariant set (a set for which any trajectory
starting from an initial condition with in |s(t-0)| / Assume for instance that
s(t=0)>0, and let t reach be the time required to hit the surface s=0.

Integrating (4) between t=0 and t reach leads to
0-S (t=0)=S(t=t reach)-S(t=0)-n(t reach-0) ............ (5)
Which implies that?
treach <S(t=0)Mm . (6)
The similar result starting with s (t=0)>0 can be obtained as

t reach fl S(tZO)l/T] ......................... (7)

Starting from any initial condition the state trajectory reaches the time-varying
surface in a finite time smaller than s(t = 0) /n and then slides along the surface
towards x d ( t) exponentially with a time-constant equal to 1 / A. In summary, the
idea is to use a well-behaved function of the tracking error s and then select the
feedback control law u in 1 such that s remains characteristic of a closed-loop system
and presence of model imprecision

IV.  CHATTERING REDUCTION

An ideal sliding mode exists only when the state trajectory x(t) of the controlled plant
agrees with the desired trajectory at every t for some t1 This may require infinitely
fast switching. In the real system a switched controller has imperfections which limit
switching to a finite frequency. The typical point of oscillates within a neighborhood
of the switching surface. This oscillation is called as a chattering and illustrated on
figure 3.



9676 Asha.R

Xa(®)

Fig. 3. Chattering as a result of imperfect control switching

Control laws which satisfying sliding condition and lead to “perfect” tracking
in the face of model uncertainty are discontinuous across the surface S(t) thus causing
control chattering. The chattering is undesirable since it involves extremely high
control activity and furthermore may excite high-frequency dynamics neglected in the
course of modeling. This chattering must be reduced (eliminated) for the controller to
perform properly.

This approach leads to tracking within a guaranteed precision (rather than
perfect tracking) and more generally guarantees that for all trajectories starting inside
B(t=0)

P10, | X0 (1) | <@ M) €i=0,....n1.iii (8)

V. LEVANT CONTROLLER

Two other major contributions by Levant: arbitrary-order HOSM control in 2001 and
arbitrary-order asymptotically optimal robust exact differentiators in allowed the
design and the implementation of universal arbitrary-order HOSM output-feedback
controller. However the design of new types of HOSM controllers still remained
complicated. Thus the recently generalized algorithms for designing universal
arbitrary-order HOSM controllers have been developed based on the homogeneous
and quasi-homogeneous properties of HOSM dynamic. The aim of Special Issue is to
report the current state of art of modern HOSM control. The Higher order sliding
modes (HOSM) which generalize the sliding mode notion remove that restriction
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Fig. 4. Kinematic model
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Fig. 5. 3-Sliding trajectory

Fig. 6. Steering angle: 3- Sliding
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Fig. 7. Steering angle: 4-Sliding

VI. NONHOLONOMIC SYSTEM

A nonholonomic system is a physics and mathematics system whose state depends on
the path taken to achieve it and such a system is described by a set of parameters
subject to differential constraints such that when the system evolves along a path in its
parameter space (the parameters varying continuously in values) but finally returns to
the original set of values at the start of the path system itself may not have returned its
original state. Exactly a nonholonomic system also called an nonholonomic system is
one in which there is a continuous closed circuit of the governing parameters by
which the system may be transformed from any given state to any other state because
the final state of the system depends on the intermediate values of its trajectory
through parameter space the system cannot be represented by a conservative potential
function as can for example the inverse square law of the gravitational force this is an
example of a holonomic system: path integrals in the system depend only upon the
initial and final states of the system (positions in the potential) completely
independent of the trajectory of transition between those state. The system is therefore
said to be integrable while the nonholonomic system is said to be non integrable.
When a path integral is computed in a nonholonomic system the value represents a
deviation within some range of admissible values and this deviation is said to be a
homonymy produced by the specific path under consideration.

VII.  KINEMATIC CAR

It is known that the model of a kinematic car with two inputs, which are the
longitudinal velocity and the steering angle (or its time derivative), is differentially
flat Since time-scaling is involved in the sequel, we precise that the time in this
system is denoted by t and x denotes the time derivative of the function x(t) such that t
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= 1.The motion planning can be done off- line prior to the motion and the time-scaling
does not need the redesign of the reference. It follows that more involved method scan
be also applied.

Fig. 8. Notations of the kinematic model

VIIl. SIMULATION RESULTS
Applied nonholonomic car motion planning for testing performance of high sliding
mode system is described by

X=9 COS ¢, y= 9sin ¢, 1= (9/1)tanb, 61=u

Where

(x, y) are the Cartesian coordinates of the rear-axle middle point, ¢ is the
orientation angle, is the steering angle and u is the control variable V=10, L=5. Goal
is to steer the car from a given initial position

(x0, y0, 0, 0) = (0, 0, 0, 0) to the trajectory

y = 10 sin(x/20) +5

Sliding Variable o = y-10sin(x/20)-5

Under assumption of small axis/relation degree is 3,

Lm=LM=20,C5

Simulations have been carried out in the time horizon 0 to 20 second and the
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controller have been enabled only at t = 0:5s (in the first half- second are set to zero)
in order to better compare the results with. Results are summarize in Fig.1 dotted lines
are relative to UL the car trajectory obtained with the three controllers is shown
together with the reference trajectory y = 10sin(x=20) +5. In the auxiliary system state
y =10 sin(x/20) +5 is plotted against time for all the controllers. Finally the dynamics
of the steering angle 6 is reported. From F we see that U, performs very well in terms
of reaching time; in this respect it consistently outperforms the other two controllers
.UL produces quite effective steering angles while avoiding dangerous vibration the
author obtained a reaching time similar to that of this experiment by using only 1 =
1. This also shows that our bounds on C and Km are very conservative. In our setting
using f2 = 1 corresponds to C < Km (feasibility condition). We have made additional
simulations by fixing t= 1 and trying several values of =1 in the interval [1:4]. UOR
still obtains the best reaching times. In the fig, x-axis time varying from (0 to 20sec)
and y axis velocity in time. The proposed controllers have simple rules to select the
design parameters and exhibit state of the art performance. Levant controller produces
quite effective steering angles while avoiding dangerous vibration and slower than the
process.
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Fig. 9. Simulated Response For HOSM
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Fig. 10. Simulated Response for Nonholonomic Car Control

IX.  CONCLUSION

The connection between the design of high order sliding modes algorithms and the
solution to some optimal control problems for a general family of HOSM controllers
is obtained which guarantees optimal reaching of the sliding manifold with respect to
a suitable optimality index. This family includes several already known HOSM
control algorithms A control derivative of some order being treated as a new control a
higher order controller can be applied to providing for the prescribed control
smoothness and removing the chattering. Special cases namely second and third order
algorithms are analyzed in the paper. The design is to ensure that the controller will
obtain closed loop stability. The proposed controllers have simple rules to select the
design parameters and exhibit state of the art performances. Levant controller
produces quite effective steering angles, while avoiding dangerous vibration and
slower than the process.
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