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Abstract 

 

An axiomatic approach to the determination of basic elementary functions for a real 

variable admits a simple extension in the case of single-valued elementary functions 

for a complex variable. The case of multi-valued elementary functions is beyond the 

scope of a general concept. It stands alone and requires a separate independent study. 

In this article, the author addresses this gap and develops the axiomatics of 

multivalued elementary functions for a complex variable, based on the concept of a 

continuous representation of multivalued mapping and the concept of continuous 

multivalued mapping. 
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1.  INTRODUCTION 

The functional equation f(x+y) = f(x)+f(y) was initially considered by Legendre 

during the proof of a projective geometry fundamental theorem [1] and by Gauss 

during the study of probability distributions [2]. The solution of this equation and the 

equations f(x+y) = f(x)f(y), f(xy) = f(x) + f(y), f (xy) = f(x)f(y) within the class of 

continuous functions were originally obtained by Cauchy [3]. It was found that the 

continuous solutions of these equations are exhausted by four functions ax, a
x
, logax 

and x
a
, respectively. This means that Cauchy equations may be used in the axiomatic 

determination of basic elementary functions concerning one real variable. 

Further studies of the Cauchy equations were associated with the weakening of 

the continuity condition (local limitation, integrability, measurability, the domination 
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with a measurable function, etc). Finally, Hamel [4] gave the first example of the 

equation f(x+y) = f(x)+f(y) solution, different from ax. Cauchy equations were solved 

in more general functional classes, for example, within the class of multiple variable 

functions (Abel, [5]). The additional information about the Cauchy equations may be 

taken from the works [6-8]. 

In this article, the Cauchy equations are solved within the class of continuous 

multi-valued functions of a complex variable with discrete images. The concept of 

continuous multivalued mapping is introduced in the second section. The basic 

properties of continuous multi-valued mappings and their continuous representations 

are also considered there. The concept of continuous multi-valued mapping should not 

be confused with the concept of continuous multivalued mapping inclusion [9-10]. 

In the case of multi-valued solutions the Cauchy equations are complemented 

with inverse Cauchy equations and the systems of equations are considered: 

);()()(),()()( yFxFyxFyFxFyxF  

;)()()(),()()( yFxFyxFyFxFyxF  

);()()(),()()( yFxFyxFyFxFxyF  

.)()()(),()()( yFxFyxFyFxFxyF  

The solution of these systems (with discrete initial conditions) is carried out in 

the third section devoted to the axiomatic determination of multi-valued elementary 

functions for a complex variable. 

 

2.  CONTINUOUS REPRESENTATIONS OF MULTI-VALUED 

MAPPINGS 

According to the common grounds the mapping YXf :  is defined as a non-empty 

subset of the Cartesian product, satisfying the term of uniqueness 

.),(),,( 2121 yyfyxyx  

The multivalued mapping YXF : is defined as a non-empty subset of the 

Cartesian product YX . The term of uniqueness is omitted. If CY  and CX  then 

the multi-valued mapping F is called a multi-valued function. 

Let YX , are topological spaces. The symbol ],[ YXc denotes the set of all 

continuous mappings YXf : . If ],[ YXcf and the definition domain XD f of the 

display f  is open, then we write ),( YXcf . Let's choose an arbitrary multivalued 

mapping YXF : . Let's call the subset ],[ YXcF  a continuous representation of a 

multivalued mapping F  if fF
f F

. The multivalued mapping F is called 

continuous if it admits a continuous representation ),( YXcF . 

Any multi-valued mapping F  admits a continuous representation F . One may 
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assume for example that each mapping Ff  consists of a single point Fyx ),( . Such 

a continuous representation of the multivalued mapping F is called pointwise. The 

opposite is also true, every family F of continuous mappings YXf : defines a 

multivalued mapping fF
f F

: . 

Let's define within a power set ],[ YXc the equivalence relation 21 FF by the 

following rule: 21 FF if and only if when ff
ff 

21 FF
. All the families of an 

individual equivalence class represent the same multi-valued mapping. On the other 

hand, each multi-valued mapping F defines a specific equivalence class. This is the 

class that contains a pointwise representation of the mapping F . Thus, any multi-

valued mapping may be identified with a particular class of equivalent families for 

continuous mappings YXf : . You may set a multivalued mapping F by selecting 

an arbitrary representative of this class, i.e. by the specification of a continuous 

representation F of this mapping. In this case, the elements of the continuous 

representation F of the multivalued mapping F are called continuous branches. 

Let K is the set endowed with the discrete topology, X is the topological 

space. The Cartesian product KX  may be considered as the union KXx
x)(  of 

}:),{(:)( Kkkxx K sets. In this case, the topological product KX  is called a 

multiple area and is denoted by KX )( . The sets Kx)( are called multiple elements of 

the area KX )( . The elements Kk xx )()( are called the element elevations Xx . The 

subareas Kk XX )()( are called the area elevations X . The related subareas of the 

area KX )(  are called the space paper. 

Let F is a multi-valued mapping of the topological space X  into a topological 

space Y , }:{ KkfkF  - its continuous representation. We may assume that each 

continuous branch Fkf  is defined on its elevation kX )( of the space X . In this case, 

the mapping F  may be viewed as a single mapping from the multiple space KX )(  

into the space Y . For the point kx)(  it assigns the correspondence in the point 

Yxfy k )(: . In this case, the definition area F  of the mapping coincides with the 

disjoint union KfkfKk
XDxxD

kk
)(}:){(: . 

Let's introduce on 
kfKk

D  the equivalence relation: kk xx )()( if and only if 

when 
kk ff DDxx   and )()( xfxf kk . The space factor F)(X of the space 

kfKk
D by 

this equivalence relation is called the space factor of continuous mappings family F . 

The related subspaces of the space F)(X  are called the paper of this space. They say 

that the space papers F)(X  and the space F)(X  itself is obtained by gluing the papers 

of the multiple space KX )(  according to equivalent points, i.e. according to the points 

at which the continuous branches have the same values. The space elements F)(X are 

designated as kx)(  and called the element Xx elevations. At that the symbols kx)( and 

kx)( denote the same element of the space F)(X  if )()( xfxf kk . For any 
kfKk

Dx 
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the set }:){(:)(
kfk Dxxx F  is called a multiple element or a layer (above x ) of the 

space F)(X . The space X  is called the space projection F)(X , and the mapping 

xxXXp k)()(: F is called a projection operator or a projector. 

In connection with the study of multi-valued mappings inverse to single 

mappings the concept of separation is introduced. The reverse mappings in respect to 

single ones are completely characterized by the fact that the images of different points 

for such mappings are not overlapped. Let's s  is a single circle }1|:|{ , endowed 

with the topology induced from C . Let's consider the mapping ,: st R which 

assigns the correspondence between the point R and the point sei . The inverse 

mapping RsT :  is a separation over the space s  and is called a trigonometric 

separation. From the definition of a complex number argument it follows that 

Arg)(T for any s . Let's suppose that ,),(: kuk  )(: kk utv for any 

integer k . Let's choose as a continuous representation of the trigonometric separation 

the family }:{: ZkTkT , where a continuous single-valued function kT  is defined 

on the arc kv using the relations 

.cosargarg)( kkkeT ki
k  

It is natural to assume that every function TkT  is a mapping from a separate 

copy ks)( of a single circle within the space R . The arcs kv are the papers of the 

multiple space Z)(s . When you pass to the space factor T)(s all the papers of the space 

Z)(s are glued together in one paper. 

Let R  is the set of positive real numbers 2
R  is the Cartesian product RR . 

Let's consider single-valued mapping CR
2:p  that makes a correspondence 

between the point 2),( R  and the point C
iet )( . The inverse mapping P  is 

a separation over the space C and is called the polar separation. From the definition of 

a complex number argument it follows that )Arg|,(|)( zzzP  for any }0{\: CC
*z . 

Let kk uU R: , )(: kk UpV . Let's choose the family },:{: ZkPkP  as a 

continuous representation of the polar separation P  where the vector function kP is 

defined on the area kV  according to the rule 

.,|,|:)(
||

Tkz
z

kk TTzzP  

It is natural to assume that every function PkP  is the mapping of the 

individual copy *C . The areas kV  are the multiple papers of space Z
*

C )( . When you 

pass to the space factor P)( *
C  of all the space papers Z

*
C )(  are glued together in a 

single paper. 
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3. MULTIVALUED ELEMENTARY FUNCTIONS OF COMPLEX 

VARIABLE 

3.1. Multi-valued linear function 

Let ),...,(: 1 khhh is a fixed set of complex numbers. Let's denote the discrete set of 

points k
kkkhhh Z,,:::, 111   in the complex plane by the 

kh Z,  symbol. This set satisfies the equation .,,,,, kkkkk hhhhh ZZZZZ . 

The linear multi-valued function of a real variable (with a complex coefficient 

a and the step h ) is called a continuous multi-valued function CR:F  defined on 

the set of all actual numbers and satisfying the axioms: 

1)  )()()( 2121 xFxFxxF for all R21, xx ; 

2)  )()()( 2121 xFxFxxF for any R21, xx ; 

3)  k

n
a

n
hF Z,)( 1 for any natural number n . 

It is easy to check that the multi-valued function khaxx Z, satisfies the 

conditions 1)-3). Then let's make sure that there are no two different continuous 

multi-valued functions defined on the set of all real numbers and satisfying the 

conditions 1)-3). From the equality )1()1()0( FFF  it follows that khF Z,)0( . 

From the equality )0()()( FxFxF  it follows that ,,)()( khxfxF Z where f  is an 

arbitrary single-valued branch ,F of the function defined everywhere on R . We 

believe that 
n
a

n
f )(1 for any Nn . From the equalities )()()0()( xFxFFxF  it 

follows that the f  function may be considered as an odd one. Moreover, from the 

obvious equalities k

n
mk

nn
m hahmfF ZZ ,,)()( 1 the definition af

n
m

n
m :)(  

eligibility follows for any natural m and n . This means that kharrF Z,)( for any 

rational r . Due to the continuity of a multi-valued function F we have  

khaxxF Z,)(  

for any rational x . Indeed, let's set the arbitrary Rx and )(xFy . Let yxf ,  is an 

arbitrary continuous branch of the function F  that takes the value y  at the point x . 

Then for any sequence of rational numbers xrn we have 

ymhmharrf nkknnnyx ,,11, )(  . So k
kk haxmhmhaxy Z,11  , where 

Znjj mm ,lim: . Hence kk haxhyxF ZZ ,,)( . 

The linear multi-valued function of a complex variable (with a complex 

coefficient a and the step h ) is called a continuous multi-valued function CC:F  

defined on the set of all complex numbers satisfying the axioms: 
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4)  )()()( 2121 zFzFzzF for all C21, zz ; 

5)  )()()( 2121 zFzFzzF for all C21, zz ; 

6)
  

k

n
a

n
hF Z,)( 1 , k

n
a

n
hiiF Z,)( 1  for any natural number n . 

It is easy to check that the multi-valued function khazz Z,  satisfies the 

conditions 4)-6). Then let's make sure that there are no two different continuous 

multi-valued functions defined on the set of all complex numbers and satisfying the 

conditions 4)-6). Indeed, let's suppose that F satisfies the specified axioms Cz , 

zx Re:  and zy Im: . Then )()()()()( 21 yFxFiyFxFzF where 1F  is multi valued 

function ),(xFx  and 2F  is the multi-valued function )(iyFy . The multi-valued 

functions 1F  and 2F are continuous multi-valued functions of a real variable. They are 

defined everywhere on R  and satisfy the axioms 1)-2). At that k

n
a

nn
hFF Z,)()( 11

1  

and k

n
a

nn
hiiFF Z,)()( 11

2  for any natural number n . From the definition of a 

linear multi-valued function of a real variable it follows that khaxxF Z,)(1 and 

khaiyyF Z,)(2 for all real numbers x and y . Thus, khazyFxFzF Z,)()()( 21  

for any complex z . 

The natural continuous linear representation of a multi-valued function for a 

complex variable is the set ,: kf Z  where 

.,:)( hazzf  

We note that the linear multi-valued function of a complex variable is a 

periodic one. If 0a , then its period is any arbitrary complex number of the set 
k

a
h Z,1 . 

3.2. Axiomatic definition of argument. 

The axiomatic definition of a multi-valued linear function allows to perform the 

axiomatic approach to the definition of a complex number argument. That is the 

argument of a complex number is called a continuous multi-valued function 

RC:F  defined on the set 
*C  and satisfying the axioms: 

1)  )()()( 2121 zFzFzzF for all *
C21, zz ; 

2)  )()( 21
2

1 zFzFF
z

z for any *
C21, zz ; 

3)  Z2)(
1
neF , Z2)(

n

i
neF for any natural number n . 

Let's be sure that the conditions 1)-3) define the argument of a complex 

number in a definite way. Suppose that a continuous multi-valued function F  is 

defined on *C  and satisfies the axioms 1)-3). Let )(:)(1
xeFxF  and )(:)(2

xieFxF for 
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any real x . Then Z2)()(
1

1
1

neFF
n

and Z2)()( 1
2 n

i

n
neFF for any natural number 

n . The multi-valued functions 1F and 2F are defined on R , they are the continuous 

ones and satisfy the axioms of a linear multi-valued function for a real variable (make 

it sure). Therefore Z2)(1 xF , Z2)(2 xxF for any Rx . As the following 

presentation is possible for 0z  

,sincos ||ln||ln izz

z

z eeiezz  

where  is an arbitrary solution of the equation system 

z

zRecos  , 
z

zImsin  

then Z2)()(ln)()()( 21
ln

FzFeFeFzF iz . This means that Z2Arg z . 

According to the definition of polar separation 

),(PrArg 2 zPz  

where 2Pr is the projection operator RR2 on the second component. This means that 

the argument of a complex number may be considered as a continuous single-valued 

function defined on the Riemann surface of a polar separation P)(C . At that the point 

kz)(  corresponds to a real number kzT
z

z
k 2arg2 . In different points of P)(z layer 

this function takes different values. Therefore, the space factor of a continuous 

representation of the argument Zkz k :Arg , where 

kTz k

z

z
kk )1(arg:Arg  coincides with the space factor of the polar 

separation P)( *
C . 

3.3. Logarithmic function of complex variable 

The logarithmic function of a complex variable is defined as a continuous multi-

valued function F , defined within the set *C  and satisfying the following conditions: 

1)  )()()( 2121 zFzFzzF for all *
C21, zz ; 

2)
  

)()( 21
2

1 zFzFF
z

z  for any *
C21, zz ; 

3)  ZieF
n

n 2)( 1
1

and ZiieF
n

i
n 2)( for any natural number n . 

Let us make sure that there are no two different continuous multi-valued 

functions defined on *C and satisfying the conditions 1)-3). Let's suppose that a 

continuous multi-valued function F  is defined on *C  and satisfies the axioms 1)-3). 

For any real r and  we have 21 )(ln)()( FrFeFrFreF ii  where xeFxF :)(1 , 

xieFxF :)(2 . At that, ZieFF
nn

n 2)()( 11
1

1

and ZiieFF
n

i

n
n 2)()(1

2 for any 

natural number n . The complex multi-valued functions 1F  and 2F  are defined 
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everywhere on R  and are continuous ones and satisfy the axioms of linear multi-

valued function for a real variable. Therefore ZixxF 2)(1  and ZixixF 2)(2  for 

any real x . Hence, ZiirFrFreF i 2ln)(ln)( 21 . If 0: zr
 
and zArg , 

then zizzF Argln)( . Thus, ZiirFrFreF i 2ln)(ln)( 21  the conditions 1) -

3) define the multi-valued function F  quite clearly. According to the conventional 

notes zizz ArglnLn  for any *
Cz . 

According to the definition of a polar separation for any *
Cz  

),(Pr)(PrlnLn 21 zPizPz  

where 21 Pr,Pr  are the projection operators RR2  for the first and second 

components, respectively. Consequently the logarithmic function of a complex 

variable may be viewed as a continuous single-valued function defined on the space 

factor of a polar separation P)( *
C . At that the point kz)( corresponds to a complex 

number kziz 2Argln . In different parts of the layer P)(z , this function has different 

values. Therefore, the space factor of continuous representation Zkziz k :Argln  

(the Riemann surface of the logarithmic function) coincides with P)( *
C . 

3.4. Power function of complex variable. 

The power function of a complex variable (with the value *C ) is defined as the 

continuous multi-valued function F  defined on the set *C of all nonzero complex 

numbers and satisfying the following conditions: 

1)  )()()( 2121 zFzFzzF  for all *
C21, zz ; 

2)  
)(

)(

2

1

2

1

zF

zF

z

z
F for any *

C21, zz ; 

3)  
Zi

nn eeF
2

)(
1

and 
Zii

nn
i

eeF
2

)( for any natural number n . 

Let us show that there are not two different continuous multi-valued functions 

defined on *C  and satisfying the conditions 1)-3). Suppose that a continuous multi-

valued function is defined on and satisfies the axioms 1) -3). From the axiom 2) it 

follows that )(0 zF , i.e. *
C)(zF  for any .*Cz . Let )(Ln:)( 1 zeFz . It is easy to 

see that the multi-valued function satisfies the axioms of a linear multi-valued 

function for  a complex variable and at that ZZ ii
nn

22)( 111 and 

ZZ ii
n
i

n
i 22)( 1 for any natural number n . Therefore, ZZ iizz 22)( 1  for 

any complex z . The logarithmic function of a complex variable is the inverse multi-

valued function for the exponential function of a complex variable, then 
Zizzz eeeF 2)()(  for any Cz and for any zz eeFzF LnLn )()( . Thus, the 

conditions 1)-3) define a multi-valued function F  quite clearly. The image of the 

point 0z at power function presentation may be designated as zDeg and called the 

complex number degree z with the complex value 0 . 
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According to the definition of a polar separation for any *
Cz   

)(Pr)(PrlnexpDeg 21 zPizPz  

where 21 Pr,Pr  is the projection operators RR2 for the first and second components, 

respectively. Therefore the power function of a complex variable with the complex 

index may be regarded as a continuous single-valued function defined on the space 

factor of polar separation P)( *
C . At that the number kziz 2Arglnexp

 
corresponds 

with the point kz)( . At QC \ in various points of the layer P)(z , this function takes 

different values. Therefore, the space factor of continuous representation 

Zkziz k :Arglnexp  (the Riemann surface of the power function) in this case 

coincides with the space factor of the polar separation. 

Let Q . We may assume that 0
n
m , where Zm , Nn and NOD 

1),( nm . The value of the power function at the point *
Cz in this case is usually 

denoted as n
m

z . As we already mentioned, the function n
m

zz may be viewed as a 

continuous single-valued function defined on the space factor of the polar separation. 

It is associated with the complex number kn
m

n
m ziz 2Arglnexp at the point kz)( . This 

function takes different values in the points 10 ),...()( nzz  of the layer P)(z  and takes the 

same values at the points P)()(,)( zzz nkk at any integer k . This means that at 1n the 

power function is a unique one and coincides with the rational function mzz  

restriction on the plane with the punctured point *C . If 1n , then the space factor of 

the power function is obtained from the space factor of the polar separation with the 

topological identification (gluing) of points kz)( , P)()( zz nk at any *
Cz  and every 

integer k . 

3.5. Exponential function of complex variable. 

Suppose that a continuous-valued function CC:F  is defined on C , and satisfies 

the following conditions: 

1)  )()()( 2121 zFzFzzF for all C21, zz ; 

2)  
)(

)(
21

2

1

zF

zF
zzF for any C21, zz ; 

3)  eF )1( , 
ei

eiF
Ln

2
2)( and 0)(Re yiF  for all 

2
,0y . 

From the conditions 2) and 3) it follows that 1)11()0(
)1(

)1(

F

F
FF . Therefore,

1)0()(
)(

)(
FzzF

zF

zF This means that the function F  is a single-valued one. Let 

kieiF
2

)(
2

. Let's consider the unique on C  function 

.:)( 2)(Ln ikzzFezf  

It is easy to verify that it satisfies the following conditions: 
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)()()( 2121 zfzfzzf for all C21, zz , ieifeef
kie

e
k 22

ln

2

Ln )(,)1(  and 

0)(Re yif for all 
2

,0y . According to the definition of a complex variable 

exponential function zezf )( . Consequently, zikz eezF 2)( and ikzzeezF 2)( . Thus, 

the conditions 1) -3) are determined on the family C of single-valued continuous 

functions kzz Exp , where 

.,:Exp 21
Zkez ikz

k  

This means that the conditions 1) to 3) define a multi-valued function 

zz Exp  where 

,Deg:Exp:Exp Ln eekzz zez
k Z  

which is commonly referred as a multi-valued exponential function of a complex 

variable with the base e . Suppose that a continuous multi-valued function CC:F  

satisfies the conditions 1) and 2) and the condition  

4)  aF )1( , 
ai

eiF
Ln

2
2)( and 0expRe

ln

)(ln

a

iyF
 for all 

2
,0y . 

Here }1;0{\Ca . It is easy to see that the conditions 1)-2) and 4) are 

determined on C family of continuous single-valued functions ka zz Exp where 

.,:Exp 2ln
Zkez ikaz

ka  

This means that the conditions 1)-2) and 4) define a continuous multi-valued 

function ka zz Exp on C where 

,Deg:Exp:Exp Ln aekzz zaz
kaa Z  

which is commonly referred to as a multi-valued exponential function of a complex 

variable with the base a . The space factor of this function is obtained from multiple 

space ZC)( with the topological identification (gluing) of kz)(  and nz)(  points and 

satisfying the condition Znkz . 
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