Direct Product Of Semiprime Ideals In Ternary Semigroups

Bindu.P1

Research scholar, K.L.University.

Dr. Sarala.Y²

Department of Mathematics, K.L.University.

Dr. Madhusudan rao.D³

Department of Mathematics, V.S.R&N.V.R college.

Dr. Gangadhara rao.A4

Department of Mathematics, V.S.R&N.V.R college.

Abstract

This Paper deals with direct product of ternarysemigroups. The general properties and characteristics of complete rightideal of a ternarysemigroup. In this paper we have mainly proved that R be a complete rightideal of a ternarysemigroup $T = \prod_{i \in I} T_i$. Then $P_i(R)$ is a complete rightideal of T_i and $\prod_{i \in I} P_i(R)$ is a complete rightideal of T_i .

Keywords: Direct product of ternarysemigroups, projection, semi prime.

Introduction

Anjaneyulu.A [1] investigated the structure of prime ideals in semi groups, which I have used in this paper. In this paper I used the concepts on the direct product of semi groups written by [3] R.croisot introduced [2] the following condition: An element b of a semi group S satisfies the condition (m, n) if there exist an element $y \in S$ such that $b = b^m y b^n$; m, n are positive integers. The set of all elements satisfying the condition (m, n) is called a class of regularity and it is denoted by $R_S(m, n)$. By means of this notion some properties of ternarysemigroup have been studied. In this paper now I

6364 Bindu.P et al

have introduce the definition of direct product and projection of ternarysemigroups.

Definition 1:

Let $\{T_i\}$, $i \in I$ be an arbitrary system of ternarysemigroups. Denote by T the set of all functions ξ , defined on I such that $\xi(i) \in T_i$. Introduce in T a multiplication in this way: If α , β , $\gamma \in T$ are arbitrary elements of T, then the product $\omega = \alpha\beta\gamma$ is given by $\omega(i) = \alpha(i)\beta(i)\gamma(i)$ for every $i \in I$. The set T with this multiplication is a ternarysemigroup, which is called a direct product of ternarysemigroups $\{T_i\}$, $i \in I$ and is denoted by $T = \prod_{i \in I} T_i$.

Definition 2:

A rightideal R of the ternarysemigroup T is known as a semi prime rightideal of T if for any element $a \in T$ an arbitrary odd integer n the relation $a^n \in R$ implies that $a \in R$.

Theorem 1:

Let R_i be a semi prime rightideal of a ternarysemigroup T_i for every $i \in I$. Then $R = \prod_{i \in I} R_i$ is a semi prime rightideal of $T = \prod_{i \in I} T_i$.

Proof:

Let $\beta \in T = \prod_{i \in I} T_i$ be an arbitrary element and let $\beta^n \in R = \prod_{i \in I} R_i$. Then $[\beta(i)]^n \in R_i$ for every $i \in I$ and n is an odd integer. Since R_i is a semi prime rightideal of T_i , we have $\beta(i) \in R_i$ for every $i \in I$. Hence $\beta \in R = \prod_{i \in I} R_i$.

Definition 3:

Let $N \subseteq T = \prod_{i \in I} T_i$. The set of all elements $x_i \in T_i$ for which there exist at least one element $\xi \in N$ such that $\xi(i) = x_i$, will be indicated by $P_i(N)$ and known as the projection of the set N into the semi group S_i .

Theorem 2:

Let $R = \prod_{i \in I} R_i$ be a semi prime rightideal of a ternarysemigroup $T = \prod_{i \in I} T_i$. Then $P_i(R)$ is a semi prime rightideal of T_i .

Proof:

Let $R = \prod_{i \in I} R_i$ be a semi prime rightideal of $T = \prod_{i \in I} T_i$. The fact that $P_i(R)$ is a rightideal of T_i , It is only necessary to prove that it is semi prime. Let $a_i \in T_i$, $a_i^n \in P_i(R)$ where $i \in I$ is arbitrary, but fixed. It is necessary to show that $a_i \in P_i(R)$ Since $a_i^n \in P_i(R)$ it follows that $\exists \beta \in R \ni \beta(i) = a_i^n$, put $\beta(j) = b_j$ for $j \neq i$, $j \in I$. Let $\alpha \in T$ such that $\alpha(i) = a_i$, $\alpha(j) = b_j$ for $j \neq i$, $j \in I$. Since $\beta \in R$, then $\beta(j) = b_j \in P_j(R)$ for every $j \neq i$. But $P_j(R)$ is a rightideal, hence $b_j^n \in P_j(R)$ for $j \neq i$.

And corresponding to the assumption $a_i^n \in P_i(R)$. That is $[\alpha(i)]^n \in P_i(R)$ for every $i \in I$, hence $\alpha^n \in R$ (since $R = \prod_{i \in I} R_i$). But since R is a

semi prime rightideal of T, then $\alpha \in \mathbb{R}$, hence $\alpha(i) = a_i \in P_i(\mathbb{R})$, i.e $P_i(\mathbb{R})$ is a semi prime rightideal of T_i .

Theorem 1 and 2 implies:

Corollary 1:

A rightideal $R = \prod_{i \in I} R_i$ of a ternarysemigroup $T = \prod_{i \in I} T_i$ is a semi prime \Leftrightarrow The rightideal R_i for every $i \in I$ is semi prime.

Definition 4:

A rightideal R of a ternarysemigroup T is complete if RTT = R.

A rightideal R of a ternarysemigroup T is complete if for any $a \in R$ there exist $x, y \in T$, $b \in R$ such that bxy = a.

Theorem 3:

The set union of two complete rightideals of a ternarysemigroup T is a complete rightideal of T.

Proof:

Assume R_I , R_2 are two complete rightideals of T. Then $R_ITT = R_I$, $R_2TT = R_2$. Hence $(R_I \cup R_2)TT = R_ITT \cup R_2TT = (R_I \cup R_2)$. Which proves our assumption.

The question arises, whether the intersection of two complete rightideals is a right complete ideal.

The next example gives a negative answer.

Example 1:

Let $T = \{a, b, c, d\}$ be a ternarysemigroup with the multiplication table.

	а	b	С	d
а	а	а	а	а
b	а	а	а	а
С	а	а	С	d
d	а	а	С	d

 $R_1 = \{a, b, c\}; R_2 = \{a, b, d\}$ are complete rightideals of T, but $R_1 \cap R_2 = R_3 = \{a, b\}$ is not a complete rightideal of T.

Definition 5:

A rightideal R of a ternarysemigroup T is called a minimal if there exist no rightideal of T properly contained in R.

6366 Bindu.P et al

Evidently every minimal rightideal of a ternarysemigroup T is a complete rightideal of T.

Theorem 4:

Every rightideal of a ternary semigroup T is complete rightideal of T if and only if $T = R_T(0,1)$.

Proof:

Let $R = \bigcup_{a \in R} a$ be a rightideal of T. Then $RTT \supset \{\bigcup_{a \in R} a\}\{\bigcup_{a \in R} x_a\}\{\bigcup_{a \in R} y_a\} \supset \bigcup_{a \in R} ax_ay_a = \bigcup_{a \in R} a = R$. Hence RTT = R.

Conversely suppose that every rightideal of T be complete. Let $a \in T$ be any element of T. The rightideal $a \cup aTT$ satisfies $(a \cup aTT)TT = a \cup aTT$. i.e $aTT \cup aTTTT = a \cup aTT$. Hence $aTT = a \cup aTT$. Therefore $a \in aTT$ which proves that $T = R_T(0,1)$.

Remark:

Clearly the following assumptions hold.

- a) If T contains a right unit, then every rightideal is complete.
- b) $T = R_T(0,1) = R_T(1,0)$ if and only if every rightideal of T is complete.
- c) If $T = R_T(1,1)$ then every rightideal of T is complete.
- d) If all rightideals of T are complete, then then $T^3 = T$.

The next example of a ternarysemigroup shows that the converse of the assumption (d) need not hold.

Example 2:

Let T be an additive ternarysemigroup of positive numbers. Then T^3 - T. Let R = (a, ∞) with a > 0. Then RTT = $(a, \infty) \subset (a, \infty)$. So that R is not complete.

Theorem 5:

Let R_i for every $i \in I$ is a complete rightideal of the ternarysemigroup T_i then $R = \prod_{i \in I} R_i$ is a complete rightideal of $T = \prod_{i \in I} T_i$.

Proof:

Let R_i be a complete rightideal of a ternarysemigroup T_i , hence $R_iT_iT_i=R_i$, we have to prove that for any $\omega \in R$, there exist $\vartheta \in R$ and $\beta, \gamma \in T$ such that $\vartheta\beta\gamma = \omega$.

Since R_i is a complete rightideal of T_i , there exist for every $\omega(i) = a_i$ $\in R_i$, three elements $b_i \in R_i$ and x_i , $y_i \in T_i$ such that $b_i x_i y_i = a_i$. The functions ϑ , α defined by $\vartheta(i) = b_i$; $\beta(i) = x_i$; $\gamma(i) = y_i$ satisfy $\vartheta \beta \gamma = \omega$.

Theorem 6:

Let R be a complete rightideal of a ternary semigroup T = $\prod_{i \in I} T_i$. Then

i) $P_i(R)$ is a complete rightideal of $T_{i.}$

ii) $\prod_{i \in I} P_i(R)$ is a complete rightideal of T_{i} .

Proof :

Let R be a complete rightideal of $T = \prod_{i \in I} T_i$. Clearly $P_i(R)$ is a rightideal of T_i . It is only necessary to prove that it is complete. Let $a_i \in P_i(R)$. To prove that $P_i(R)$ is a complete rightideal. i.e we have to show that there exist $b_i \in P_i(R)$ and $x_i, y_i \in T_i$ such that $b_i x_i y_i = a_i$.

Since $a_i \in P_i(R)$, it follows that there exist an element $\mu \in R$ such that $\mu(i) = a_i$. Since R is a complete rightideal of $T = \prod_{i \in I} T_i$, there exist elements ϑ , α , $\beta \in R$ and $\mu \in T$ such that $\vartheta \alpha \beta = \mu$. This means that for every $i \in I$, we have $\vartheta(i)\alpha(i)\beta(i) = \mu(i)$, where $\mu(i) = a_i$, $\vartheta(i) = b_i \in P_i(R)$ and $\alpha(i) = x_i$, $\beta(i) = y_i \in T_i$. Therefore, we have $b_i x_i y_i = a_i$. This proves (i).

(ii) The statement (ii) follows from (i) and theorem 5.

Theorem 7:

A ternarysemigroup $T = \prod_{i \in I} T_i$ satisfies the condition (m, n) if and only if each of the ternarysemigroup T_i satisfies this condition.

Proof:

Let us assume that every ternarysemigroup T_i satisfies the condition (m, n). Let $\alpha \in T$ be an arbitrary element. Then $\alpha(i) = a_i \in T_i$ for every $i \in I$. Since T_i satisfies the condition (m, n), there exists an $x_i \in T_i$ such that $a_i = a_i^m x_i a_i^n$ (1).

Define $\beta \in T$ by the requirement that $\beta(i) = x_i$ for every $i \in I$. The relation (1) can be written in the form $\alpha(i) = [\alpha(i)]^m \beta(i) [\alpha(i)]^n$ for every $i \in I$. This means $\alpha = \alpha^m \beta \alpha^n$. But the last relation says that $T = \prod_{i \in I} T_i$ satisfies the condition (m, n).

Conversely suppose that let $T = \prod_{i \in I} T_i$ satisfies the condition (m, n). Let $a_i \in T_i$ be an arbitrary element. Then there exist at least one element $\alpha \in T$ such that $\alpha(i) = a_i$. Since T satisfies the condition (m, n), there exists an element $\beta \in T$ such that $\alpha = \alpha^m \beta \alpha^n$. Hence for our i, $a_i = a_i^m x_i a_i^n$. This means that T_i satisfies condition (m, n).

Corollary 2:

Every rightideal of the ternarysemigroup $T = \prod_{i \in I} T_i$ is complete if and only if every rightideal of the ternarysemigroup T_i for every $i \in I$ is complete.

Proof:

The proof follows from theorem 4 and 7.

Corollary 3:

The following statements are equivalent:

- i) Each of the ternarysemigroup T_i for every $i \in I$ satisfies the condition (0.1).
- ii) The ternarysemigroup $T = \prod_{i \in I} T_i$ satisfies the condition (0,1).

6368 Bindu.P et al

- iii) Every rightideal of T_i for every $i \in I$ is complete.
- iv) Every rightideal of $T = \prod_{i \in I} T_i$ is complete.

Proof:

- (i) implies (ii) according to theorem 7.
- (ii) implies (iii) according to theorem 7 and theorem 4.
- (iii) implies (iv) according to corollary 2.
- (iv) implies (i) according to corollary 2 and theorem 4.

Definition 6:

A rightideal R of a ternarysemigroup T is known as semi prime if for every element $a \in T$ and an arbitrary integer n the relation $a^n \in R$ implies $a \in R$.

Theorem 8:

Let R_i be a right semi prime ideal of T_i for every $i \in I$. Then $R = \prod_{i \in I} R_i$ is a right semi prime ideal of $T = \prod_{i \in I} T_i$.

Proof:

Let $\alpha \in T = \prod_{i \in I} T_i$ be an arbitrary element and let $\alpha^n \in R = \prod_{i \in I} R_i$. Then $[\alpha(i)]^n \in R_i$ for every $i \in I$. Since R_i is a semi prime ideal of T_i we have $\alpha(i) \in R_i$ for every $i \in I$. Hence $\alpha \in R = \prod_{i \in I} R_i$.

References:

- [1] Anjaneyulu.A: Semigroup in which prime ideals are maximal, semigroup forum, 22 (1981), 151-158.
- [2] Croisot.R: Demi-groupes inversifs et demi-groupes reunions de demi-groupes simples, Ann.Sci. Ecole Norm 3, 70(1953), 361-379.
- [3] Ivan. J: on the direct product of semigroups, Math-fyz, casopes, slovensk akad, vied, 3(1953), 57-66, MROO 62733.
- [4] Sioson.F.M: Ideal theory in ternary semigroups; math.Japan.10(1965); 63-84.
- [5] Shabir.M and Bashir.S: prime ideals in ternary semigroups; Asian European Journal of Mathematics, 2(2009), 139-152.