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Abstract: 
 

The  class  of  ternarysemigroups  under  the  title  includes  the  finitely  generated  
commutative  ternarysemigroups  and  noetherian  commutative  ternarysemigroups.  
We  develop  here  some  properties  of  noetherian  ternarysemigroups  related  to  
primeideal  structure.   
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Introduction  and  preliminaries: 
Throughtout  this  paper  all  ternarysemigroups  under  consideration  are  
commutative.  An  ideal  A  in  a  ternarysemigroup  T  is  said  to  be  finitely  

generated  if 1 1

1 1

( )
n n

i i i
i i

A x x TT x T T
 

    .  It  is  called  a  principal  ideal  or  is  

principally  generated  if  1 1A xT T   for  some x T .  T  can  be  treated  as  an  ideal  
and  every  ideal  different  from  T  is  called  a  proper.  A  ternarysemigroup  T  is  
called  a  noetherian  ternarysemigroup  if  every  increasing  chain  of  ideals  
teriminates  at  a  finite  state  or  equivalentely  each  ideal  is  finitely  generated.  T  
is  called  finitely  generated  if  there  exists  1 2,  ,  ..... nx x x   in  T  such  that  every  
element  is  a  product  of  powers  of  ix ’s.  An  ideal  A  is  primary  (prime)  if  
xyz A and  ,x A y A    then  for  some  odd  integer  n,  nz A   ( )z A .  For  any  
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ideal  A  in  a  ternarysemigroup  T,  { : nA x T x A     for  some  odd  integer  }n .    
If  A  is  a  primary  ideal,  then  A   is  a  primeideal.  An  ideal  A  is  called  T-
primary  if  A   =  T.  It  can  be  shown  that  every  ideal  in  a  noetherian  
ternarysemigroup  is  an  intersection  of  finite  number  of  primaryideals.  The  
ternarysemigroup  { }i i NT x    with  maximum  multiplication  is  a  noetherian  
ternarysemigroup  and  T  is  principal  ideal.  But  T  is  not  a  finitely  genetared  
ternarysemigroup.  So  one  will  be  interested  in  knowing  which  noetherian  
ternarysemigroups  are  finitely  genetared.  The  result  in  this  paper  is  the  
supplement  the  works  of  Anjaneyulu.A  [1]  and  Satyanarayana.M  [6]. 
 
 
Primary  ideals  in  Ternary  semigroups 
Lemma  1.1.  Let  H  be  the  collection  of  all  ideals  in  a  ternarysemigroup  T,  
which  are  not  principal.  If  H    then  there  exists  a  primeideal  which  is  not  
prinicipal. 
 
Proof:  We  shall  prove  the  theorem  when  no  ideal  in  H  is  principal.  Similar  
proof  can  be  given  for  finitely  generated  case.  Let   A   be  a  chain  of  ideals  

in  H.  If  1 1A xT T  ,  then  1 1A xT T    for  some   ,  which  is  not  true.  So  

A H  .  Then  by  the  application  of  Zorn’s  lemma  to  H  a  maximal  element  
P  in  H  is  guaranteed.  Now  the  proof  is  completed  by  showing  that  P  is  a  
primeideal.  Suppose  that  P  is  not  a  primeideal.  Then  there  exist  , ,a b c P   and
abc P .  By  maximality  of  P, 1 1 1 1P bT T xT T  ,  which  implies  x P   or  

1 1x bT T .  If  x P   then 1 1P xT T   which  is  not  ture.  So,  if  1 1x bT T ,  then  
1 1P bT T .  Since  abc P   and  ,a P   1 1 1 1: { : }P bT T t bT T tt P    is  an  ideal  

containing  P  properly.  Again  by  the  maximality  of  P,  1 1 1 1:P bT T yT T .  Now  
we  assert  1P byT ,  which  is  evidently  a  contradiction.  Clearly  1byT P .  Now  
if  t P ,  1 1t bT T and  so  t  =  brs,  since t b .  But   brs P ,  so  that  

1 1 1 1:r P bT T yT T  .  Thus  1t byT   and  hence  1P byT . 
An  immediate  consequeness  of  1.1  is 

 
Corollary  1.2.  If  every  primeideal  including  T  is  principal  in  a  
ternarysemigroup  T,  then  every  ideal  in  T  is  principal. 
 
Lemma  1.3:  Let  T  be  a  ternarysemigroup,  which  is  a  union  of  a  finite  
number  of  principal  ideals.  If  every  proper  primeideal  is  principal,  then  the  
following  are  true. 
a)   Every  ideal  is  an  intersection  of  a  principal  ideal  and  an  T-primary  

ideal. 
b)   If  3T T then  every  proper  ideal  is  principal. 
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Proof:  We  now  prove  firstly,  every  primaryideal  Q Q T    is  a  principal  

ideal.  By  hypothesis  the  proper  primeideal   P Q   is  of  the  form  1 1aT T for  
some a T .  This  implies  that     a  natural  number  .rr a Q    Therefore

1 1 .r rP a T T Q    In  the  case  when  Q  is  accommodated  in  every  power  of  P  
we  have  1 1.r rQ P a T T    On  the  another  hand  let     an  odd  natural  number  
m   mQ P   and  Q ⊈  2mP  .  Since    mP   is  a  principal  ideal,    mQ P AB for  some  
ideals  A,  B  and   Q ⊈  2mP    implies  that  ܣ ⊈ ܤ  ,ܲ ⊈ ܲ.  Since  Q  is  P-  primary  
we  must  have  that  mP Q .  So  that  mQ P   and  hence  Q  is  principal.  Now  
by  1.2,  T  is  noetherian  and  so  any  arbitrary  ideal  A  is  of  the  form  

1 2 ... nQ Q Q     where iQ ’s  are  primaryideals     i i j jP Q Q P     for  i j .  

We  may  assume  iP T   for  some  i  =1,2,...m  and  iP T for  2m i n   .  

Clearly  2( ... )m nQ Q T      and  hence  2 ...m nQ Q     is  a  T-primaryideal.  
Now  we  claim  that  1 2 1 2..... .....m mQ Q Q Q Q Q      which  proves  that  

1 2 ... mQ Q Q     is  a  principal  ideal.  Since  every  one  of  1 2, ,....., mQ Q Q   is  a  
principal  ideal.  This  establishes  (a).  For  this  order  these  iP ’s  1 i m    so  that  
we  can  assume  without  loss  of  generality  that  1P   is  large  in  1{ }m

iP ,  P2  
maximal  in  2{ }m

iP   and  so  forth.  This  means  no  i jP P   for  i j .   
Now  suppose  for  r m ,  1 2 1 2... ...r rQ Q Q Q Q Q    .   
Then 1 2 2 1 2 2... ( ... )r r rQ Q Q Q Q Q Q         1 1

2raT T Q     for  
some  a T ,  since  every  one  of  1 2, ,... rQ Q Q   is  principal.  Let  2rx ayz Q   .  By  
the  choice  of  iP ’s, 2ra P  .  Since  2ra P    implies  

1 1
1 2( ) ... raT T Q Q Q    1 2 ... rP P P      and  thus  2i rP P    for 2i r  ,  

which  is  not  true.  Hence 2ry Q  .  Since  2rQ    is  a  primaryideal  such  that

2r rQ P  .  Thus 1 1 1 1
2 2r raT T Q aT T Q    ,  which  implies  

1 1 1 1
2 2r raT T Q aT T Q    .   Therefore  by  induction,  1 2 1 2... ...m mQ Q Q Q Q Q      

where  m  is  an  odd  natural  number.  To  show  (b),  it  suffices  to  prove  that  
there  are  no  proper  T-primaryideals  by  justice  of  (a).  We  can  write  

1 1

1

n

i
i

T x T T


   where  1 1
i jx x T T   for  i j .  Then  the  condition  3T T   implies  

that  3 1 1
i ix x T T   for  every  i  and  so  1 1 1 1

i ix T T e T T   where  ie   is  an  idempotent.  

Thus  
1

n

i
i

T eTT


 .  Now,  if  A  is  a  proper  ideal  such  that  A T ,  then  in
ie A   

for  some  in ,  so  that  A  =  T  which  is  not  true.   
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Lemma  1.4:  Let  T  be  a  ternary  semigroup  in  which  3T T   and  every  
maximalideal  is  principal.  Then  T  has  atmost  two  maximalideals  and  for  any  
proper  prime ideal  P,  either  P  is  a  principal  ideal  or  P  =  xyP  for  some

,x y T . 
 
Proof:  Let  3\a T T .  Then  \T a   is  a  maximalideal  and  so  by  hypothesis  

1 1\T a bT T .  Clearly  b a .  Let 3b T .  Thus  3\T a T .  If  1 1M cT T   is  any  
maximalideal  and  if  3c T ,  then  3M T   and  3 \M T T a  .  Now  if 3c T ,  
then  \c T a   so  that  c  =  a.  Thus 1 1M aT T .  Hence  in  this  case  when  

3,b T T can  have  atmost  two  maximalideals,  namely  \T a   and  1 1aT T .  Let  
3b T .  Then 1 1 3T a bT T a b T     .  We  claim  that  \T a   and  \T b   are  the  

only  two  maximalideals.  If  1 1M cT T   is  a  maximalideals,  then  consider  the  
case  when  3c T .  This  implies  c  =  a  or  b,  so  that  \M T a   or  \T b .  The  
case  that  3c T is  in  admissible,  since  otherwise  3M T ,  which  implies  that  
the  maximalideal  3T is  contained  properly  in  the  maximal  ideal  \T a . 

To  prove  the  second  part  consider  any  proper  primeideal  P.  If  a P ,  

then  1 1\P T a bT T  .  This  implies  that  1 1P bT T   if  b P   and  P  =  bPP  if  
b P   since  P  is  a  prime  ideal.  Let  a P .  If  b P   also,  then  P  =  T.  If  
b P   then  \P T b .  In  the  first  part  we  have  proved  \T b   is  a  maximalideal  
and  so  1 1\T b xT T   for  some  x.  Then  as  before  1 1P xT T   or  P  =  xPP. 
 
Theorem  1.5:  Let  every  maximalideal  in  a  ternarysemigroup  T  be  principal.  If  

3T T   and  
1

n

n

x TT 




   for  every  n T   then  T  is  a  union  of  three principal  

ideals  and  every  ideal  is  an  intersection  of  a  principal  ideal  and  an  T-primary  
ideal. 
 
Proof:  By  Lemma  1.4,  every  proper  primeideal  is  principal.  If  3\a T T ,  then  
by  hypothesis,  the  maximalideal  \T a   is  of  the  form  1 1bT T   for  some  b T .  
Therefore  1 1 1 1 1 1T a bT T aT T bT T    .  Now  the  conclusion  is  evident  from  
1.3.   
 

Theorem  1.6:  Let  T  be  a  noetherian  ternarysemigroup  such  that 1 1

1

n

i
i

T x T T


 .  

Suppose  1
ia x aT   for  all  a T ,  which  is  not  a  product  of  powers  of  ix ’s.  

Then  T  is  finitely  generated.  In  particular  if  T  is  a  noetherian  cancellative  
ternarysemigroup  without  identity,  then  T  is  finitely  generated. 
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Proof:  Suppose  there  exists  an  element  a  such  that  a  is  not  a  product  of ix ’s.  
Then 1 1ia x t t ,  where  1a t   and  1t   is  not  a  product  of  powers  of  ix ’s.  Hence  

1 2 2jt x t t .  If  2 1t t TT   or 2 1t t ,  then  we  have  1
1 1jt x t T which  is  not  true  by  

hypothesis.  Thus  1 1
1t T T   is  properly  accommodated  in  1 1

2t T T .  Proceeding  in  this  
manner,  we  have  a  non-terminating  chain  of  ideals,  1 1 1 1

1 2 ......t T T t T T    this  
is  impossible  by  the  noetherian  condition.  The  second  assertion  follows  now  
immediately  by  noting  that  in  cancellative  ternarysemigroups,  the  condition   
a  =  aab  implies  that  b  is  an  identity.   
 
Proposition  1.7:  Let  T  be  a  ternarysemigroup  which  is  a  union  of  finite  
number  of  ideals.  Then  T  contains  idempotents  if 3T T .  If  T  is  cancellative,  
then  T  contains  an  identity  if  and  only  if 3T T . 
 

Proof:  Let  1 1

1

n

i
i

T x T T


   with  i j jx x x TT    for  i j .  Since  3T T ,  1 1

1

n

i
i

x T T



3

1

( )
n

i i j
i

x x x T


    which  implies  3
i ix x   or  3

i ix x tt   for  every  i.  Thus  T  

contains  idempotents.  If  T  is  cancellative,  T  can  have  atmost  one  idempotent,  
which  is  the  identity  itself.  Hence  the  second  part  is  evident.   
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