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ABSTRACT 

 

In this paper we apply an efficient quadrature (i.e mixed quadrature rule) of 

precision nine to find an approximate numerical solution of nonlinear integral 

equation of Hammerstein type through discrete adomain decomposition 

method(DADM). Some examples are given to illustrate the validity of our 

method taking absolute error for different components. 
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1.  INTRODUCTION 

Non linear integral equations of Hammerstein type appear very often in many 

applications. For example it occurs in solving problems arising in economics, 

engineering and physics. One of the most important frequently investigated non linear 

integral equation of Hammerstein type. [1], [6], [9], [11], [16]. 

In this paper we study the problems for approximate solutions for the non linear 

integral equations of the Hammerstein type. 
b

a

btadssxFstktytx ,0,,                                     (1.1) 

Adomain decomposition method (ADM) for solving integral equations has been 

presented by G. Adomain [7], [8]. In [3], [4], wazwaz extended ADM to solve 

Volterra integral equations and boundary value problems for higher order integro-

differential equations. There are significant interests in applying the adomain 

decomposition method (ADM) for a wide class of non-linear integral equations. For 
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example, ordinary and partial differential equation. In [14], Behiry etal. introduced a 

discrete version of the Adomain decomposition method and applied it to (1.1). This 

method is called a Discrete Adomain Decomposition Method (DADM). We use the 

advantage of the fact that the Bull's rule of precision five fRB5  and Cleanshaw-

Curtis rule of precision five fRCC5  are linearly combined to form mixed 

quadrature rule of precision seven fR BCC 55 . Again we mix the Cleanshaw-Curtis 

rule of precision seven fRC7   with the first mix up rule fR BCC 55  of precision 

seven to form another mixed quadrature rule(i.e so called efficient quadrature) of 

higher degree of  precision nine. The present paper is designed in the following 

sections. Section II consists of basic idea of the above quadrature rules. Section III

deals with DADM with new nodes. Section IV  contains the formulation of efficient 

quadrature rule. The numerical examples are illustrated in SectionV . 

 

 

2.  QUADRATURE RULES 

In this section, we recall the definitions of two rules, namely Cleanshaw-Cutris 

quadrature rule and Bull’s quadrature rule. Cleanshaw-Cutris quadrature rule is based 

on expansion of the integrand in terms of Chebyshev polynomials. So we have to 

know some facts about Chebyshev polynomials. It is worth mentioning that 

Chebyshev polynomials are everywhere dense in numerical analysis [10]. The 

Chebyshev polynomials xTn  of the first kind is a polynomial in x  of degree n  

denoted by the following relation, 

 

cos,cos xwherenxTn        (2.1) 

 

From formula (2.1), the zero for x  in 1,1  of xTn  must correspond to the zeros 

for  in ,0  of ncos  so that 

 

njjn .....,3,2,1,
2

12        (2.2) 

 

Hence the zeros of xTn  are 

 

nj
n

j
x j .....,3,2,1,

2

12cos
                     (2.3) 

 

The internal extrema of xTn  corresponds to the external value of ncos , namely the 

zeros of nsin , since 
sin

sin n
xT

dx

d
n . Hence including those at 1x , the 

extrema of xTn   on 1,1  are 
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nj
n

j
x j .....,3,2,1,cos                              (2.4) 

 

The Chebyshev polynomial xU n   of the second kind is a polynomial in x  of degree

n , defined by the following relation 

 

cos,
sin

1sin
xwhere

n
xU n       (2.5) 

 

The zeroes of xU n  are given by 

 

nj
n

j
x j .....,3,2,1,

1
cos                           (2.6) 

 

2.1.  CLEANSHAW-CURTIS QUADRATURE-  

Cleanshaw-Curtis quadrature method proposed by Cleanshaw and Curtis [5] amounts 

to integrating via a change of variable cosx . The algorithm is normally expressed 

for integration of a function xf  over the interval 1,1 . Any other interval can be 

obtained by appropriate rescaling. For this integral, we can write 

 
1

1 0

sincos dfdxxf                  (2.7) 

 

That is we have to transform the problem from integrating sincosf . This can be 

performed if we know the cosine series for cosf . The reason is that this is 

connected to Chebyshev polynomials xT j , by (2.1), jT j coscos , and so the 

cosine series is really an approximation of xf  by Chebyshev polynomials. 

 
n

j

jj xxTaxT
a

xf
1

0
0 1,1,

2
                (2.8) 

 

and thus we are integrating xf  by integrating its approximate expansion in terms of 

Chebyshev polynomials. The evaluation points
n

j
x j cos  correspond to the 

extrema of Chebyshev polynomials xTn ; see [6]. The fact that such Chebyshev 

approximation is just a cosine series under a change of variables is responsible for the 

rapid convergence of the approximation as more terms xT j  are included. A cosine 

series converges very rapidly for functions that are even, periodic and sufficiently 
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smooth. This is true here since cosf  is even and periodic in  by construction, 

and is j times differentiable everywhere if xf  is j  times differentiable on 1,1 . 

 

 

3.  DISCRETE ADOMAIN DECOMPOSITION METHOD 

The solution tx  of (1.1) when applying ADM is expressed in a series form define 

by, 

0m

m txtx         (3.1) 

 

Where the component 0,mtxm  can be computed as will be shown next. The non 

linear term sxF   of the equation (1.1) should be represented, using a distinct 

scheme [13], by the so called Adomain polynomials tAm  as  

 

0

10 ........,,
m

mm sxsxsxAsxF       (3.2) 

 

Where tAm  can be evaluated by the following formula,   [13] 

 

00

10
!

1
........,,

m

m

m

m

m

mm xF
d

d

m
sxsxsxA    (3.3) 

 

The Adomain polynomials are arranged into the form  

 

00 xFA           (3.4) 

 

011 xFxA i           (3.5) 

 

0

2

1022
!2

1
xFxxFxA iii       (3.6) 

 

0

3

1021033
!3

1
xFxxFxxxFxA iiiiii      (3.7) 

 

0

4

102

2

1031

2

1044
!4

1

!2

1

!2

1
xFxxFxxxFxxxxFxA iviiiiii

 (3.8) 

 

Substituting (3.1) and (3.2) into (1.1), we obtain 
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00

,
1

m

b

a

m

m

m dssAtsKtytx      (3.9) 

 

The components 0,mtxm  are to be computed using the following recursive 

relation [14]; 

 

tytx
1

0
        (3.10) 

 

0,,
1

1 mdssAtsKtx

b

a

mm       (3.11) 

 

It is noticed that computation of each component 0,mtxm  requires the 

computation of an interval in (3.11). If the evaluation of integrals are analytically 

possible, the ADM can be applied in a simple manner. In the cases where the 

evaluation of integral (3.11) is analytically impossible, the ADM cannot be applied. In 

order to use numerical integration for integral in (3.11), we transform the interval

ba ,  to 1,1  by using the transformation, 

 

tabbax
2

1
       (3.12) 

 

Now we will make use of the above two quadrature rules. 

 

 

4.  FORMULATION OF AN EFFICIENT QUADRATURE RULE 

fR CCBCC 755   

All the rules are implemented for the approximate evaluation of  

 
1

1

dxxffI         (4.1) 

 

Keeping in the mind [15], here the two rules namely Cleanshaw-Curtis fRCC5  and 

Bull’s fRB5   rule each of precision five are mixed to form a rule of precision 

seven. We consider the Cleanshaw-Curtis rule of degree of precision five 

 

1
2

1
8012

2

1
81

15

1
5 ffffffRCC   (4.2) 
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and Bull’s rule of degree of precision five 

 

17
2

1
32012

2

1
3217

45

1
5 ffffffRB   (4.3) 

 

Taking the convex combination of (4.2) and (4.3) we obtain the mixed quadrature rule 

of precision seven for the approximate evaluation of (4.1) namely, 

 

fRfRfR BCCBCC 5555 25
7

1
      (4.4) 

 

Equation (4.4) can be written in analytic form 

 

0204
2

1

2

1
64

2

1

2

1
1201129

315

1
55

fff

ffff

fR BCC   (4.5) 

 

The mixed quadrature rule (i.e. the so called efficient quadrature rule fR CCBCC 755 ) of 

degree of precision nine is formulated by linear combination of (4.5) and (4.6) is of 

degree of precision seven for the approximate evaluation of (4.1). The Cleanshaw-

Curtis rule of precision seven is 

 

0164
2

1

2

1
144

2

3

2

3
80119

315

1
7

fff

ffff

fRCC    (4.6) 

 

We obtain an efficient quadrature rule i.e. 

 

fRfRfR CCBCCCCBCC 755755 14
15

1
     (4.7) 

 

Equation (4.7) can also be written in analytic form as, 
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02500
2

1

2

1
120

2

1

2

1
2080

2

3

2

3
112011155

4725

1
755

fff

ff

ffff

fR CCBCC
 (4.8) 

 

 

5.  NUMERICAL EXAMPLES 

In this section we are applying our methods to some non linear integral equations of 

the Hammerstein type (1.1). These examples show the efficiency and accuracy of our 

method. The tables show computed absolute error for different m . 

 

tXtXte approxexactm        (5.1) 

 

Where m  is the number of components mxxxx ...,.........,, 321 . The computation 

associated with different examples is numerically evaluated using Matlab Format 

Long. 

EXAMPLE1: 

Consider the non linear integral equation of Hammerstein type 

 

dssxtstettx
3

1

0

444 expexp1
4

1
1010    (5.2) 

 

Here 

10 , 4exp1
4

1
10 tetty   

44exp, tsstK   and  
3

sxsxF  

 

Equation (5.2) has an exact solution ttxe , [2] 

Let 
4

0 exp1
40

1
tet

ty
tx  

 

Table (1) and table (2) display  the numerical solution of example-1. 
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Table 1- fR BCC 55  The effect of m  in the absolute error at 7n  

 

t |e3(t)| |e4(t)| |e5(t)| 

0.00000 1.24198×10 
-3

 4.05460×10 
-4

 7.87349×10 
-5

 

0.06699 1.24200×10 
-3

 4.05493×10 
-4

 7.87364×10 
-5

 

0.25000 1.24684×10 
-3

 4.07047×10 
-4

 7.90430×10 
-5

 

0.50000 1.28422×10 
-3

 4.31610×10 
-4

 8.38128×10 
-5

 

0.75000 1.69207×10 
-3

 5.56367×10 
-4

 1.08039×10 
-4

 

0.93301 2.64982×10 
-3

 8.65066×10 
-4

 1.67984×10 
-4

 

1.00000 3.37606×10 
-3

 1.10215×10 
-3

 2.14023×10 
-4

 

 

Table 2- fR CCBCC 755  The effect of m  in the absolute error at 9n  

 

t |e3(t)| |e4(t)| |e5(t)| 

0.00000 1.34640×10 
-3

 5.36810×10 
-4

 2.25173×10 
-4

 

0.06699 1.34643×10 
-3

 5.36823×10 
-4

 2.25177×10 
-4

 

0.14645 1.34702×10 
-3

 5.37057×10 
-4

 2.52276×10 
-4

 

0.25000 1.35167×10 
-3

 5.38911×10 
-4

 2.26054×10 
-4

 

0.50000 1.43671×10 
-3

 5.71432×10 
-4

 2.39695×10 
-4

 

0.75000 1.84670×10 
-3

 7.36664×10 
-4

 3.08979×10 
-4

 

0.85355 2.30191×10 
-3

 9.12718×10 
-4

 3.82853×10 
-4

 

0.93301 2.87260×10 
-3

 1.14530×10 
-3

 4.80415×10 
-4

 

1.00000 3.68552×10 
-3

 1.45920×10 
-3

 6.12083×10 
-4

 

 

 

EXAMPLE 2: 

 

Consider the non linear integral equation of Hammerstein type 

 

dsetsxttettx ssinexp1coscos2020

1

0

  (5.3) 

 

Here 

20 , ttetty 1coscos20   
setstK sin,   and  sxsxF exp  

 

Equation (5.3) has an exact solution ttxe , [2] 

Let ttet
ty

tx 1coscos
20

1
0  

 

Table (3) and table (4) display the numerical solution of example-2. 
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Table 3- fR BCC 55  The effect of m  in the absolute error at 7n  

 

t |e1(t)| |e2(t)| |e3(t)| 

0.00000 3.47613×10 
-3

 2.73309×10 
-4

 5.22558×10 
-5

 

0.06699 3.43977×10 
-3

 2.70622×10 
-4

 5.25980×10 
-5

 

0.25000 3.26251×10 
-3

 2.57146×10 
-4

 5.23295×10 
-5

 

0.50000 2.84605×10 
-3

 2.24994×10 
-4

 4.91496×10 
-5

 

0.75000 2.25264×10 
-3

 1.78853×10 
-4

 4.29139×10 
-5

 

0.93301 1.72699×10 
-3

 1.37835×10 
-4

 3.66288×10 
-5

 

1.00000 1.51916×10 
-3

 1.21592×10 
-4

 3.40099×10 
-5

 

 

Table 4- fR CCBCC 755  The effect of m  in the absolute error at 9n  

 

t |e1(t)| |e2(t)| |e3(t)| 

0.00000 3.47781×10 
-3

 2.75000×10 
-4

 5.05684×10 
-5

 

0.06699 3.44143×10 
-3

 2.72284×10 
-4

 5.09396×10 
-5

 

0.14645 3.37828×10 
-3

 2.67479×10 
-4

 5.10833×10 
-5

 

0.25000 3.26408×10 
-3

 2.58690×10 
-4

 5.11491×10 
-5

 

0.50000 2.84740×10 
-3

 2.26296×10 
-4

 4.78481×10 
-5

 

0.75000 2.25369×10 
-3

 1.79832×10 
-4

 4.19342×10 
-5

 

0.85355 1.96429×10 
-3

 1.57120×10 
-4

 3.86941×10 
-5

 

0.93301 1.72778×10 
-3

 1.38537×10 
-4

 3.59246×10 
-5

 

1.00000 1.51985×10 
-3

 1.22187×10 
-4

 3.34130×10 
-5

 

 

 

6.  CONCLUSION 

We have solved the non linear integral equation of Hammerstein type by an efficient 

quadrature fR CCBCC 755  using DADM. The approximate results of integral equation 

obtained by our proposed method indicate that our method is remarkably successful 

numerical technique for solving non linear integral equation of Hammerstein type. 
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