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Abstract 

 
This Higher siding mode control problem is to stabilize the auxiliary system 

stable to the origin in a finite time. The purpose of switching control law is to 

derive the non-linear plant state trajectory on to a pre specified .The Sliding 

mode control is used to wheel slip control for vehicle motion. It is design to 

trajectory move towards switching continuous. A non-linear control strategy 

based on sliding mode, which is a standard approach to gear the parametric & 

modeling uncertainties of a non-linear system is chosen for slip control. We 

introduce the Robust Fuller’s Problem that is a robust generalization of the 

Fuller’s problem, by solving robust fuller problem, possible to obtain feedback 

laws that are higher order sliding mode algorithm of generic order. The Goal of 

this paper is steer the car from a given position to the sliding surface. The 

connection between the design of high order sliding modes algorithms and the 

solution to some optimal control problems for a perturbed chain of integrators 

has been investigated in this paper. Reaching mode to state trajectory moves 

from the initial condition towards the switching surface. In an additional provide 

optimal finite time reaching of the sliding manifold.  
  

Keywords — Chattering effect, Higher Order Sliding Mode Control, Holonomic 

car control, Sliding mode. 
 

 

I. INTRODUCTION 

Sliding mode controllers are powerful tools to control uncertain systems. They are 

able to achieve finite time reaching and exact keeping of a suitably chosen sliding 

manifold in the state space by means of a discontinuous control. The choice of the 

sliding manifold is strictly related to the control objective to be attained. In standard 

formulations, the controlled system state is first steered to the sliding manifold in 
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finite time, and then maintained confined to the manifold itself, giving rise to the so-

called sliding mode, so that the equilibrium point corresponding to the fulfillment of 

the control objective is made asymptotically stable.  

 In order to overcome the chattering problem in the sliding mode higher order 

sliding mode (HOSM) control was introduced in PhD dissertation the of Arie Levant 

(Levantovsky). Levant systematized the second-order sliding mode algorithms and 

obtained estimates of their accuracy. 

 The system’s trajectory is steered to the sliding manifold by the designed 

higher order sliding mode controller in finite time. Higher Order Sliding Mode 

(HOSM) controllers are effective in extending the good properties of standard sliding 

mode controllers to systems with higher relative degree, and can be used also to 

reduce the chattering effect. 

 

 

II. SLIDING MODE CONTROL  

Alter the dynamics of non-linear system. This is a form of variable structure control 

and it is a non-linear control method that alters the dynamics of a non-linear system. 

This implementation is high-frequency switching control laws. It is an electro 

mechanically system for example pendulum, antennas and robotics manipulators. 

Sliding mode control is robust with respect to matched internal & external 

disturbances. The Sliding accuracy is proportional to the square of the switching time 

del 

ay 

.  

 

Fig. 1. Sliding mode controller block diagram 

 

 

III. SLIDING SURFACES  

This section investigates Variable Structure Control (VSC) as a high-speed switched 

feedback control resulting in sliding mode. The purpose of the switching control law 

is to drive the nonlinear plant’s state trajectory onto a pre specified (user-chosen) 

surface in the state space and to maintain the state of the plant trajectory on this 

surface for subsequent time. The surface is called as a switching surface. 
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 When the state of the plant trajectory is ―above‖ the surface and a feedback 

path gain is one form to the different form, if the trajectory drops ―below‖ the surface. 

This surface is defining the rule of proper switching control and this surface is also 

called as a sliding surface (sliding manifold). In a perfectly once intercept the 

switched control maintains the plant’s state trajectory on the surface for all subsequent 

time and the plant’s state trajectory slides along the surface. The most important task 

is to design a switched control that will drive the plant state to the switching surface 

and maintain it on the surface upon interception. A Lyapunov approach is used to 

characterize this task. Lyapunov method is usually used to determine the stability 

properties of an equilibrium point without solving the equation of state. Let V (x) be a 

continuously differentiable scalar function defined in a domain D that contains the 

origin. A function of V(x) is said to be positive definite if V (0) = 0 and if V(x) > 0. It 

is said to be negative definite if V (0) = 0 and if V(x) < 0. Lyapunov method satisfies 

that the function is positive definite when it is negative and the function is negative 

definite when it is positive. In this way the stability is established.   

 A generalized Lyapunov function that characterized the motion of the state 

trajectory to the sliding surface is defined in terms of the surface and each chosen 

switched control structure is the ―gains", so that the derivative of this Lyapunov 

function is negative definite and thus guaranteeing motion of the state trajectory to the 

surface. After a proper design of the surface is a switched controller is constructed so 

that the tangent vectors of the state trajectory point towards the surface such that the 

state is driven to and maintained on the sliding surface and such controller result is 

discontinuous closed-loop systems. Let a single input nonlinear system be defined as  

 

 x(n) = f (x, t) + b(x, t) u(t) …………………..   (1)  

 

 Here x (t) is the state vector u (t) is the control input (in our case braking 

torque or pressure on the pedal and x is the output state). The other states in the state 

vector are the higher order derivatives of x up to the (n-1)th order. The superscript n 

and x(t) shows the order of differentiation f( x ,t) and b( x ,t) are generally nonlinear 

functions of time and states. The function f( x ) is not exactly known but the extent of 

the imprecision on f( x ) is upper bounded by a known continuous function of x ; 

similarly, the control gain b ( x ) is not exactly known but is of known sign and is 

bounded by known continuous functions of x and the control problem is to get the 

state x to track a specific time varying state x d in the presence of model imprecision 

on f(x) and b(x). A time varying surface s (t) is defined in the state space R (n) by 

equating the variable s(x; t) defined below to zero.  

 

 s(x; t) = (d/dt + δ - (t) ...........................    (2)  

 

 Here, δ is a strict positive constant taken to be the bandwidth of the system and 

is the error in the output state where x d(t) is the desired state. The problem of 

tracking the (n-1)th dimensional vector x d (t) can be replaced by a first-order 

stabilization problem in s. s(x; t ) verifying [2] is referred to as a sliding surface, and 

the systems behavior once on the surface is called sliding mode or sliding control and 
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From (2) the expression of s contains we only need to differentiate s once for the input 

u to appear. Furthermore, bounds on scan be directly translated into bounds on the 

tracking error vector x and therefore the scalar s represents a true measure of tracking 

performance.  

 The set remains in the set for all future and past times. Furthermore (4) also 

implies that some disturbances or dynamic uncertainties can be tolerated while still 

keeping the surface an invariant set.  

 
Fig. 2. Graphical interpretations of equations (2) and (4) (n=2) 

 

 

 Finally satisfying guarantees that if x(t=0) is actually off xd(t=0), the surface 

S(t) will be reached in a finite time smaller than the corresponding transformations of 

performance measures assuming x (o) =0 is 

 

 ∀ t ≥ 0 , |s(t)| ≤ φ => ∀  t ≥ (i)(t)| ≤(2 δ)i ε i=0,….,n-1   (3)  

 

 Where τ=φ/δ (n-1).In this way, an nth-order tracking problem can be replaced 

by a 1st-order stabilization problem. The simplified, 1st-order problem of keeping the 

scalar s at zero can now be achieved by choosing the control law u of (1) such that 

outside of S(t)    

 

 (1⁄2) (d ⁄dt) s2 ≤ - η|s| ………………….     (4) 

 

 Where η is a strictly positive constant and States that the squared ―distance‖ to 

the surface, as measured by S2, decreases along all system trajectories. Thus it 
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constrains trajectories to the point towards the surface s (t). In particular, once on the 

surface the system trajectories remain on the surface. In other words, satisfying the 

sliding condition makes the surface an invariant set (a set for which any trajectory 

starting from an initial condition with in │s(t-0)│ ⁄η Assume for instance that 

s(t=0)>0, and let t reach be the time required to hit the surface s=0.  

 

Integrating (4) between t=0 and t reach leads to 

 

 0-S (t=0)=S(t=t reach)-S(t=0)-η(t reach-0) …………  (5) 

 

 Which implies that?  

 

  t reach ≤S(t=0)/η ……………………     (6)  

 

 The similar result starting with s (t=0)>0 can be obtained as  

 

 t reach ≤| S(t=0)|/η  …………………….    (7)  

 

 Starting from any initial condition the state trajectory reaches the time-varying 

surface in a finite time smaller than s(t = 0) /η and then slides along the surface 

towards x d ( t ) exponentially with a time-constant equal to 1 / λ. In summary, the 

idea is to use a well-behaved function of the tracking error s and then select the 

feedback control law u in 1 such that s remains characteristic of a closed-loop system 

and presence of model imprecision 

 

 

IV. CHATTERING REDUCTION 

An ideal sliding mode exists only when the state trajectory x(t) of the controlled plant 

agrees with the desired trajectory at every t for some t1 This may require infinitely 

fast switching. In the real system a switched controller has imperfections which limit 

switching to a finite frequency. The typical point of oscillates within a neighborhood 

of the switching surface. This oscillation is called as a chattering and illustrated on 

figure 3. 
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Fig. 3. Chattering as a result of imperfect control switching 

 

 

 Control laws which satisfying sliding condition and lead to ―perfect‖ tracking 

in the face of model uncertainty are discontinuous across the surface S(t) thus causing 

control chattering. The chattering is undesirable since it involves extremely high 

control activity and furthermore may excite high-frequency dynamics neglected in the 

course of modeling. This chattering must be reduced (eliminated) for the controller to 

perform properly.  

 This approach leads to tracking within a guaranteed precision (rather than 

perfect tracking) and more generally guarantees that for all trajectories starting inside 

B(t=0) 

 

 Ψ t≥0,│x
(᷈t) 

(t)│≤(2 λ)
t 
€ i=0,….,n-1

 
…………………   (8)  

 
 

 

V. LEVANT CONTROLLER  

Two other major contributions by Levant: arbitrary-order HOSM control in 2001 and 

arbitrary-order asymptotically optimal robust exact differentiators in allowed the 

design and the implementation of universal arbitrary-order HOSM output-feedback 

controller. However the design of new types of HOSM controllers still remained 

complicated. Thus the recently generalized algorithms for designing universal 

arbitrary-order HOSM controllers have been developed based on the homogeneous 

and quasi-homogeneous properties of HOSM dynamic. The aim of Special Issue is to 

report the current state of art of modern HOSM control. The Higher order sliding 

modes (HOSM) which generalize the sliding mode notion remove that restriction  
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Fig. 4. Kinematic model 

 

 
 

Fig. 5. 3-Sliding trajectory 

 

 
 

Fig. 6. Steering angle: 3- Sliding 
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Fig. 7. Steering angle: 4-Sliding 

 

 

VI. NONHOLONOMIC SYSTEM  

A nonholonomic system is a physics and mathematics system whose state depends on 

the path taken to achieve it and such a system is described by a set of parameters 

subject to differential constraints such that when the system evolves along a path in its 

parameter space (the parameters varying continuously in values) but finally returns to 

the original set of values at the start of the path system itself may not have returned its 

original state. Exactly a nonholonomic system also called an nonholonomic system is 

one in which there is a continuous closed circuit of the governing parameters by 

which the system may be transformed from any given state to any other state because 

the final state of the system depends on the intermediate values of its trajectory 

through parameter space the system cannot be represented by a conservative potential 

function as can for example the inverse square law of the gravitational force this is an 

example of a holonomic system: path integrals in the system depend only upon the 

initial and final states of the system (positions in the potential) completely 

independent of the trajectory of transition between those state. The system is therefore 

said to be integrable while the nonholonomic system is said to be non integrable. 

When a path integral is computed in a nonholonomic system the value represents a 

deviation within some range of admissible values and this deviation is said to be a 

homonymy produced by the specific path under consideration.  

 

 

VII. KINEMATIC CAR  

It is known that the model of a kinematic car with two inputs, which are the 

longitudinal velocity and the steering angle (or its time derivative), is differentially 

flat Since time-scaling is involved in the sequel, we precise that the time in this 

system is denoted by t and x denotes the time derivative of the function x(t) such that t 
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= 1.The motion planning can be done off- line prior to the motion and the time-scaling 

does not need the redesign of the reference. It follows that more involved method scan 

be also applied. 

 

 
 

Fig. 8. Notations of the kinematic model 

 

 

VIII. SIMULATION RESULTS  

Applied nonholonomic car motion planning for testing performance of high sliding 

mode system is described by  

 
ẋ=ϑ COS ϕ, ẏ= ϑsin ϕ, ϕ = (ϑ/l)tanθ, =u 

 

 Where  

  (x, y) are the Cartesian coordinates of the rear-axle middle point, φ is the 

orientation angle, is the steering angle and u is the control variable V=10, L=5. Goal 

is to steer the car from a given initial position  

 (x0, y0, φ0, 0) = (0, 0, 0, 0) to the trajectory 

 

  y = 10 sin(x/20) +5  

 

 Sliding Variable σ = y-10sin(x/20)-5  

 

 Under assumption of small axis/relation degree is 3, 

 

 Lm = LM = 20, C 5  

 

 Simulations have been carried out in the time horizon 0 to 20 second and the 
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controller have been enabled only at t = 0:5s (in the first half- second are set to zero) 

in order to better compare the results with. Results are summarize in Fig.1 dotted lines 

are relative to UL the car trajectory obtained with the three controllers is shown 

together with the reference trajectory y = 10sin(x=20) +5. In the auxiliary system state 

y = 10 sin(x/20) +5 is plotted against time for all the controllers. Finally the dynamics 

of the steering angle θ is reported. From F we see that UL performs very well in terms 

of reaching time; in this respect it consistently outperforms the other two controllers 

.UL produces quite effective steering angles while avoiding dangerous vibration the 

author obtained a reaching time similar to that of this experiment by using only β1 = 

1. This also shows that our bounds on C and Km are very conservative. In our setting 

using β2 = 1 corresponds to C < Km (feasibility condition). We have made additional 

simulations by fixing t= 1 and trying several values of =1 in the interval [1:4]. UOR 

still obtains the best reaching times. In the fig, x-axis time varying from (0 to 20sec) 

and y axis velocity in time. The proposed controllers have simple rules to select the 

design parameters and exhibit state of the art performance. Levant controller produces 

quite effective steering angles while avoiding dangerous vibration and slower than the 

process.  

 

 
 

Fig. 9. Simulated Response For HOSM 

 



Nonholonomic Car Control Using Higher Order Sliding Mode Controllers 9681 

 

 
 

Fig. 10. Simulated Response for Nonholonomic Car Control 

 
 

IX. CONCLUSION 

The connection between the design of high order sliding modes algorithms and the 

solution to some optimal control problems for a general family of HOSM controllers 

is obtained which guarantees optimal reaching of the sliding manifold with respect to 

a suitable optimality index. This family includes several already known HOSM 

control algorithms A control derivative of some order being treated as a new control a 

higher order controller can be applied to providing for the prescribed control 

smoothness and removing the chattering. Special cases namely second and third order 

algorithms are analyzed in the paper. The design is to ensure that the controller will 

obtain closed loop stability. The proposed controllers have simple rules to select the 

design parameters and exhibit state of the art performances. Levant controller 

produces quite effective steering angles, while avoiding dangerous vibration and 

slower than the process.  
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