International Journal of Applied Engineering Research

ISSN 0973-4562 Volume 10, Number 3 (2015) pp. 6467-6477
© Research India Publications

http://www.ripublication.com

Axiomatic Determination Of Elementary Multi-
Valued Functions For A Complex Variable

Andrey B. Shishkin and Roman G. Pismennyiy
Kuban State University, 350040, Krasnodar, Russia
Abstract

An axiomatic approach to the determination of basic elementary functions for a real
variable admits a simple extension in the case of single-valued elementary functions
for a complex variable. The case of multi-valued elementary functions is beyond the
scope of a general concept. It stands alone and requires a separate independent study.
In this article, the author addresses this gap and develops the axiomatics of
multivalued elementary functions for a complex variable, based on the concept of a
continuous representation of multivalued mapping and the concept of continuous
multivalued mapping.
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1. INTRODUCTION

The functional equation f(x+y) = f(x)+f(y) was initially considered by Legendre
during the proof of a projective geometry fundamental theorem [1] and by Gauss
during the study of probability distributions [2]. The solution of this equation and the
equations f(x+y) = f)f(y), f(xy) = f(x) + f(y), f (xy) = f(x)f(y) within the class of
continuous functions were originally obtained by Cauchy [3]. It was found that the
continuous solutions of these equations are exhausted by four functions ax, a*, logax
and x?, respectively. This means that Cauchy equations may be used in the axiomatic
determination of basic elementary functions concerning one real variable.

Further studies of the Cauchy equations were associated with the weakening of
the continuity condition (local limitation, integrability, measurability, the domination
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with a measurable function, etc). Finally, Hamel [4] gave the first example of the
equation f(x+y) = f(x)+f(y) solution, different from ax. Cauchy equations were solved
in more general functional classes, for example, within the class of multiple variable
functions (Abel, [5]). The additional information about the Cauchy equations may be
taken from the works [6-8].

In this article, the Cauchy equations are solved within the class of continuous
multi-valued functions of a complex variable with discrete images. The concept of
continuous multivalued mapping is introduced in the second section. The basic
properties of continuous multi-valued mappings and their continuous representations
are also considered there. The concept of continuous multi-valued mapping should not
be confused with the concept of continuous multivalued mapping inclusion [9-10].

In the case of multi-valued solutions the Cauchy equations are complemented
with inverse Cauchy equations and the systems of equations are considered:

F(x+y)=F(X)+F(y), F(x-y)=F(X)-F(y);
F(x+y)=F(XF(y), F(x-y)=FX)/F(y);
F(xy) =F(x)+F(y), F(x/y)=F(x)-F(y);
F(xy) =F(X)F(y), F(x/y)=FX)/F(y).

The solution of these systems (with discrete initial conditions) is carried out in
the third section devoted to the axiomatic determination of multi-valued elementary
functions for a complex variable.

2. CONTINUOUS REPRESENTATIONS OF MULTI-VALUED
MAPPINGS

According to the common grounds the mapping f:X —Y is defined as a non-empty
subset of the Cartesian product, satisfying the term of uniqueness
Xy, (X y)ef = yr=y,.

The multivalued mapping F:X —Y is defined as a non-empty subset of the
Cartesian product X xY . The term of uniqueness is omitted. If Y cC and X < C then
the multi-valued mapping F is called a multi-valued function.

Let X,Yare topological spaces. The symbol c[X,Y]denotes the set of all
continuous mappings f:X —»Y. If fec[X,Y]and the definition domain D; < X of the

display f is open, then we write f ec(X,Y). Let's choose an arbitrary multivalued
mapping F : X —»Y . Let's call the subset Fcc[X,Y] a continuous representation of a
multivalued mapping F if F={J;f. The multivalued mapping Fis called

continuous if it admits a continuous representation Fcc(X,Y).

Any multi-valued mapping F admits a continuous representation F. One may
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assume for example that each mapping f e consists of a single point (x,y) e F . Such

a continuous representation of the multivalued mapping Fis called pointwise. The
opposite is also true, every family rof continuous mappings f:X —Y defines a

multivalued mapping F =J; . f .

Let's define within a power set c[X,Y]the equivalence relation F, ~F, by the
following rule: F ~r,if and only if whenU;  f=U;, f . All the families of an
individual equivalence class represent the same multi-valued mapping. On the other

hand, each multi-valued mapping F defines a specific equivalence class. This is the
class that contains a pointwise representation of the mapping F . Thus, any multi-

valued mapping may be identified with a particular class of equivalent families for
continuous mappings f:X —Y. You may set a multivalued mapping F by selecting

an arbitrary representative of this class, i.e. by the specification of a continuous
representation Fof this mapping. In this case, the elements of the continuous
representation r of the multivalued mapping F are called continuous branches.

Let Kis the set endowed with the discrete topology, X is the topological
space. The Cartesian product X xK may be considered as the union |J,_, (x)x Of
)k ={(xk): keK}sets. In this case, the topological product XxK is called a
multiple area and is denoted by (X). . The sets (x). are called multiple elements of
the area (X), . The elements (x), e (x). are called the element elevations xe X . The
subareas (X), = (X) are called the area elevations X . The related subareas of the
area (X), are called the space paper.

Let Fis a multi-valued mapping of the topological space X into a topological
space Y K F={f, : keK} - its continuous representation. We may assume that each

continuous branch f, eF is defined on its elevation (X), of the space X. In this case,
the mapping F may be viewed as a single mapping from the multiple space (X)y
into the space Y. For the point (x), it assigns the correspondence in the point
y =f (x)eY. In this case, the definition area F of the mapping coincides with the
disjoint union [ D, ={(X)y : xeDs }= (X).

Let's introduce on [, D; the equivalence relation: (x), ~(x) if and only if
when x=x"eD; Dy, and f,(x) = f,(x). The space factor (X).of the space [],_, Dy, by
this equivalence relation is called the space factor of continuous mappings family .
The related subspaces of the space (X), are called the paper of this space. They say
that the space papers (X), and the space (X). itself is obtained by gluing the papers
of the multiple space (X), according to equivalent points, i.e. according to the points
at which the continuous branches have the same values. The space elements (X)gare
designated as (x), and called the element x e X elevations. At that the symbols (x), and

() denote the same element of the space (X)g if f,(x)= f(x). For any xe]], . Dy,
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the set (x)p ={(x), : xe Dy} is called a multiple element or a layer (above x) of the

space (X)y. The space X is called the space projection (X)., and the mapping
p:(X)r — X|(x), — xis called a projection operator or a projector.

In connection with the study of multi-valued mappings inverse to single
mappings the concept of separation is introduced. The reverse mappings in respect to
single ones are completely characterized by the fact that the images of different points
for such mappings are not overlapped. Let's s is a single circle {¢ | ¢|=1, endowed

with the topology induced from C. Let's consider the mapping t : R —s, which
assigns the correspondence between the point ¢ <R and the point e'? es. The inverse
mapping T : s—R is a separation over the space s and is called a trigonometric
separation. From the definition of a complex number argument it follows that
T()=Arg¢ for any ¢es. Let's suppose that u, :=(-z,7)+7k, v, =t(u,)for any
integer k. Let's choose as a continuous representation of the trigonometric separation
the family T ={T, : ke Z}, where a continuous single-valued function T, is defined

on the arc v, using the relations

Tk(g):argfe‘”ki}ﬂk:arg(”comk}ﬂk.

It is natural to assume that every function T, eT is a mapping from a separate
copy (s), of a single circle within the space R. The arcs v, are the papers of the

multiple space (s), . When you pass to the space factor (s), all the papers of the space
(s), are glued together in one paper.

Let R, is the set of positive real numbers R? is the Cartesian product R, xR.
Let's consider single-valued mapping p: R2 -»>C that makes a correspondence
between the point (p,6) e R? and the point pt(p) = pe' € C. The inverse mapping P is
a separation over the space C and is called the polar separation. From the definition of
a complex number argument it follows that P(z)=(z|,Argz) for any zeC":=C\{0}.
Let U, =R,xu,, V, =pU,). Let's choose the family p ={PR :keZ}, as a
continuous representation of the polar separation P where the vector function P, is
defined on the area V, according to the rule

P.(2) = fzI.T, %):Tk eT.

It is natural to assume that every function B, ep is the mapping of the
individual copy C*. The areas v, are the multiple papers of space (C*),. When you

pass to the space factor (C"), of all the space papers (C*), are glued together in a
single paper.
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3. MULTIVALUED ELEMENTARY FUNCTIONS OF COMPLEX
VARIABLE

3.1. Multi-valued linear function

Let h :=(h,...h)Iis a fixed set of complex numbers. Let's denote the discrete set of

points  H.a) =ty +...+hey - @ = €.z £2¢ in the complex plane by the

<h,z"> symbol. This set satisfies the equation <h,Zk>+<h,Zk> :<h,zk>—<h,zk> =<h,zk>..
The linear multi-valued function of a real variable (with a complex coefficient

aand the step h) is called a continuous multi-valued function F:R—C defined on
the set of all actual numbers and satisfying the axioms:

1) F(x +X%)=F(x)+F(x)forall x,x, eR;
2) F(x —X,) =F(x)—F(xy) forany x,x, eR;
3) F)= %+<h,z"> for any natural number n.

It is easy to check that the multi-valued function X—>ax+<h,Zk>SatiSfieS the

conditions 1)-3). Then let's make sure that there are no two different continuous
multi-valued functions defined on the set of all real numbers and satisfying the

conditions 1)-3). From the equality F(0)=F@®-F@ it follows that F(0)=(h,z").
From the equality F(x)—F(x)=F(0) it follows that F(x)= f(x)+<h,z">, where f is an
arbitrary single-valued branch F,of the function defined everywhere on R. We
believe that f(1)=2for any neN. From the equalities F(-x)=F(0)-F(x)=-F(x) it
follows that the f function may be considered as an odd one. Moreover, from the
obvious equalities ~ F() = mf (%)+<h,z">:%a+<h,z">the definition ~ f(m):=ma
eligibility follows for any natural mand n. This means that F(r)=ar+(h,z")for any
rational r . Due to the continuity of a multi-valued function F we have

F(x):ax+<h,Zk>

for any rational x. Indeed, let's set the arbitrary xeRand yeF(x). Let f,, is an

arbitrary continuous branch of the function F that takes the value y at the point x.
Then for any sequence of rational  numbers r,—>xwe have

fyy () =ar +hm  +...+hm  —>y. So y:ax+h1ml+...+hkmkeax+<h,Z">, where
m; =limm;, Z. Hence F(x):y+<h,Zk>:ax+<h,Zk>.
The linear multi-valued function of a complex variable (with a complex

coefficient aand the step h) is called a continuous multi-valued function F:C—C
defined on the set of all complex numbers satisfying the axioms:
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4) F(z,+12,) =F(z))+F(z,) forall z,z,eC;
5) F(z;—2,)=F(z))-F(z,)forall z,z,eC;
6) F(%):%+<h,zk>, F(%i):%i+<h,zk> for any natural number n.

It is easy to check that the multi-valued function z—>az+<h,Zk> satisfies the

conditions 4)-6). Then let's make sure that there are no two different continuous
multi-valued functions defined on the set of all complex numbers and satisfying the
conditions 4)-6). Indeed, let's suppose that F satisfies the specified axioms zeC,
x :=Rez and y ==Imz. Then F(z) = F(x)+F(iy) = F,(x)+ F,(y) where F, is multi valued
function x— F(x), and F, is the multi-valued function y — F(iy). The multi-valued
functions F, and F,are continuous multi-valued functions of a real variable. They are

defined everywhere on R and satisfy the axioms 1)-2). At that F,()=F(2) =%+<h,zk>
and Fz(%)zF(%i):%i+<h,Zk> for any natural number n. From the definition of a
linear multi-valued function of a real variable it follows that Fl(x):ax+<h,Zk>and
Fz(y)zaiy+<h,Zk>f0r all real numbers xand y. Thus, F(z)=F,(x)+ Fz(y)=a2+<h,Zk>
for any complex z.

The natural continuous linear representation of a multi-valued function for a
complex variable is the set 1{1 : aeZ*, where

f,(2)=az+(ha).

We note that the linear multi-valued function of a complex variable is a
periodic one. If a+0, then its period is any arbitrary complex number of the set

1(hz").
3.2. Axiomatic definition of argument.

The axiomatic definition of a multi-valued linear function allows to perform the
axiomatic approach to the definition of a complex number argument. That is the
argument of a complex number is called a continuous multi-valued function

F : C—R defined on the set C” and satisfying the axioms:
1) F(z2,) = F(z)+F(z,)forall z,z,eC";

2) = %:: F(z)-F(z,) forany z,z,eC";

3) F(e%) =277, F(e"') =2z +2zZ for any natural number n.

Let's be sure that the conditions 1)-3) define the argument of a complex
number in a definite way. Suppose that a continuous multi-valued function F is
defined on C* and satisfies the axioms 1)-3). Let F,(x):=F(*) and F,(x):=F(™)for
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any real x. Then R (%)= F(e") =27z and F@E) = F(e™) =2+ 27z for any natural number
n. The multi-valued functions Fand F,are defined on R, they are the continuous

ones and satisfy the axioms of a linear multi-valued function for a real variable (make
it sure). Therefore F(x)=272Z, F,(x)=nx+27Zfor any xeR. As the following

presentation is possible for z#0

7= |z|ﬁ =e" €osp+isinp =ele'?,
where ¢ is an arbitrary solution of the equation system

coswz% , Sing = ‘m—‘

then F(z) = F(e"")+F(e"”) = Fy(In|z)) + F, () = p+27Z . This means that Argz = p+2Z .
According to the definition of polar separation
Argz =Pr, P(2),

where Pr, is the projection operator R? — R on the second component. This means that
the argument of a complex number may be considered as a continuous single-valued
function defined on the Riemann surface of a polar separation (C),. At that the point

(z), corresponds to a real number TZK(ﬁj:al’gZ-i-Zﬂk. In different points of (z), layer

this function takes different values. Therefore, the space factor of a continuous
representation of the argument gz, kez, where

Crgz ::Tk(éj:arg (4;1)kg ]ﬂk coincides with the space factor of the polar
separation (C),.
3.3. Logarithmic function of complex variable

The logarithmic function of a complex variable is defined as a continuous multi-
valued function F, defined within the set C* and satisfying the following conditions:

1) F(z2,) = F(z)+F(z,) forall z,z,eC";

2) F%:: F(z)-F(z,) forany z,z,eC’;

Ty - Ty _xi o
3) F(e")=1+2zzand F(e"')=Zi+27Z for any natural number n.

Let us make sure that there are no two different continuous multi-valued
functions defined on C"and satisfying the conditions 1)-3). Let's suppose that a
continuous multi-valued function F is defined on. C” and satisfies the axioms 1)-3).

For any real rand ¢ we have F(re'?)= F(r)+F('¢ FFR(n r)+F2§ where F;(x) _F(
F2(x):=F(”X';. At that, Fl(ﬁ):F(e“):F+27ziZand FZ(F):F(e"):%I+2meOI' any
natural number n. The complex multi-valued functions F, andF, are defined
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everywhere on R and are continuous ones and satisfy the axioms of linear multi-
valued function for a real variable. Therefore F,(x)=x+24Z and F,(x)=xi+24Z for

any real x. Hence, F(re')=F(ln r)+F2§:= Inr+ip+27Z. If r =[z]#0 and peArgz,
then F(z)=In|z+iArgz. Thus, F(re')=F(nr)+F, *:: Inr+ip+27iz the conditions 1) -
3) define the multi-valued function F quite clearly. According to the conventional
notes Lnz=In|z/+iArgz forany zeC".

According to the definition of a polar separation for any zeC”

Lnz =InPr, P(z) +iPr, P(2),

where Pr,Pr, are the projection operators R? R for the first and second

components, respectively. Consequently the logarithmic function of a complex
variable may be viewed as a continuous single-valued function defined on the space

factor of a polar separation (C"),. At that the point (z), corresponds to a complex
number In|z+i€rgz 5 . In different parts of the layer (z),, this function has different
values. Therefore, the space factor of continuous representation Kz +i@rgz, : keZ

(the Riemann surface of the logarithmic function) coincides with (C"),.
3.4. Power function of complex variable.

The power function of a complex variable (with the value «<C”) is defined as the
continuous multi-valued function F defined on the set C”of all nonzero complex
numbers and satisfying the following conditions:

1) F(z2,) = F(2,)F(z,) forall z,2,eC’;

N F .
2) ngz F&’) forany z,,z,eC";

3) F(e")=e"2™Zand F(em)=e" 2™ for any natural number n.

Let us show that there are not two different continuous multi-valued functions
defined on C” and satisfying the conditions 1)-3). Suppose that a continuous multi-
valued function is defined on and satisfies the axioms 1) -3). From the axiom 2) it

follows that 0¢ F(z), i.e. F(z)cC" for any zeC".. Let @(z) =L1LnF(e”). Itis easy to

see that the multi-valued function o satisfies the axioms of a linear multi-valued
function for a complex variable and at that @(%)=++24Z+12zZand

() =1+ 27Z + L 27 for any natural number n. Therefore, @(z)=z+24Z+124Z for
any complex z. The logarithmic function of a complex variable is the inverse multi-
valued function for the exponential function of a complex variable, then
F(e?)=e"®® —e®*27Z for any zeCand for any F(z)=F(""*)=e*""?. Thus, the
conditions 1)-3) define a multi-valued function F quite clearly. The image of the
point z+0at power function presentation may be designated as Deg“ zand called the
complex number degree z with the complex value « #0.
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According to the definition of a polar separation for any zecC”
Deg” z=exp€In Pr, P(2) +iaPr, P(z)

where Pr,Pr, is the projection operators R? — R for the first and second components,

respectively. Therefore the power function of a complex variable « with the complex
index may be regarded as a continuous single-valued function defined on the space

factor of polar separation (C"),. At that the number exp€n|z|+iz€rgz, corresponds
with the point (z), . At < C\Q in various points of the layer (z),, this function takes
different values. Therefore, the space factor of continuous representation
ekp€n|z|+ia@rgz - keZ (the Riemann surface of the power function) in this case

coincides with the space factor of the polar separation.

Let «eQ. We may assume that «=2x0, where meZ, neNand NOD
(m,n)=1. The value of the power function at the point z<C"in this case is usually

denoted as z*. As we already mentioned, the function z—»z" may be viewed as a
continuous single-valued function defined on the space factor of the polar separation.
It is associated with the complex number exp(ﬂln|z|+i%¢\rgz;k :at the point (z), . This
function takes different values in the points (z),....(z),,, Of the layer (z), and takes the
same values at the points (z),,(2),., € (2)p at any integer k. This means that at n=1the
power function is a unique one and coincides with the rational function z—z"
restriction on the plane with the punctured point C*. If n#1, then the space factor of
the power function is obtained from the space factor of the polar separation with the
topological identification (gluing) of points @k (Diin € (@e at any zeC" and every

integer k.
3.5. Exponential function of complex variable.

Suppose that a continuous-valued function F : C—C is defined on C, and satisfies
the following conditions:

1) F(z, +2,) =F(z;)F(z,) forall z,,z, eC;
2) Ftl—zz}%forany 2,2, €C;
3) FM)=e, F(Zi)ce? ™ and ReF(yi)>0 forall ye ¢z .

From the conditions 2) and 3) it follows that F(0)=F@1-1) =%=1. Therefore,

%:F(z-z):F(O):lThis means that the function F is a single-valued one. Let
F(Zi)=ie”"¥. Let's consider the unique on C function

f (Z) . eLnF(z)—zZzzik

It is easy to verify that it satisfies the following conditions:
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In(ie’”zk )+7r2k

f(z+2,)=f(z)f(zp)for all  z,z,eC, f@M)=e"=e f(Zi)=e =i and

Re f(yi)>o0for all ye ,%:. According to the definition of a complex variable
exponential function f(z)=e?. Consequently, F(z)e”??™* =e?and F(z)=e%?™. Thus,

the conditions 1) -3) are determined on the family C of single-valued continuous
functions z—» €xpz ,, where

€xpz, = etk o7
This means that the conditions 1) to 3) define a multi-valued function

z — Expz where

Expz = €xpz, : keZ $e*" =Deg’e,

which is commonly referred as a multi-valued exponential function of a complex
variable with the base e. Suppose that a continuous multi-valued function F : C—>C

satisfies the conditions 1) and 2) and the condition

ZjLna

4) F)=a, F(5i)ce?

and Reexp™™™ >0 forall ye Q%:

Here aeC\{0;1}. It is easy to see that the conditions 1)-2) and 4) are
determined on C family of continuous single-valued functions z — €xp, z , where

€p,z, = ez

This means that the conditions 1)-2) and 4) define a continuous multi-valued
function z - €xp, z ,on C where

Exp,z = €xp,z, : keZ 3e?" —Deg’a,

which is commonly referred to as a multi-valued exponential function of a complex
variable with the base a. The space factor of this function is obtained from multiple
space (C),with the topological identification (gluing) of (z), and (z), points and
satisfying the condition z¢-n :=Z.
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