
International Journal of Applied Engineering Research

ISSN 0973-4562 Volume 10, Number 3 (2015) pp. 5905-5911

© Research India Publications

http://www.ripublication.com

An Efficient Bundle Range Aggregation Using R-Tree

Ms.S.P.Godlin Jasil
1
 and Vennila Mani

2

1
 Asst. Professor, Faculty of Computing,

Sathyabama University Chennai, Tamil Nadu, India

Email:godlin_jasil@yahoo.co.in
2
Student, Department of Computer Science,

Sathyabama University, Chennai, Tamil Nadu, India

Email: vennilacs @ymail.com

Abstract

In Bundled range aggregation, a series of aggregated queries consecutively on

multiple datasets and returning the query result on every outcome. An

arbitrarily chosen dataset is enquired and it will track on numerous dataset and

yields the result. The main tricky stated in bundle range aggregation is the

query cost function. Previously several techniques are conversed for dipping

the query cost but those methods didn’t proficiently diminish the query cost.

An innovative method should be proposed to shrink the query cost function. A

fresh procedure using aggregated bundled R –Tree is anticipated and this

system will efficiently process I/O demands and reduces the query cost.

Key Terms— bR-tree, Bundled range aggregation, minimum bounding

rectangle, Indexing.

I INTRODUCTION

R-trees are tree data structures recycled for accessing spatial methods, i.e., for the

tenacity of indexing multi-dimensional material such as geographical

coordinates, boxes or polygons. The key hint of the data structure is to bunch nearby

objects and symbolize them with the minimum bounding rectangle in the following

advanced level of the tree [4]; the "R" in R-tree represents the rectangle. Meanwhile

the bounding rectangle encompasses all the, the delimited object cannot be

interconnected if the specified request does not overlap the bounding rectangle. Every

rectangle is styled as a single object at the leaf level and at the higher levels it is

designated as the aggregation of a snowballing quantity of objects. It is nonentity but

the increasing granular estimation of the data set.The aggregation calculates an

aggregate outcome of the data setsfilling the range predicate; each item may have a

mailto:godlin_jasil@yahoo.co.in

5906 Ms.S.P.Godlin Jasil and Vennila Mani

value and the total weight of the items in the interval returns range sum query. In the

same way, bundled range aggregation can also be performed using other aggregate

functions [8]. This can be regarded as the simultaneous execution of a range aggregate

query on multiple datasets, returning a result for each dataset [1]. Likewise the set of

data items has a key and a weight, each data item also carries a colour [1].

II RELATED WORKS

Spatial Indexing

The data are overloaded into the spatial table either one by bulk loading or

transactional loading. On one occasion the data are loaded, the spatial index must be

created for accessing the data efficiently. Thus the spatial index will be an R-tree

index or a quadtree index. If you create a spatial index without specifying any

quadtree-specific parameters, an R-tree index is created. R-tree indexes are built as

two, three, or four dimensions of data. By default the number of dimensions for an R-

tree index will be two, if it is more than two dimensions, you can use the

(sdo_indx_dims) parameter keyword to specify the number of dimensions on which to

build the index [7].

Indexing uncertain categorical data
While indexing, the main problem faced is uncertainty in categorical data. This

uncertainty of categorical data occurs in many of the applications that include data

cleaning, integration of database, and biological annotation. In those domains, the

exact value of an attribute is mostly unknown, but may be selected from a reasonable

number of alternatives. This type of uncertainty is not provided conveniently by

current database management system that is meant for representing or

manipulating.Thus two index structures are proposed for efficiently searching

uncertain categorical data, one based on the PDR-tree and another based on an

inverted index structure. Using these structures, detailed descriptions of the

probabilistic equality queries they support are provided [2] [6].

Temporal Aggregates
Some problems arise while maintaining the materialized temporal aggregate in the

temporal incremental computing aggregation queries in temporal records [3]. The

complications are resolved using a new indexing structure called the SB-tree. The SB-

tree incorporates features from both segment-trees and B-trees. Fast lookup of

aggregate results based on time is supported by SB-tree, and when the data changes it

can be maintained efficiently. This effort extend the basic SB-tree index to handle

cumulative (also called moving-window) aggregates, considering cases separately

when the size of the window is or is not fixed in advance . Views in a temporal

database or warehouse, building and maintaining SB-tree indices for materialized

aggregate are proposed instead of the views themselves. By incorporating features

from segment-trees, SB-trees are more efficient to maintain than materialized

An Efficient Bundle Range Aggregation Using R-Tree 5907

temporal aggregates, particularly in the presence of base tuples with long valid

intervals. Furthermore, SB-trees contain enough information to construct the contents

of the temporal aggregates that they index. These features make SB-trees a

particularly effective structure for supporting temporal aggregates in data warehouses

[5].

III PROPOSED SYSTEM

The proposed system uses a bundled R-Tree, this method will perform more fast and

efficient then bundled aggregate B-Tree. This method is also dynamic and easily

answers all queries. The bR-tree stores the aggregate value of each sub tree in the

index record pointing to this sub tree. Computing an aggregate is now faster since the

aggregation information is used to eliminate various search paths. Let SD be a spatial

database (Crime database with city, crime number, data and month) and C a spatial

relation that stores the positions of real-time datasets. C is indexed by a bR-Tree RC.

Let R be a spatial relation that stores all the objects that belong to the spatial

dimension (i.e. crime reports), at the finest granularity. R is also indexed by a bR-Tree

RR. Let AG(·) be the aggregation function. Without loss of generality, we will assume

that AG (·) is COUNT, even though any non-holistic function can be used. The

bundled R-Tree(bR-tree) is an R-Tree which stores for each minimum bounding

rectangle (MBR), the value of the aggregation function that are enclosed by the MBR

for all the objects. The bR-tree is built on the finest granularity objects of the spatial

dimension; therefore its structure is similar to that of RR (the trees can be different

due to the smaller fan-out of the bR-tree). A bR-tree which indexes a set of five crime

reports, r1 … r5, who’s MBRs are a1 … a5 respectively.The general concept can be

applied to different types of queries; for instance, instead of keeping aggregated

results of joins the bR-tree could store such results for window queries. Furthermore

we could employ the same idea to other data partitioning or space partitioning data

structures (e.g., Quadtrees).This method also implements new updating algorithms

which includes insertion and deletion process.

The overall architecture is stated above (Fig 1). The work flow of the overall

system architecture states that, from the real-time datasets the bR-tree is constructed

and it is stored into the server. Meanwhile the user gives a query and thus the query

result is obtained from the server using updating process where insertion and deletion

process are carried out. That is termed to be as patching. Finally after these processes

the requested

Query is sent backfrom the serverto the user. Thus, the result consumes less

processing time and is of reduced query cost by the using bR-tree. The phases are

explained below in order.

5908 Ms.S.P.Godlin Jasil and Vennila Mani

Fig 1: Functional architecture

Construction of bR-tree
The bundled R-Tree (bR-tree) stores the value of the bundled function for all the

objects that are enclosed by the Minimum Bound Rectangle. The bR-tree is built on

the finest granularity objects of the spatial dimension; therefore its structure is similar

to that of RR (the trees can be different due to the smaller fan-out of the bR-tree). The

real-time data is considered as one dimensional data for multidimensional data a data

cube lattice framework is proposed for multi-dimensional data. Data cube lattice will

cover all the data.

An Efficient Bundle Range Aggregation Using R-Tree 5909

Indexing spatial data

In this module, the datasets collected from real-time applications are indexed and

stored in the bR-tree. In bR-tree indexing is the important process for quick search,

and efficient retrieval of datasets. In this the spatial data is indexed with spatial

indexing process and stored in the tree using insertion algorithm. The indexed datasets

are stored in their corresponding location.

Query Processing

In this module, a bundle range query is given by user to the server. Then the given

query will travel through the tree and run on every bundle range dataset. The

aggregation function processes the query and produces the datasets to the requested

user to split up and process the query. The Tree traversal is done by using

(r.MBR.pointer.Node id)

Update algorithm

In this module, update algorithms are implemented for changes of data. If the data

changes in the dataset then updating process takes place. It includes reinsertion and

deletion of data from the database. Patching includes insertion and deletion of data in

the tree and counter overhaul avoids the overload of patching process.

IV RESULTS AND DISSCUSSION
In this section, a thorough discussion about the result and performance measures of

the proposed system is discussed. Consider a scenario where bR-tree and aBB-tree is

compared for their retrieval efficiency as well as with their processing time. First

consider the comparison of the retrieval efficiency between the bR-tree and aBB-tree

where it is depicted in the graph below (Fig 2), in the graph the pink line indicates the

retrieval efficiency of the bR-tree and the blue line indicates the retrieval efficiency of

the aBB-tree. It is clear that the retrieval is efficient while using bR-tree as the pink

line is higher than the blue line.

Next consider the comparison of the processing time between the bR-tree and

aBB-tree where it is depicted in the graph below (Fig 3), in the graph the pink line

indicates the processing time of the bR-tree and the blue line indicates the processing

time of the aBB-tree. It is clear that the processing time of bR-tree is lesser than the

aBB-tree, which is the pink line is below the blue line.

5910 Ms.S.P.Godlin Jasil and Vennila Mani

Fig 2: Line Chart depicting retrieval Efficiency.

Fig 3: Line Chart depicting query processing time.

V CONCLUSIONS AND FUTURE WORK

A bundle range aggregation is proposed using R-tree. Thusbundled R-tree provides an

efficient bundle range aggregation and answers to any bundle I/O queries from the

user and run on multiple datasets and produces the result. This method is proposed to

minimize the query cost and dynamic in nature. This method reduces query cost and

efficiently answers user queries compared to other bundle range aggregation

methods.Further, it can be enhanced for implementing bundled function and to

support all type of data’s in thebRTree.

An Efficient Bundle Range Aggregation Using R-Tree 5911

REFERENCES

[1] Yufei Tao and Cheng Sheng. "I/O-Efficient Bundled Range

Aggregation."IEEE Transactions on Knowledge and Data Engineering (2013)

[2] S. Singh, C. Mayfield, S. Prabhakar, R. Shah, and S. E. Hambrusch. Indexing

uncertain categorical data. In Proc. of International Conference on Data

Engineering (ICDE), pages 616–625, 2007.

[3] J. Yang and J. Widom. Incremental computation and maintenance of temporal

aggregates. The VLDB Journal, 12(3):262–283, 2003.

[4] L. Arge. The buffer tree: A technique for designing batched external data

structures. Algorithmica, 37(1):1–24, 2003.

[5] D. Zhang, V. J. Tsotras, and D. Gunopulos. Efficient aggregation over objects

with extent. In Proc. of ACM Symposium on Principles of Database Systems

(PODS), pages 121–132, 2002.

[6] S. Govindarajan, P. K. Agarwal, and L. Arge. CRB-tree: An efficient indexing

scheme for range-aggregate queries.InProc.of International Conference on

Database Theory (ICDT), pages 143–157, 2003.

[7] D. Papadias, Y. Tao, P. Kalnis, and J. Zhang. Indexing spatio-temporal data

warehouses. In ICDE, pages 166–175, 2002.

[8] D. Zhang, A. Markowetz, V. J. Tsotras, D. Gunopulos, and B. Seeger. On

computing temporal aggregates with range predicates. ACM Transactions on

Database Systems (TODS), 33(2), 2008.

5912 Ms.S.P.Godlin Jasil and Vennila Mani

