
International Journal of Applied Engineering Research

ISSN 0973-4562 Volume 10, Number 3 (2015) pp. 7469-7484

© Research India Publications

http://www.ripublication.com

System-on Chip Test Scheduling using Multi-

Objective Particle Swarm Optimisation Algorithm

Angappan Natarajan and M.C.Bhuvaneswari

Assistant Professor (Sr. Gr.),

Department of Electrical and Electronics Engineering,

PSG College of Technology, Peelamedu,

Coimbatore 641004, Tamilnadu, India

+91 9842077436 ann@eee.psgtech.ac.in

Associate Professor

Department of Electrical and Electronics Engineering,

PSG College of Technology, Peelamedu,

Coimbatore 641004, Tamilnadu, India

+91 9442625926 mcb@eee.psgtech.ac.in

Abstract

System-On Chip (SoC) is a methodology in which a complete system can be designed

and accommodated in a single chip. SoC has many numbers of deeply embedded

cores. The testing of SoC will be a complex and time consuming process so as to test

more number of cores. When all the cores are completed testing, testing of SoC

completes. The testing process of SoC consists of wrapper optimisation, Test Access

Mechanism (TAM) optimisation and test scheduling. Once TAM and test wrapper are

determined, the major challenge for system integrator is test scheduling. SoC test

time minimization, resource conflicts due to sharing of TAMs, precedence constraints

among tests, test power constraints, thermal profile during tests, and scheduling are

the different factors that may be considered during the testing of SoC. Test

Scheduling refers to the order in which the cores in SoC are tested. Test scheduling

problem can be expressed using floor plan. Sequence pair is used for floor plan

representation. In this paper, Testing time and idle pin-time product in Floor plan are

considered as two objective functions for minimization. The optimal test time and idle

pin-time product are obtained using Weighted Sum Multi-Objective Particle Swarm

Optimisation (WSMOPSO) algorithm. The algorithm is tested with ITC‟02

benchmarks circuits. For the given TAM partition, the test time and the idle pin-time

product are calculated and are compared to the test scheduling based on single

objective PSO algorithm.

mailto:mcb@eee.psgtech.ac.in

7470 Angappan Natarajan and M.C.Bhuvaneswari

Keywords: System-on Chip, wrapper, scheduling, floor plan, sequence pair, PSO

1. INTRODUCTION

Increasing development in VLSI technology leads to the implementation of a system

with billion transistors in a single chip, as a collection of multiple cores, called as

System on Chip. These large numbers of components makes the testing process of

SoCs a complex process. Testing process should take less time so as to meet the time

to market requirements as soon as possible. Testing time for such SoCs are more so

that it affects the time-to-market issue. Testers involved in the testing process are

costlier. Also, testers have constraint on the power handling capability.

SoC can be tested by serial or parallel method. In serial method, each core of

SoC is tested sequentially. This takes more testing time. In parallel testing method, at

the same instant of time many cores are tested. This type of testing causes more power

dissipation which may lead to damage of SoC. However this method has some

disadvantages, it is favoured for testing SoC because this method takes less testing

time.

The input circuits considered for testing are ITC‟02 Benchmark circuits.

ITC‟02 SoC benchmark circuits are a set of benchmark circuits officially presented at

International Test Conference (ITC‟02) in October 2002 in Baltimore, MD, USA.

These benchmark circuits are designed with special focus of modular plug-and-play

testing of core based SoCs. The set of benchmark currently contains twelve data sets.

The Bench mark detail for a circuit contains number of input, number of output,

number of scan chains and test patterns. These input details are considered for

wrapper optimization, TAM optimization, and SoC test scheduling.

X.Chaun-Pei et al. [1] proposed an algorithm for the test scheduling of SoC

with power taken as a constraint using the Particle Swarm Optimization (PSO).

Iyengar et al. [2] and Chakrabarty [3] have employed TAM optimization for various

numbers of TAMs, based on test bus & test data. The test cores are assigned to TAM

width using Integer Linear Program (ILP) algorithm [4], [5]. The concept of effective

TAM optimization based on ILP algorithm is explained in these papers.

Erik Larsson and ZeboPeng, [6] have described about the test parallelism

which is used as a technique to reduce the test application time for SoC. In this work,

Parallel Testing has been conducted under test power constraints. Julien

Pougetet.al.[7] have described a test scheduling technique with the objective to

minimize the test application time while considering multiple conflicts. The conflicts

that have been considered are due to cross core testing, module testing with multiple

test sets, hierarchical conflicts in SoCs where cores are embedded, sharing TAM, test

power limitations. They have implemented this in ITC‟02 Benchmark Circuits.

Vikram Iyengar and Krishnendu Chakrabarty, [8] have described a technique

for carrying out the TAM and wrapper optimization in conjunction. They provide an

algorithm to construct the wrapper that reduces the testing time of cores. Before this

work neither TAM nor wrapper can be optimized at a time. VikramIyengaret.al.[9]

represented a heuristic technique for TAM wrapper co-optimization and demonstrated

that technique and its stability for several industrial SoCs. Laung-Terng Wang

System-on Chip Test Scheduling using Multi-Objective Particle 7471

et.al.,[10] in their book described about various SoC test architectures. Different types

of TAM and wrapper and the different modes of operation of wrapper are explained in

this book. The concepts of test rail and test bus architecture are described in this book.

Laurent Muller et.al.,[11] have published their work about floor planning

representations and algorithms. The concept of floor plan and sequence pair is

explained and the steps to obtain floor plan from sequence pair are explained in [12],

[13].

Based on the literature review, the test scheduling has been implemented for

optimal test time with power as a constraint. In this paper, the test scheduling of SoC

is done using multi objective evolutionary algorithms for optimal test time and idle

pin-time product. This paper is organized as follows. In section 2, A SoC test

architecture is described. In Section 3, Justification for SoC Test Scheduling problem

that can be represented as a Floor plan and the role of sequence pair is given. The use

of MOPSO Algorithm for optimising SoC Test time and idle pin-time product is

illustrated in section 4. The result & discussion and conclusion are given in section 5

and 6.

2. SOC TEST ARCHITECTURE

Test mechanism may be of one of the kinds boundary scan testing (IEEE 1149.1,

IEEE 1149.6, IEEE P 1687), core-based testing (IEEE 1500). Architecture for testing

embedded core based SoC is shown in Fig. 1 [14]. It consists of three parts namely,

Test Pattern Source and Sink, Test Access Mechanism (TAM), Core Test Wrapper.

Fig.1 SoC Test Architecture

 Test Pattern Source and Sink. The test pattern source generates the test

stimuli for the embedded cores and test pattern sink compares the obtained

responses to the expected responses.[10]

 Test Access Mechanism (TAM). The TAM transports test patterns. It is used

for the on-chip transport of test stimuli from the test pattern source to the core

under test and also for the transport of test responses from the core under test

to a test pattern sink.

7472 Angappan Natarajan and M.C.Bhuvaneswari

 Core Test Wrapper. The core test wrapper forms the interface between the

embedded core and its environment. It connects the terminals of the embedded

core to the rest of the integrated circuit and to the TAM.

2.1 Testing Process

The SoC testing process includes TAM optimisation, Wrapper optimisation and Test

Scheduling shown in Fig.2. Test Scheduling refers to the order in which the cores of

SoC are tested.

Fig. 2 Test Process Flow

3. FLOORPLAN REPRESENTATION USING SEQUENCE PAIR

The test scheduling problem can be represented as a floor plan. The Sequence pair is

used to represent the floor plan [11]. For example {124536, 326145} is a sequence

pair. It has positive and negative loci. The first half is positive loci and the second half

is the negative loci. From this sequence pair grid representation is obtained. From the

grid graph horizontal Constraint (GH) graph and vertical Constraint (VH) graph are

obtained. GH contains a source (s) and a sink (t) placed horizontally and VH contains

source and a sink placed vertically. The width of the module is given as node length

for i
th

 module and for nodes„s‟ and„t‟, the width is taken as zero. In this paper, the

width is taken as time taken to test the particular core and number of test pins in GH

and GV respectively. The longest path of the GH and GV from source to sink is

calculated.

Gridding is the process of encoding a packing into a sequence-pair. The

following steps describe a procedure to transform a sequence pair to its floor plan

[11]. Consider an n by n grid, where n is the number of modules. Let (G+, G-) be the

sequence-pair produced by gridding. Modules x and x‟ are related in exactly one of

four ways:

M
aa

(x) = { x‟ | x‟ is after x in both G+ and G–}

M
ab

(x) = { x‟ | x‟ is after x in G+ and before x in G–}

M
ba

(x) = { x‟ | x‟ is before x in G+ and after x in Γ G–}

M
bb

(x) = { x‟ | x‟ is before x in both G+ and G–}

Let (G+, G–) be the sequence-pair produced by Gridding for a packing

If x‟ εM
aa

(x), then x‟ is right of x in packing

If x‟ εM
ab

(x), then x‟ is below x in packing

If x‟ εM
ba

(x), then x‟ is above x in packing

If x‟ εM
bb

(x), then x‟ is left of x in packing.

System-on Chip Test Scheduling using Multi-Objective Particle 7473

Whereas, the arrangement of the sequence-pair produced by gridding in shown

in Fig. 3

Fig. 3 Sequence-Pair Produced by Gridding

Label the horizontal grid lines and the vertical grid lines with module names

along G+ and G– from top and from left, respectively. A cross point of the horizontal

grid line of label i and the vertical grid line of label j is referred to by (i, j). Then,

rotate the resulting grid counter clockwise by 45 degrees to get an oblique grid as

shown in Fig.3. Place each module i with its center being on (i, i).

3.1 Horizontal and Vertical Constraint

On the basis of the preceding constraints, a horizontal constraint graph can be created

with a source, a sink, and a node-weighted directed acyclic graph GH (V, E), where, V

is the set of nodes and E is the set of edges as follows:

 V: source s, sink t, and n nodes labelled with module names.

 E: (s, i) and (i, t) for each module i, and (i, j) if and only if module i is on the

left of module j (horizontal constraint).

 Nodes weight: zero for s and t, width of module i for node i.

Given a sequence pair (G+, G–), the geometric relation of modules can be

derived from the sequence pair as follows:

Rule 1 (horizontal constraint): Module i is left to module j if i appears before j in both

G+ and G– (. . . i . . . j . . ., i . . . j . . .).

Rule 2 (vertical constraint): Module i is below module j if i appears after j in G+ and i

appears before j in G– (. . . i . . . j . . ., i . . . j . . .).

7474 Angappan Natarajan and M.C.Bhuvaneswari

Similarly, a vertical-constraint graph GV (V, E) can be constructed on the basis

of the vertical constraints and the height of each module. Both the horizontal and the

vertical constraint graphs are acyclic in nature. If two modules i and j are in horizontal

relation, then there is an edge between nodes i and j in GH, and thus they do not

overlap horizontally in the resulting floor plan. Similarly, if modules i and j are in

vertical relation, they do not overlap vertically. Because any pair of modules is either

in horizontal or vertical relation, no modules overlap with each other in the resulting

floor plan.

The module locations can be obtained from the constraint graphs. The x

coordinate of module i is given by the longest path length from the source s to node i

in GH. Similarly, the y-coordinate of module i can be computed on GV. Consequently,

the width and the height of the resulting floor plan can be computed by the longest

path length between the source and the sink in GH and GV, respectively.

The longest path length computation on each node weighted directed acyclic

graph, GH or GV, can be performed in O (n
2
) time by applying the well-known

longest path algorithm, and where n is the number of modules. In other words, given a

sequence pair (G+, G–), the area-optimal packing can be obtained in quadratic time.

For the example sequence pair (G+, G–) (124536, 326145), the corresponding

GH and GV can be constructed as shown in Fig. 4. The weight and the width (height)

of each module are indicated in each node of GH (GV).

Fig. 4 (a) Horizontal Constraint for Given Module (b) Vertical constraint for

Given module

This paper mainly concentrated in obtaining the optimal solution of total

testing time and also in finding the minimum idle pin-time product in the floor plan.

System-on Chip Test Scheduling using Multi-Objective Particle 7475

Idle pin-time product in the floor plan can be calculated by calculating the total area

in the floor plan minus total occupied area in the floor plan. The total area can be

calculated by the multiplication of total TAM Width and the longest test time. The

Idle pin-time product can be calculated from the difference between the total area and

the sum of the individual rectangles as shown in Eq. 1.

Idle pin-time product =

 (1)

With the test time and idle pin-time product, as the two objective functions,

Weighted Sum Particle Swarm Optimisation (WSPSO) algorithm is used to get the

optimal solution.

4. PARTICLE SWARM OPTIMISATION (PSO) AND WEIGHTED SUM

PARTICLE SWARM OPTIMISATION (WSPSO) ALGORITHMS

PSO algorithm is an evolutionary optimisation technique developed by Eberhart and

Kennedy in 1995 [15]. It is easy to implement compared to other evolutionary

algorithms and also the parameters to be adjusted are very few. PSO conducts

searches using a population of particles.

In this paper, the sequence pair is taken as particles. The particle has its own

position and velocity. In order to modify the population and favour the best

performing individual, PSO uses adaptable velocity vector for each particle, for which

it shifts its position in each iteration. For i
th

the position and velocity after time t is

given as in Eq. 2, 3 [1].

 (2)

 (3)

Where w is inertia weight, c1 and c2 are two positive constants, and r1 and r2

are two random functions in the range [0, 1]. From the above two formulae the

particles position and velocities are updated towards the global best (gbest). Each

particle has its own best solution is called as local best (pbest). The best among all the

solutions is called as global best (gbest).

4.1 Multi-Objective Particle Swarm Optimisation (MOPSO)

The relative simplicity of PSO and the fact that is a population based technique have

made it a natural candidate to be extended for Multi-Objective Optimisation [16]. The

existing MOPSO are based on either an aggregating approach or pareto based

approach. The aggregating approach combines or aggregates all the objectives of the

problem into a single one. The pareto based approach use leader selection techniques

based on pareto dominance.

7476 Angappan Natarajan and M.C.Bhuvaneswari

4.2 General Algorithm for Weighted Sum Particle Swarm Optimisation

(WSPSO) [16]

STEP 1: initialization

 Generate N particles at random

 Initialize the velocity of N particles to zero.

STEP 2: Repeat until a stopping condition is reached

 Evaluate the fitness of each particle using Eq. 4

 Determine the best vector pbest visited so far by each particle.

 Determine the best vector gbest visited so far by the whole swarm.

 Update the velocity and position of each particle.

The Weighted Sum PSO (WSPSO) uses a weighted aggregate approach to

combine the objectives into a single objective. The fitness of the particle is evaluated

using the function given by the Eq.

 (4)

Where, is the fitness of X with respect to the j
th

 objective. and

are the maximal and minimal values of the j
th

 objective respectively. wj is the weight

associated with the j
th

 objective. For this problem a normalised weight vector is

randomly generated [17] using Eq. 5 so that the search is widened in all directions

instead of fixed directions.

 (5)

Optimisation is performed on F(X). The weights are randomly generated to

enrich the searching directions and to obtain the solutions with good diversity. The

pbest and gbest are allotted as in case normal PSO. Three parameters contribute to the

updating of particle velocity.

 An internal contribution proportional to its previous velocity

 An exploratory contribution proportional to the vicinity of the particle to its

personal best position

 An exploratory contribution proportional to the closeness of the particle to the

global best position.

 The particle adjusts its velocity Vij through each dimension j by referring to

pbestj and swarm‟s best experience gbestj using Eq. 6 [16].

 (6)

C1 is the cognitive constant depicting the relative influence of the particle‟s

personal best position on its velocity, C2 is the social constant depicting the relative

System-on Chip Test Scheduling using Multi-Objective Particle 7477

influence of the global best position on its velocity and R1 and R2 are random

numbers. The inertia weight w controls the momentum of the particle. A larger w

pushes towards the global exploration. The weighting function is given by Eq.7

 (7)

Where wmax represents the initial weight and wmin refers to final weight. Itertotal

- number of iterations and Itercurr- current iteration number.

Once the velocities of all particles are determined they are used to obtain the

updated position of the particle through each dimension using Eq. 8.

 (8)

4.3. WSPSO Algorithm for Test Scheduling

STEP1: Give a set of Sequence Pair which represents the solutions.

STEP2: From the given set of sequence pair grid graph is obtained.

STEP3: From the grid graph find the Horizontal and Vertical Constraint graph.

STEP4: The longest path of the GH which represents the total testing time needed to

test the entire SoC system is calculated. The Idle pin-time product from floor plan can

be calculated.

STEP5: Initialize the velocities of all particles as Zero.

STEP6: For all the particles calculate the Velocities using Eq. 5 and based on the new

velocities the position of the particles is also updated using Eq. 8.

STEP7: Compare all the Particle best (Pbest) values with the Global best (Gbest). If

the Pbest value is better than the Gbest then replace the Gbest with the Pbest else the

same will remain.

STEP8: Repeat the steps 2 to 7 until the optimal solutions for the Total Testing Time

and also for the Idle pin-time product are obtained. When the optimal solution is

obtained the process gets stopped.

7478 Angappan Natarajan and M.C.Bhuvaneswari

Fig. 5 Flowchart for WSPSO Algorithm

5. RESULTS AND DISCUSSION

The TAM Width of 32, 48, and 64 are considered for analysis. The TAMs are

partitioned into either 4 or 5 partitions. This partition is given as input to the system.

For the Number of partitions 4, the total TAM width is divided into the partition size

of 5, 10, 15, and 2. Based on this, the cores are allocated to TAMs. The optimal

testing time with single objective PSO and WSPSO algorithms are obtained. Also the

System-on Chip Test Scheduling using Multi-Objective Particle 7479

Idle pin-time product is calculated for individual core allocation. For odd number of

partitions, the proposed WSMOPSO based scheme provides better results in terms of

test time.

For all the cases the idle pin-time product found to be better when WSPSO

algorithm is used. Tab. 1 to Tab. 5 show the Optimal Testing Time obtained for the

Benchmark circuits D695, U226, H953, F2126, G1023 using Single Objective PSO

algorithm and WSPSO respectively. Fig.6 shows the global best and particle best

positions for one set of sequence pair for D695. Table 6 shows that for TAM width

64, WSPSO algorithm performs better in terms of test time and idle pin-time product.

Fig.6. Global Best and Particle Best positions for D695

7480 Angappan Natarajan and M.C.Bhuvaneswari

TABLE 1.Optimal Testing Time of D695 using Single objective PSO and

WSPSO Algorithms

Total

TAM

Width

No. of

Partitions

TAM

Partitions

Single objective PSO WSPSO

Optimal

Testing

Time (ms)

Idle pin-

time product

(ms * Pins)

Optimal

Testing

Time (ms)

Idle pin-

time product

(ms * Pins)

32 4 [5 10 15

2]

36024 806105 48974 764159

32 5 [1 1 1

1 28]

208221 5999520 191874 5119076

48 4 [7 16 23

2]

20446 952139 30376 1382288

48 5 [1 1 1

1 44]

212573 9428948 194381 8560273

64 4 [9 21 31

3]

21556 961425 24478 768864

64 5 [1 1 1

1 60]

151644 17016808 206119 11751379

TABLE 2.Optimal Testing Time of U226 using Single objective PSO and

WSPSO Algorithms

Total

TAM

Width

No. of

Partitions

TAM

Partitions

Single objective

PSO

WSPSO

Optimal

Testing

Time

(ms)

Idle pin-

time

product

(ms *

Pins)

Optimal

Testing

Time

(ms)

Idle pin-time

product

(ms * Pins)

32 4 [1 1 2 28] 112349 2244648 116468 5823532

32 5 [1 2 10 15

4]

106987 1632291 68197 966997

48 4 [2 16 23

7]

81220 2681322 59870 2202140

48 5 [1 2 15 23

7]

83269 2681322 72375 1976119

64 4 [2 21 31

10]

58737 4131290 67273 1430346

64 5 [1 2 21

31 9]

105753 4204084 75270 3003638

System-on Chip Test Scheduling using Multi-Objective Particle 7481

TABLE 3.Optimal Testing Time of H953 using Single objective PSO and

WSPSO Algorithms

Total

TAM

Width

No. of

Partitions

TAM

Partitions

Single objective

PSO

WSPSO

Optimal

Testing

Time

(ms)

Idle pin-

time

product

(ms *

Pins)

Optimal

Testing

Time

(ms)

Idle pin-time

product

(ms * Pins)

32 4 [3 10 15

4]

156673 3489523 122692 2046168

32 5 [1 1 1 1

28]

447031 12020503 487824 11079827

48 4 [5 16 23

4]

124062 3091278 122525 2213273

48 5 [1 1 1 1

44]

501689 22398557 447031 17795744

64 4 [5 21 31

7]

120469 1148585 120676 3475860

64 5 [1 1 1 1

60]

482527 1148484 441634 24119639

TABLE 4.Optimal Testing Time of F2126 using Single objective PSO and

WSPSO Algorithms

Total

TAM

Width

No. of

Partitions

TAM

Partitions

Single objective PSO WSPSO

Optimal

Testing

Time

(ms)

Idle pin-

time

product

(ms *

Pins)

Optimal

Testing

Time

(ms)

Idle pin-

time

product

(ms *

Pins)

32 4 [6 10 15

1]

335334 2664831 432666 1103247

32 5 [1 1 1 1

28]

2854026 3390299 2854026 536273

48 4 [8 16 23

1]

357088 4295770 385555 530978

48 5 [1 1 1 1

44]

2854026 536273 2904247 636715

64 4 [9 21 31

3]

335334 13116577 335334 4640145

64 5 [1 1 1 1

60]

2854026 6244325 2854026 536273

7482 Angappan Natarajan and M.C.Bhuvaneswari

TABLE 5.Optimal Testing Time of G1023 using Single objective PSO and

WSPSO Algorithms

Total

TAM

Width

No. of

Partitions

TAM

Partitions

Single objective PSO WSPSO

Optimal

Testing

Time

(ms)

Idle pin-

time

product

(ms *

Pins)

Optimal

Testing

Time

(ms)

Idle pin-

time

product

(ms *

Pins)

32 4 [4 10 15

3]

26066 1064222 26076 407874

32 5 [1 1 1 2

27]

152812 8456725 147611 3848203

48 4 [6 16 23

3]

23961 1027798 34285 641928

48 5 [1 1 1 2

43]

116775 9711736 150445 6775146

64 4 [8 21 31

4]

22188 1152453 23182 654661

64 5 [1 1 1 2

59]

74449 3891402 115095 6141974

Table 6. Best Results for Different Benchmark Circuits

Benchmark

circuit

Using WSPSO Using Single Objective PSO

TAM

Width

No. of

Partitions

Optimal

Testing

Time

(ms)

Idle pin-

time

product

(ms X

pins)

TAM

width

TAM

partition

Optimal

Testing

Time

(ms)

Idle pin-

time

product

(ms X

pins)

D695 64 4 24478 768864 48 4 20446 952139

U226 64 4 67273 1430346 64 4 58737 41312980

H953 64 4 120676 3475860 64 4 120469 1148589

F2126 64 4 335334 4640145 32 4 335334 2664831

G1023 64 4 23182 654661 64 4 22188 1152453

6. CONCLUSION

WSMOPSO algorithm is tested with the benchmark circuits D695 and U226 and the

results of optimal values for both the Total Testing Time and the Idle pin-time product

is obtained from Table 1 and Table 2. It is concluded that the results obtained for

optimal testing time and idle pin-time product by using WSMOPSO is better than the

results obtained using single objective PSO. The work can be extended to variants of

MOPSO like Non Dominated Sorting MOPSO (NSPSO), Adaptive NSPSO and

Hybrid NSPSO and compare the results.

System-on Chip Test Scheduling using Multi-Objective Particle 7483

7. REFERENCES

1. Chaun-Pei, X., Hu Hong-Bo, and Niu-Jao, 2009, “Test scheduling of SoC

with Power Constrained based on Particle Swarm Optimization Algorithm”,

Third International Conference on Genetic and Evolutionary Computing, pp.

611-614.

2. Iyengar, V., Chakrabarty, K., and Marinissen, E. J., 2003, “Efficient Test

Access Mechanism Optimization for SoC”, IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, vol.22, pp. 635-643.

3. Chakrabarty, K.,2001, “Optimal Test Access Architectures for SOC”, ACM

Trans. on Design Automation of Electronics Systems, Vol. 6(1), pp. 26-49.

4. Chakrabarty, K., 2000, “Test Scheduling for core-based systems used mixed-

integer linear programming”, IEEE Trans. on Computer-Aided Design of

Integrated circuits and systems, pp. 1163-1174.

5. Chakrabarty, K., 2000, “Design of System on Chip test architectures using

Integer Linear Programming”, proc. VLSI Symposium, pp.127-134.

6. Erik Larsson and ZeboPeng, 2005, “System-on-Chip Test Parallelisation

under Power Constraints”, Proc. Design Automation Test Eur., pp.138-144.

7. Julien Pouget, Erik Larsson and zebopeng, 2005, “Multiple Constraints

Driven SOC Test Time Optimization”, Journal Of Electronic Testing: Theory

and Applications Vol 21(6), pp. 599–611.

8. Iyengar, V., Chakrabarty, K., and Marinissen, E. J., 2002, "Test wrapper and

test access mechanism co-optimization for system-on-a-chip", Journal of

Electronic Testing: Theory and Applications (JETTA), vol. 18, pp. 213-230.

9. Iyengar, V., Chakrabarty, K., and Marinissen, E. J., 2002, “Efficient

Wrapper/TAM Co-optimisation for large SoCs”, Proc. Europe Conference and

Exhibition on Design, Automation and Test,

10. Laung-Terng Wang, Charles Stroud, Nur Touba, “System-On Chip Test

Architectures: nanometre Design for Testability” Morgan Kaufmann, 1
st

edition, 2008

11. Laurent Muller, Sathiamoorthy Subbarayan, Thomas Antonson, 2004, “Floor-

planning representations and Algorithms”, Book, Chap.2.

12. Hiroshi Murata, Kunihiro Fujiyoshi, Shigetoshi Nakatake, and Yoji Kajitani,

1996 “VLSI Module Placement based on Rectangle-Packing by the Sequence-

Pair”, IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, Vol.15.

13. Masaya Yoshikawa, HidekazuTerai, 2007, “Constraint-Driven Floor-planning

based on Genetic Algorithm” Proc. of International Conference on Computer

Engineering and Applications, pp. 147-151.

14. Zorian, Y, Marinissen,E. J., and Dey, S., 1999, “Testing embedded-core based

system chips”, IEEE Computer, Vol. 32(6), pp.52-60.

15. Kennedy, J., Eberhert, R.,1995, “Particle Swarm Optimisation”, International

Conference on Neural Networks, pp. 1942-1948.

http://www.ee.duke.edu/%7Ekrish/JETTA_2002.pdf
http://www.ee.duke.edu/%7Ekrish/JETTA_2002.pdf
http://www.ee.duke.edu/%7Ekrish/JETTA_2002.pdf
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7834

7484 Angappan Natarajan and M.C.Bhuvaneswari

16. Subhashini G.,2012, “Application of multi-objective evolutionary algorithms

for task scheduling in heterogeneous distributed systems”, Ph.D. thesis, PSG

College of Technology, Coimbatore, India.

17. Parasopoulus, K. E., Vrahatis, M. N., 2002, “Particle Swarm Optimisation

Method in Solving Multi-Objective Problems”, SAC, pp. 603-607.

