
International Journal of Applied Engineering Research

ISSN 0973-4562 Volume 10, Number 3 (2015) pp. 7457-7468

© Research India Publications

http://www.ripublication.com

Comparison Of Effort Estimation Techniques Using

Decision Table With Neural Networks

S. Abbinaya
1
 and M. Senthil Kumar

2

1
PG scholar,

2
Assistant professor(Senior Grade)

Department of Computer Science and Engineering, Valliammai Engineering College

Kattankulathur, Chennai, India
1
sabbi.mca@gmail.com,

2
msenvec@gmail.com

ABSTRACT

Software estimations are based on prediction properties of system with attention to

development methodology. Effort estimates may be used as input to project plans,

iteration plans, budgets, and investment analyses, pricing processes and bidding

rounds. In this project, the use case point and function point is used to estimate the

effort in the software development. The objective of the regression is to predict the

value of a continuous variable. The decision table consists of a set of similar condition

actions. We create a decision table with the use of neural network for recognizing the

input pattern to be used for effort estimation. Two estimation methods are used in this

project use case and function point uses the decision table to construct a training

algorithm. The decision table is used to compare these two methods via use case point

and function point to analyze which method will produce the accurate result.

Keywords: artificial neural networks, back propagation, feed forward neural

networks, decision table, use case point, function point, software effort estimation,

and regression.

1 – INTRODUCTION

In software engineering effort is used to denote measure of use of workforce and is

defined as total time that takes members of a development team to perform a given

task. It is usually expressed in units such as man-day, man-month, and man-year. An

estimation of accuracy and concise effort (quantity of men/hours required for the

development of the software) are crucial for the effective management of the software

project [1]. This value is important as it serves as basis for estimating other values

relevant for software projects, like cost or total time required to produce a software

product. The basic idea of prediction of effort by analogy is that projects having

mailto:1sabbi.mca@gmail.com

7458 S. Abbinaya and M. Senthil Kumar

similar features such as size and complexity will be similar with respect to project

effort. The method gains its importance since the estimate is based on actual project

experience [2].

Traditional algorithmic techniques such as regression models, Software Life

Cycle Management (SLIM), COCOMO II model, require estimation process in a long

term. But, nowadays that is not acceptable for software developers and companies.

Newer soft computing techniques to effort estimation based on non-algorithmic

techniques may offer an alternative for solving the problem [3]. The uncertainty in

size can be controlled by using fuzzy logic and the parameters can be tuned by using

Particle Swarm Optimization. The Fuzzy Based PSO technique is applied for

Software Effort Estimation. A methodology is developed to estimate effort using

Fuzzy Logic and PSO with inertia weight [4]. But the weights are not updated as in

the gradient descent.

Currently used software development effort estimation models such as,

COCOMO and Function Point Analysis (FPA), do not consistently provide accurate

project cost and effort estimates. These techniques have been proven unsatisfactory

for estimating cost and effort because the lines of code (LOC) and function point (FP)

are both used for procedural oriented paradigm [5,6]. Both of them have certain

limitations. The LOC is dependent on the programming language and the FPA is

based on human decisions. Hence effort estimation during early stage of software

development life cycle plays a vital role for determining whether a project is feasible

in terms of a cost benefit analysis [7].

 Accurate estimation of a software development effort is critical for good

management decision making. The aim of the present work is to propose an optimal

estimation method for software effort estimation. In general software effort

estimation, the most commonly adopted architecture, learning algorithm and

activation function are the feed-forward multilayer perceptions, the back propagation

algorithm respectively [8]. One of the major drawbacks in the existing effort

estimation there has been much time spent on the selection of accurate effort

estimation. The present work explores a decision table could be developed as a tool

which would help on minimizing the time spent on the selection of accurate effort

estimation, method and would help organization on, Define most adequate effort

estimation method in different software development environment, Implementing the

selected technology, Testing of resulting model accuracy.

The remainder of this paper is organized as follows. Section 2 gives an

overview of the materials and methods. Section 3 describes the proposed work.

Section 4 describes the experimental evaluation. Section 5 concludes and suggests

directions for future work.

2 – MATERIALS AND METHODS

This section gives a brief overview of the use case point’s and function point method,

decision table, and neural networks.

Comparison Of Effort Estimation Techniques 7459

2.1 Use Case Points Method

This section gives a brief overview of the steps in the use case point’s method [7].

The first step is to classify the actors as simple, average or complex. A simple actor

represents another system with a defined Application Programming Interface, API, an

average actor is another system interacting through a protocol such as TCP/IP, and a

complex actor may be a person interacting through a GUI or a Web page. A weighting

factor is assigned to each actor type in the following manner:

 Simple: Weighting factor 1

 Average: Weighting factor 2

 Complex: Weighting factor 3

Similarly each use case is defined as simple, average or complex, depending on

number of transactions in the use case description, including secondary scenarios. Use

case complexity is then defined and weighted in the following manner:

 Simple: Weighting factor 5

 Average: Weighting factor 10

 Complex: Weighting factor 15

The Calculation of UUCW AND UAW Weights and Points are as follows:

UUCP = UAW + UUCW ------------ (1)

3. The use case points are adjusted based on the values assigned to a number of

technical factors (Table 1) and environmental factors (Table 2).

Table 1.Technical complexity factors

Factor Description Weight

T1 Distributed system 2

T2 Performance objectives 2

T3 End-user efficiency 1

T4 Complex processing 1

T5 Reusable code 1

T6 Easy to install 0.2

T7 Easy to use 0.2

T8 Portable 2

T9 Easy to change 1

T10 Concurrent use 1

T11 Security 1

T12 Access for third parties 1

T13 Training needs 1

7460 S. Abbinaya and M. Senthil Kumar

Each factor is assigned a value between 0 and 5 depending on its assumed

influence on the project. A rating of 0 means the factor is irrelevant for this project; 5

mean it is essential.

The Technical Factor (TCF) is calculated multiplying the value of each factor

(T1–T13) in Table 1 by its weight and then adding all these numbers to get the sum

called the Factor. Finally, the following formula is applied:

TCF = 0.6 + (.01*TFactor) (2)

Table 2.Environmental factors

Factor Description Weight

E1 Familiar with the development process 1.5

E2 Application experience 0.5

E3 Object-oriented experience 1

E4 Lead analyst capability 0.5

E5 Motivation 1

E6 Stable requirements 2

E7 Part-time staff -1

E8 Difficult programming language -1

4. The Environmental Factor (EF)is calculated accordingly by multiplying the

value of each factor (F1 – F8) in Table 2 by its weight and adding all the

products to get the sum called the Efactor. The formula below is applied:

EF = 1.4+(-0.03*EFactor) (3)

The adjusted use case points (UCP) are calculated as follows:

UCP = UUCP*TCF*EF (4)

2.2 Function Points Method

FP Analysis is a process used to calculate software functional size [9]. Counting FP

requires the identification of five types of functional components: Internal Logical

Files (ILF), External Interface Files (EIF), External Inputs (EI), External Outputs

(EO) and External Inquiries (EQ). Each functional component is classified as a certain

complexity based on its associated file numbers such as Data Element Types (DET),

File Types Referenced (FTR) and Record Element Types (RET). Table 1 illustrates

how each function component is then assigned a weight according to its complexity.

The Unadjusted Function Point (UFP) is calculated with Equation 1, where Wij are

the complexity weights and Zij are the counts for each function component.

Comparison Of Effort Estimation Techniques 7461

Table 1: FUNCTION COMPONENT COMPLEXITY WEIGHT ASSIGNMENT

Component LOW AVERAGE HIGH

External Inputs 3 4 6

External outputs 4 5 7

External Inquiries 3 4 6

Internal Logical Files 7 10 15

External Interface Files 5 7 10

Once calculated, UFP is multiplied by a value Adjustment Factor (VAF),

which takes into account the supposed contribution of technical and quality

requirements. The VAF is calculated from 14 General System Characteristics (GSC),

using Equation 2; The GSC includes the characteristics used to evaluate the overall

complexity of the software.

VAF = (TDI * 0.01) + 0.65 (5)

Finally, a FP is calculated by the multiplication of UFP and VAF, as expressed

in Equation 3.

FP = UFP * VAF (6)

2.3 Decision table

 When building a DT, first step is the identification of the conditions and

actions and their associated states that have an influence on the decision

problem.

 The construction process concerns the specification of the decision rules.

 The actual construction of the DT on the basis of the defined decision rules.

 Examines the DT with regard to the requirements of completeness,

contradiction and correctness.

 The decision table is like the database used to store all the effort values. The

decision table is constructed by using the dataset. The dataset consists of

expected and actual effort values of previous projects.

 The neural network is used to train the decision table with the previous project

effort values. The multilayer feed forward network is used for creating neural

network and it has one input layer, at least one hidden layer and one output

layer. Back propagation is used as the training methodology i.e. the learning

rule.

2.4 Neural network

Artificial intelligence (AI) has been widely used in many domains such as medicine,

economics, business, and others. Recently, the interest of applying AI in software

engineering has been soaring. Conducting software estimation is essential in any

7462 S. Abbinaya and M. Senthil Kumar

project as it helps project managers plan, identify risks, and determine the effort and

cost of projects [10]. Artificial intelligence is trying to achieve using techniques like

mimicking neural networks.

Computational models inspired by central nervous systems, which is capable

of machine learning as well as pattern recognition. Interconnected neurons which can

compute values from inputs. The network trained back propagation learning algorithm

by iteratively processing a set of training samples and comparing the networks

prediction with actual effort.

Back propagation, "backward propagation of errors", is a common method of

training artificial neural networks used in conjunction with an optimization method

such as gradient descent. The method calculates the gradient of a loss function with

respects to all the weights in the network. The gradient is fed to the optimization

method which in turn uses it to update the weights, in an attempt to minimize the loss

function. The most widely used algorithm for supervised learning with multilayered

feed forward networks. The basic idea of back propagation is the repeated application

of the chain rule to compute the influence of each weight on the network with respect

to an arbitrary error function E [8].

Back propagation requires a known, desired output for each input value in

order to calculate the loss function gradient. It is therefore usually considered to be a

supervised learning method, although it is also used in some unsupervised networks

such as auto encoders. It is a generalization of the delta rule to multi-layered feed

forward networks, made possible by using the chain rule to iteratively compute

gradients for each layer. Back propagation requires that the activation function used

by the artificial neurons (or "nodes") be differentiable.

3 – PROPOSED WORK

The Architecture diagram shows the overall concept of system. Figure 1 shows the

proposed system is devised by using use case point and function point method for

estimation. The input of the use case point and function point should be trained by the

neural network training algorithm and the trained input is stored in the decision table.

To estimating with use case points is that the process can be automated.

It should be possible to establish an organizational average implementation

time per use case point. Use case points are a very pure measure of size, because the

size of an application will be independent of the size, skill, and experience of the team

that implements it.LOC measures are not useful during early project phases where

estimating the number of lines of code that will be delivered is challenging.

By using the regression analysis the inputs of those methods will be refined

from the trained input. After refined the input, the effort is calculated by two methods

i.e. use case point and function point. Finally compare the performance of both

estimation methods and the decision table will show which method will produce the

accurate result.

http://en.wikipedia.org/wiki/Artificial_neural_networks
http://en.wikipedia.org/wiki/Mathematical_optimization
http://en.wikipedia.org/wiki/Gradient_descent
http://en.wikipedia.org/wiki/Loss_function
http://en.wikipedia.org/wiki/Supervised_learning
http://en.wikipedia.org/wiki/Unsupervised_learning
http://en.wikipedia.org/wiki/Autoencoder
http://en.wikipedia.org/wiki/Delta_rule
http://en.wikipedia.org/wiki/Feedforward_neural_network
http://en.wikipedia.org/wiki/Feedforward_neural_network
http://en.wikipedia.org/wiki/Feedforward_neural_network
http://en.wikipedia.org/wiki/Chain_rule
http://en.wikipedia.org/wiki/Activation_function
http://en.wikipedia.org/wiki/Artificial_neuron
http://en.wikipedia.org/wiki/Differentiable

Comparison Of Effort Estimation Techniques 7463

Figure 1 Overall Architecture

3.1 Training process

The decision table is trained by neural network using the back propagation algorithm.

The flow chart describes the process of training the decision table.

Initially the value of training iteration is assigned as 1 and the weight with

random values. Then present input pattern and calculate the output values. After the

output values are calculated, the mean square error (MRE) will be calculated. Then if

the calculated MSE is lesser than or equal to the Mse mm, the training process will be

stopped. Otherwise, the number of iterations will be compared with the maximum

number of iterations. If the iteration is greater than or equal to the Epoch max, the

training process will be stopped. Otherwise the weights will be updated and the

iteration is incremented.

7464 S. Abbinaya and M. Senthil Kumar

Figure 2 Training process flowchart

4 – EXPERIMENTAL EVALUATION

The experimental evaluation of the proposed model is performed using 12 projects. In

software estimation, most practitioners use MMRE and PRED(X) to calculate the

error percentage. The magnitude of relative error (MRE) for each observation I can be

obtained as:

 │actual efforti – predicted efforti│

MREi =

 Actual efforti (7)

MMRE can be achieved through averaging the summation of MRE over N

observations:

MMRE= I (8)

Comparison Of Effort Estimation Techniques 7465

On the other hand, PRED(X) is the percentage of projects for which the

estimate falls within x% of the actual value. For instance, if PRED (30) = 60, this

indicates that 60% of the projects fall within 30% error range.

Table 4 Estimation values of function point

Project id Domain Expected effort Actual effort

Sts33 https://sctoolsnemak.com/ 128 137

Sts97 http://sridhanalaxmitex.com/ 106 104

Sts05 http://www.stigmata.co.in/ 90 89

Sts02 www.travopia.com 68 95

Sts46 www.lucidtechie.com 52 53

Sts22 www.automatrotech.com 47 47.81

Sts11 http://jemicluster.com/ 37.92 37.81

Sts39 http://brightmycareer.com/ 38 42

Sts16 http://www.mmnengineering.com/ 41.4 41.9

Sts29 http://www.afreshtech.com/ 20.3 20.5

Sts62 http://dukesengineers.com/ 180 178

Table 5 Estimation values of use case point

Project id Domain Expected effort Actual effort

sts33 https://sctoolsnemak.com/ 530 570

sts97 http://sridhanalaxmitex.com/ 524 554

sts05 http://www.stigmata.co.in/ 467 488

sts02 www.travopia.com 408 432

sts46 www.lucidtechie.com 378 380

sts22 www.automatrotech.com 234 256

sts11 http://jemicluster.com/ 220 230

sts39 http://brightmycareer.com/ 212 210

sts16 http://www.mmnengineering.com/ 256 250

sts29 http://www.afreshtech.com/ 170 210

sts62 http://dukesengineers.com/ 180 176

4.1 EXPERIMENTAL RESULTS

The performance of use case points and function points are compared using decision

table based on the back propagation methodology. It is used to train the neural

network. A set of input training data and the expected output is created and the

network is trained with the training data set. There are multiple iterations the network

tries to converge the expected output. Through multiple iterations over the test data, it

does by reducing an error function. The error rate is calculated by using back

propagation by compare the error rate between the expected and actual effort of both

http://www.travopia.com/
http://www.lucidtechie.com/
http://www.automatrotech.com/

7466 S. Abbinaya and M. Senthil Kumar

UCP and FP methods. The following table 6 shows the comparison of Effort

estimation results.

Table 6 Comparison of Effort estimation results

Project id Domain UCP effort FP effort

sts33 https://sctoolsnemak.com/ 0.0701 0.0656

sts97 http://sridhanalaxmitex.com/ 0.0541 0.0192

sts05 http://www.stigmata.co.in/ 0.0430 0.0112

sts02 www.travopia.com 0.0555 0.2842

sts46 www.lucidtechie.com 0.0052 0.0188

sts22 www.automatrotech.com 0.0859 0.0169

sts11 http://jemicluster.com/ 0.0434 0.0029

sts39 http://brightmycareer.com/ 0.0095 0.0952

sts16 http://www.mmnengineering.com/ 0.024 0.0119

sts29 http://www.afreshtech.com/ 0.1904 0.0097

sts62 http://dukesengineers.com/ 0.0227 0.0112

4.2 PERFORMANCE MEASURES

The performance of models generating continuous output can be assessed in many

ways, including PRED (30), MMRE, correlation, etc. PRED (30) is a measure

calculated from the relative error, or RE, which is the relative size of the difference

between the actual and estimated value. One way to view these measures is to say that

training data contains records with variables 1;2;3;...;N and performance measures

add additional new variables N +1;N+2;.... The magnitude of the relative error, or

MRE, is the absolute value of that relative error:

MRE= │actual effort – predicted effort│/ actual effort (9)

The mean magnitude of the relative error, or MMRE, is the average

percentage of the absolute values of the relative errors over an entire data set.

MMRE= I (10)

Figure3 and 4 showing the performance chart of both UCP and FP methods

Comparison Of Effort Estimation Techniques 7467

Figure 3 Effort estimation counts

Figure 4 Effort estimation hours/person

5. CONCLUSION AND FUTURE WORK

The use case point (UCP) and function point model has been widely used to estimate

software size and effort. The main advantage of the UCP model is that it can be used

in the early stages of the software life cycle when the use case diagram is available.

The UCP model has some limitations since it assumes that the relationship between

7468 S. Abbinaya and M. Senthil Kumar

software effort and size is linear. There are several software effort forecasting models

that can be used in forecasting future software development effort. We have

constructed an effort estimation model based on artificial neural networks. The neural

network that we have used to predict the software development effort is the single

layer feed forward neural network with the identity function at both the input and

output units.

In our work we compare the results of two different effort estimation methods

and found an optimal neural network topology with best estimation method for

software effort estimation. Finally, we conclude that the present work provides

accurate forecasts for the software development effort. Further work can be done by

the identification and mitigation of risk when estimating the effort.

REFERENCES

[1] Katia Cristina A. Damaceno Borges, Iris Fabiana de Barcelos Tronto, 2013, A

Data PreProcessing Method for Software Effort Estimation Using

Case-Based Reasoning, volume 16, Number 3.

[2] S.Malathi and Dr.S.Sridhar, 2012, Estimation of effort in software cost

analysis for Heterogeneous dataset using fuzzy analogy,

Vol.10, No.10.

[3] Iman Attarzadeh and Siew Hock Ow, 2010, A Novel Algorithmic Cost

Estimation Model Based on Soft Computing Technique, Journal of

Computer Science 6 (2): 117-125.

[4] A.BalaKrishna, T.K.Rama Krishna, 2012, fuzzy and swarm intelligence for

software effort estimation, Vol. 2, No. 1, ISSN 2167-6372.

[5] Mohammed Wajahat Kamal and Moataz A. Ahmed, 2011, A Proposed

Framework for Use Case Based Effort Estimation using Fuzzy Logic:

Building upon the outcomes of a Systematic Literature Review,

JNCAA 1(4): 953-976.

[6] Oumout Chouseinoglou, 2013, A Fuzzy Model of Software Project Effort

Estimation, Vol.4, No.2, pp. 68-76.

[7] Shashank Mouli Satapathy, Santanu Kumar Rath, 2014, Use Case Point

Approach Based Software Effort Estimation using Various Support

Vector Regression Kernel Methods, volume 7(4),87-101.

[8] Ch.Satyananda Reddy and KVSVN Raju, 2010, An Optimal Neural

Network Model for Software Effort Estimation, Vol.3 No.1.

[9] Wei Xia, Luiz Fernando Capretz, Danny Ho, Faheem Ahmed, 2008, A New

Calibration for Function Point Complexity Weights, Volume 50, Issue

7-8, pp. 670-683.

[10] Ali Bou Nassif and Luiz Fernando Capretz, Danny Ho, 2011, Estimating

Software Effort Based on Use Case Point Model Using Sugeno Fuzzy

Inference System, pages.393- 398.

