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Abstract

We discuss compressible multiphase flow models with improved physics. An es-
sential difficulty for multiphase flow models is to define averages of nonlinear
terms. This is known as the closure problem. The purpose of this paper is to
examine all the closure constraints which should be imposed on the two-phase
flow model. We identify the problem associated with the entropy of averaging and
derive an entropy inequality constraint as opposed to entropy conservation for mi-
crophysically adiabatic processes.
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1. Introduction

The problem of multiphase flow has received much attention in recent years due to its
strong effect on basic science and engineering applications. Multiphase flow is a pro-
totypical multiscale problem, with a cascade of length scales generally too broad to
be modeled effectively. Averaging is one of the most basic tools to deal with multi-
scale science [5]. The equations of multiphase flow are derived by an averaging process
applied to a microphysical description of distinct fluids separated by sharp interfaces.
This process introduces an essential difficulty, the closure problem, to define averages
of nonlinear functions of the primitive variables. These quantities must be modeled by
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some expressions written in terms of the averaged variables, to close the system of av-
eraged equations, including proper physics requirements. Different choices of closures,
appropriate for distinct flow regimes, contribute to the number of different multiphase
flow equations.

We consider compressible multiphase flow with surface tension and transports. We
discuss the multiphase flow models of the type proposed by [3, 4, 9, 13]. The main
result of the present work is to examine all the closure constraints of conservation re-
quirements for the continuity, momentum and energy equations, boundary conditions at
the edges of the mixing zone and an entropy inequality. We also identify the problem
associated with the entropy of averaging and derive an entropy inequality constraint as
opposed to entropy conservation for microphysically adiabatic process.

When an ensemble average is applied to the micro equations to derive macro equa-
tions, there is a choice of averaging the total energy [16], internal energy [3, 8] or en-
tropy [15, 17] equations. These averages give distinct equations, which differ by triple
correlations only, and so they should have similar solutions. We find that the triple cor-
relations which mark the difference between the three sets of equations occur in the
energy equation. Thus the same incompressible limit discussed in [6] applies all three
averaged equations.

In other words, there are three possible energy equations, directly averaged from
different formulations of the microphysical energy equations of these three equations;
and only one is to be used. Obviously, the total energy closure and entropy closure
show total energy and phase entropy conservation, respectively. But the entropy in the
total energy closure, the total energy and entropy in the internal energy closure and the
total energy in the entropy closure are not obviously conserved. Thus conservation is a
constraint on the allowed closures. In §3.1, we discuss the conservation constraints and
examine conservation of the energy and entropy for the total energy closure.

Conservation of phase mass, total momentum and total energy is a fundamental
restriction on any nondissipative system; similarly conservation of phase entropy is fun-
damental for adiabatic (smooth) flows. Conservation of mass and total momentum is a
consequence of derivation of the averaged equations from the conservative microphys-
ical equations. However, phase entropy conservation is a separate problem. Entropy
should not be conserved because averaging is nonadiabatic. In §3.2 we derive an in-
equality constraint as a necessary and sufficient condition for the positivity of an en-
tropy of averaging. The closures which impose the constraint guarantee conservation of
the phase entropy for smooth flows, interpreted as an inequality giving positivity for the
entropy of averaging.

Multiphase closures have been studied systematically, see e.g., [5]. The interfacial
forces between the phases are often divided into separate effects to reflect added mass,
drag, and buoyancy force terms. A remarkable feature of the equations proposed here is
the fact that they are solvable in closed form in the incompressible limit [7]. Specifically,
the closed form expression for the interfacial pressure [7, 8] contains three types of
terms, readily identified as corresponding to added mass, drag, and buoyancy related to
the edge motions, for Z;. We assume (—l)k Vi = (—l)k Zr > 0 so that mixing zone
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is expanding. At each edge z = Z; of the mixing zone, the closures of the interfacial
quantities must equal the phase average of phase which vanishes there. This boundary
condition at the mixing zone edge for the closures is summarized in §3.3.

The governing equations of the multiphase flow model we are interested here de-
scribe multi-fluid mixing layers which grow out of acceleration driven instabilities, in-
cluding the classical cases of Rayleigh-Taylor instability, driven by a steady accelera-
tion and Richtmyer-Meshkov instability, driven by an impulsive acceleration. In [11],
we have proposed a closure for the compressible multiphase flow model by derivation
of a natural formulation for the constitutive laws. The closure satisfies all the closure
constraints which are examined here. Spatial homogeneity closures have been com-
pared [12] in a validation study to spatial averages of direct numerical simulations, i. e.,
simulation solutions of the microphysical equations.

2. The Averaged Equations

In [13, 11] and earlier papers in this series, we have proposed averaged equations for
the interior of the mixing zone, coupled to the buoyancy drag equations for the motion
of the edges of the mixing zone. The equations for the interior have a functional form
derived from a mathematical analysis of the averaged, unclosed, equations. Closure
comes from assigning values to unknown parameters in these functional forms.

Let the function X be the phase indicator for material k (k = 1, 2); i.e., Xy (¢, X)
equals 1 if position x is in fluid k at time ¢, zero otherwise. Multiphase equations
for the phase k are obtained by multiplying the microphysical Navier-Stokes equations
for compressible fluid flow by X; and performing an ensemble average. We denoted
the ensemble average (-). The average of the indicator function Xy is denoted Sy =
(Xk); Pr(z, 1) is then the expected fraction of the horizontal layer at height z that is
occupied by fluid k at time ¢. Averaging removes most discontinuities from the solution.
Specifically, although Xy is discontinuous, S is not.

For other variables, we use two types of averaging. The phase average of a variable
f is defined by

(Xi f)
k= , (1
/ Br
and the phase mass-weighted average is defined as
(Xkpf)
- . 2
/ (Xkp)

In the averaged equations, only two variables, the averaged densities and the averaged
pressures, are defined by the phase weighted average (1). All other averaged variables
are defined by the phase mass-weighted average (2).

In the remainder of this paper, we choose a preferred direction normal to the mixing
layer and integrate the primitive equations over two other directions tangent to it. This
procedure yields one dimensional averaged equations. We follow Drew [5] and earlier
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papers in the present series [2, 3, 11] to obtain the ensemble averaged equations

Br OBk
T =0 ©
0 i
% + V¥ (Brprivi) = PrDi @
5 0 0

(ﬂkaptkvk) + Vs(ﬁkpkl)]%) — _a_z(ﬁkpk) + p;aizk + ,kakg + /B/(Mk > &)
0 (BrprEr)

5+ V BeprviEr) = =V (Brpivr) + (pkv)*% + Brpiokg + B (6)
for the volume fraction fy, velocity vy, density pg, pressure pg, and total energy Ej
of phase k. Here g = g(¢) > 0 is the gravity and the geometry indicator s = 0, 1, 2
corresponds to the planar, cylindrical and spherical form of the primitive equations.
Generalizations of these equations, not shown here in the interest of simplicity, allow
for circular or spherical averages in a cylindrical or spherical geometry. Summing the
equation (4) over i, we get the equations for total mass

0 !
% + VE(Beprox) =0, 7
where Lozt f(
Vi f) = L 2T ®)
z 0z

is the curvilinear divergence. For convenience, we use the following symbols to repre-
sent the source terms of (4)-(6)

Dii = (V- jik 9)
M=V -t w3+ fi, (10)

E= (V- -tV + (V : (z hiji)) + (V- &VT))k, (1)
i k

in which 7’ is the viscous stress tensor, f; is the averaged geometrical source term;
fi = 0 for rectangular coordinates [14]. h; is the specific enthalpy of species i, j;
is the diffusion flux [1], and « is the heat conductivity. (V - 7’ )k.3, and v3 mean the
third component of (V - 7’); and v. Therefore, the source terms Dy;, M, and & repre-
sent the effects of mass diffusion, viscosity and heat conduction, as well as geometrical
source terms. These effects are negligible in the models for the closure in the inte-
rior of the mixing zone. To simplify the discussion, they could henceforth set to zero.
The Reynolds stress relating to the combined phases is large, the effect of this term
is included within the model equations. In contrast, turbulence within a single phase is
typically much smaller, and on this basis we neglect the in phase Reynolds stress. Stated
alternatively, the velocity differences between the heavy and light fluids are large, and
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the associated Reynolds stress is already present in the equations. The velocity fluctua-
tion within a light or heavy fluid bubble or droplet is small and can be neglected in the
averaged equations. i.e., for example, we are taking advantage of the fact that the light
fluid velocity fluctuations about the light fluid mean velocity is small.

Three interfacial terms are defined by

(v-VXy) « (pkm3 - VXy)

_ W VAR e Py - VXi)
n3- VX))~ KT (m3 - VXp)

n3 - VXy) ~

*

. (pko)" = (12)

where n3 is the unit normal vector in the preferred direction. These quantities repre-
sent averages of microscopic quantities. The definitions (12) are fundamental to all that
follows. They are mathematically exact consequences of the averages of the primitive
equations and specify the quantities (the right hand side of (12)) that are to be approxi-
mated in a definition of closure to complete the averaged equations (3)-(6).

In the non-zero surface tension case, pressure is discontinuous at the interface 0 Xy,
and py is the value of the pressure defined by continuity from the interior of X;. These
limiting pressures at the microphysical level, i.e. before ensemble averaging, are related
by the equation

p1—p2=(Kon+ Vo) - n+n’[tIn= Ko +n'[¢'In (13)

where K is the mean curvature and o is the surface tension. It is convenient to define

Pt =5pi+p) . (o) =3 [(p1v)* + (p2v)*] (14)
and the capillary pressure
p.=p1 =05, (P)" = (p1v)* = (p20)". (15)
For later use we define
P = pet (- EE
(pev)* (16)
prvk = prog 4+ (=1 02 .

In [11] we derive a mathematically exact expression for each ¢*, ¢ = v, p, pv, inde-
pendently of any closure assumptions. The derivation leads to a natural formulation of
closures for the constitutive laws.

3. The Closure Constraints

The chunk mix two-phase flow model is a stochastic description of chaotic interpene-
tration of two viscid heat-conduction fluids. We are here concerned with chunk mix,
a flow regime characterized by large scale coherent mixing structures (bubbles of light
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fluid, etc.), on the order of the thickness of the mixing zone, and by short time scales.
An ensemble average is applied to the micro equations to derive macro equations. The
entropy in the energy averaged equations and the energy in the entropy conserved equa-
tions are not obviously conserved. These models differ in the variables after averaging
and in the closure assumption. Thus conservation is a constraint on the allowed clo-
sures. We discuss the conservation constraints in §3.1. We examine conservation of
the phase entropy and derive an inequality constraint for the positivity of an entropy of
averaging in §3.2. The boundary conditions at the mixing zone edge for the closures are
summarized in §3.3.

We specify boundary conditions for compressible and incompressible flow. We as-
sume a container with a slab of heavy fluid of density p, lying beneath a slab of light
fluid of density p; and separated by an interface. This configuration is then accelerated
downwards with an acceleration larger than the earth gravity, reversing the direction of
gravity. We assume existence of rigid wall at the top of a finite but large domain D.
Then velocity is zero and the pressure is unknown there. At the bottom of this domain,
we have conceptually an open container. This fixes the pressure at some ambient value,
but not the velocity at the bottom of D. This leads to the boundary conditions

01(zT) =0, (17)
p2(z27°°) = const, (18)

where z = 77 (z = z7°°) denotes the position of the upper (lower) wall of the domain
D.
For later use, we introduce the notation

Agq=q1—q (19)

for any quantity ¢ and the notation of the phase k convective derivative
— = — 4 V. (20)

3.1. Conservation Constraints

In this section we examine conservation of the total energy or phase entropy for the case
of the total energy closure. We believe that the total energy closure, with conservation
of total energy is the most attractive of the three closure alternatives, and that the species
entropy should be conserved only after an entropy of averaging has been imposed [11].
We derive a conservation constraint which is required to conserve the entropy in the total
energy closure (6). Conservation of phase k mass, total momentum and total energy is
a fundamental restriction on any nondissipative system; similarly conservation of phase
entropy is fundamental for adiabatic (smooth) flows. Aside from entropy, this conserva-
tion property results from the derivation of (3)-(7) from the conservative microphysical
equations. Conservation of phase k mass is seen from the absence of source terms in
(7). Conservation of total momentum is seen from the reversal of sign in the (5) source
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terms, namely p*0f1/0z = —p*0f»/0z since B1 + P = 1 and 0(B + p2)/0z = O.
Similarly conservation of total energy results from the reversal of signs in (6). However,
conservation of phase k entropy, likewise a basic property of smooth (adiabatic) flows,
raises basic questions addressed as a central issue of this paper.

We assume the thermodynamic relation is satisfied for the averaged quantities,

1
T dSy = dey + pi d(—) . 2D
Pk

The total energy closure (6) reduces to the internal energy equation

0
= (Brprer) + V* (Brprorer)

= =Bk Vior — PZW% + (pkv)*aa—ﬂzk + BiFk (22)
where
Fr = & — oMy (23)
From (22) and (21), we derive the entropy equation
ﬁkPkaDD;S: = [—pxv™ + prvk — prok + (ka)*]% + BTk (24)

for smooth solutions. Here Sy = Sk(ex, px) is the entropy expressed from the fluid
k EOS and the directly averaged total energy Ej and density pi of fluid k using the
additional definition of the internal energy ey = Ey — 1),% /2. Using (14) and (15), Eq.
(24) can be reformulated as

DSy,

~ % * _ * 0 k
ﬂkkath = [—prv™ — p*or + prox + (po) ]a—i + BTk, (25)

where we define
k

2

Assuming the source term F; = 0, from (25), the entropy Sy of each phase is
conserved if

PkVk = DkVk + [pio* — (pev)*]. (26)

—piv* — p*or + prok + (pv)* = 0. (27)

The difference between the internal energy and entropy closure results from the
triple correlation in (12). In [2, 3], the right hand side of the internal energy closure is
derived by use of the identity

—(XgpV -v) = = (pV - (Xxv)) + (pv - VX¢)

(28)
= —pi (V- (Xiv)) = ((p — pr)V - (Xiv)) + (pv - VXy) .
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The second term in (28) represents a truncated correlation and it can be set to zero be-
cause the numerical data shows that this truncated correlation is small. We examine the
energy equation when the same correlation is used in the last term of (28). Calculations
show

—(XkpV - V) == pp (V- (Xgv)) = ((p — pe)V - (Xkv))
+ pi (V- VX)) +{(p — pr)v- VXi) (29)

o(Brvk) « OBk
+ pr0T—
0z 0z

:—pk

by assuming ((p — px)V - (Xxv)) and ((p — pr)v - VXi) are negligible. The replace-
ment of (28) by (29) gives the internal energy equation derived from the microscopic
entropy equation. Thus the entropy closure and internal energy closure differ by triple
correlations only.

3.2. The Entropy Constraint

Conservation of the total energy for the averaged equations is a direct consequence of the
choice of total energy as a primitive variable and the total energy microscopic equation
as the equation to be averaged. Similarly, conservation of mass and total momentum
is a consequence of these same properties for the microphysical equations. However,
phase entropy conservation is a separate question. We distinguish between two notions
of entropy. The first is the direct average of the microphysical entropy in phase k,
Sk, which is preserved for processes which are microphysically adiabatic. The second
entropy Sy is defined as a thermodynamic function from the equation (21) of state and
the averaged primitive variables (density and energy). These two definitions of entropy
are not the same. The quantity S includes a (positive) entropy of averaging resulting
from the in phase average in the definitions of p; and Ej. Thus Sy > Si. Assuring this
inequality (as a constraint on the closure) is a central result of this paper.

In general, the entropy Si of each phase fails to be conserved because the macro
entropy

(30)

XipE X
Sk=Sk(Ek,pk)ESk(< k) kp)),

(Xkp) ™ (Xk)

expressed via the equation of state from the macro (averaged) energy is not the same as
the macro entropy, Sy = (XixpS) / (Xkp), expressed directly as an average of the micro
entropy. The difference

Sk = Sk(Ex, pr) — Sk 31)

is due to the averaging of within phase fluctuations and is thus identified as an entropy
of averaging, within a single phase. In other words, averaging of the p; and Ej variables
is not an isentropic process. It increases the entropy of the system.

With an ensemble average, the entropy of averaging reflects a loss of information
within the averaging process. One could also define the ensemble in terms of spatial
and/or temporal averages. The characteristic averaging length could then reflect the
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length scale associated with a measuring probe and again the entropy of averaging re-
flects loss of information via the average. But the spatial average could also reflect some
omitted physical process, such as heat and mass diffusion within a single phase. From
this perspective, the entropy of averaging is actually an entropy of mixing, and thus
reflects a physical process not modeled in the original equations (3)-(6).

We expect the inequality 0Sx > 0 to be maintained. From (6) we derive conservation
of the microphysical entropy and its average Sy for adiabatic processes. Using this fact
together with (25), we obtain the equation

O(PrproSk)  o(BrpkvroSk) 1 _ . - «OPk
P + Pr = —[—prv” — p*or + Prox + (pv) ]ﬁ.
ot 0z T 0z

(32)

Summing Eqgs. (32) over k = 1, 2, we see that a necessary condition for the k = 1
and k = 2 flows to have nonnegative entropy of averaging source terms is that
2 — 0Pk op
D [—pro* — poi + Prvk + (po)"I = = [-v"Ap = p"Av + A(PD)| —— = 0.33)
k=1

Notice that the closure for (pv)* makes no contribution to (33). Thus, independently of
a closure for (pv)*, the condition (33) is required to have nonnegative source terms in
(32) for k = 1, 2. As a sufficient condition, we require the inequality

*a 1 ~ % * —_\ 0h
(=D (pv) o < (=" (pro* + p*or — Prv) ﬁ, (34)
0z 0z
equivalent to nonnegative source terms (RHS) in (32). Let
B —— ]
Bi = (prv* + p*ox — Prok) 6_ﬁz (35)
Then (34) is rewritten as
0
Bi< () <5, (36)
Z

Therefore, the inequality constraint (36) is required as a necessary and sufficient con-
dition for the positivity of an entropy of averaging, which should be imposed in the
closures 0™, p*, (pv)* of the governing equations (3)-(6). In [12, 11], we propose a new
definition of v*, p*, (pv)*, which imposes (36) and gurantees conservation of the total
energy.

The entropy inequality constraint (36) is a restriction on the model system. The
model depends on the motions Z;(¢) of the edges of the mixing zone. It was shown
in [10] that given the edge velocities Vj of the mixing zone, the system of the compress-
ible equations is closed mathematically and the solutions depend on V. Thus, (36)
couples two edge motions of the mixing zone.
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3.3. The Boundary Conditions

We introduce mixing zone boundary conditions which closures for ¢*, ¢ = v, p, pv,
should satisfy. The height at which S (f>) vanishes is labelled the lower (upper) edge
of the mixing zone, and it corresponds to the tip of the frontier portion of light (heavy)
fluid in the microscopic flow. Therefore the average ¢* of the fluid quantity ¢ must equal
q1 (q2) at the lower (upper) mixing zone edge z = Z;(t) (z = Z»(t)). Consistency with
the microphysical equations leads to mixing zone boundary constraints

*

v =vr, p'=pr, (pv)" = prog at z=7Z. 37)

The property of hyperbolic stability (real characteristics) follows from the general
form of Egs. (3)-(6) in the inviscid case since in the characteristic analysis the ¢* terms
and the volume fraction equation decouple from the other equations, and these remain-
ing ones have the same characteristic analysis as two copies of the Euler equations of a
compressible fluid.

4. Conclusions

All required closure constraints of boundary conditions and conservations are identified
for the multiphase flow model (3)-(6). The boundary constraints are given in (37). Total
energy is conserved according to (6). Entropy is not be conserved because averaging
is nonadiabatic, but the entropy inequality constraint (36) should be enforced for the
positivity of an entropy of averaging.
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