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Abstract 

 

Malware is one of the bearing dangers to the Internet security as a rule, and to 

business transactions specifically. Malware recognition devices, approach & 

calculation still call for successful and productive results. The Botnet have inclined a 

sententious part of the Internet malware attacks.  One of the most prominent botnet is 

Zeus, which its main equitable is to defraud banking accounts for financial profit, 

sending spam, launching denial-of-service attacks. This paper centralizes on Zeus 

botnet implementation and rectification which is one of the distinct, terrible, and 

widely diffused financial malware. The contributions of this paper are manifold: First, 

Complete defilement process of Zeus botnet is realized on computer networks and 

internet. Second, brief explanation of Botnet Command & Control. Further it is 

destined to proposed adopting key extraction and malicious traffic detection method 

using DNS that specifically targets Zeus malware. The proposed approach 

simultaneously monitors and analyzes the unconstitutional access and has the ability 

to detect Zeus bot in user‟s computers and identify the bot master address with 

improved efficiency than existing algorithm. 

 

Keyword- Malware, botnet, Zeus, Key extraction, Domain name Server, Traffic 

detection 

 

 

I. INTRODUCTION 

The Internet is an articulation infrastructure that interconnects the universal 

community of end users and content servers. In the last few years, internet malware 

concurrence have enlarged into better-organized and most commonly sustain and 

easily accessible botnet. A botnet, or the army of bots (zombies), is comprised of 

more than thousands or tens of thousands of compromised computers. Although 

statistics show that the number of botnets is increasing [1], most Internet users are still 

unaware of what is going on and how serious the problem is. Many of these users‟ 
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computers are easily compromised by bot malware and then become members of 

botnets. Since bot malware usually does not affect regular uses of compromised 

computers, bot masters or bot herders can control these compromised computers 

remotely and ask them to carry out malicious activities, such as sending SPAMs, 

launching distributed denial of service (DDoS) attacks, and stealing personal private 

information. 

It is used for a fabulously broad range of crimes – ranging from banking 

credential more profit center enterprise. E-mail spam, lunching denial-of-service 

attack, adware, and click fraud are few examples of these emerging trends. Botnet are 

the fundamental cause of this problem. The term bot is short for robot. Criminals 

distribute malicious software (also known as malware) that can turn computer into a 

bot also Known as a zombie. When this appears, the victims‟ computer can perform 

automated tasks over the Internet, without knowing of the computer user. Criminals 

typically use bots to infect large numbers of computers. These computers form a 

network, or a botnet. Criminals use botnet to send out spam email messages, spread 

viruses, attack computers and servers, and commit other kinds of crime and fraud. If a 

computer becomes part of a botnet, the victim‟s computer might slow down and might 

recklessly be helping criminals.  

In June 2009 that Zeus was major threat that deserves a reverse engineering 

effort. In fact, this foresight was confirmed in July 2009 when a security publication 

from Damballa positioned Zeus as the number 1 botnet threat with 3.6 million 

infections in the US alone (about 19% of the installed base of PCs in the US [2]). It 

was also predicted that Zeus is guilty in 44% of the banking malware infections. 

Recently, Symantec Corporation referred to this crimeware toolkit as the “King of the 

Underground Crimeware Toolkits” [3]. The Zeus-based botnet [2] led the Top 10  

magisterial 19% of botnet infections for the year. For the first quarter of 2010, the 

Zeus-based botnet endured, which attained top position in 2010. Top 10 largest botnet 

and still until now the top ten of botnet list. To tell about Zeus, the answer found in 

Damballa which is a US company that protects, detects and removes botnet for 

enterprise businesses. They have published the ten top botnet that they have 

encountered in 2009 [4]. 

 

Zeus functions 

The main purpose of Zeus is to steal online credentials as specified by the hacker. 

Zeus has integrated an authoritative remote-control function into the botnet so that the 

assaulter can now "take complete domination of the person's PC. It performs the 

following actions: acquisition of user information, piracy of protected storage 

information, FTP passwords, robbing online credential information as specified by a 

Downloaded configuration file and processes it, Zeus Lower browser security settings 

by altering IE registry entries, do additional task as communicated by command & 

control server [4]. 

 

Related work 

A. Detecting Botnets with Encrypted Command and Control Channels 

Bot masters increasingly encrypt command-and-control (C&C) communication [5] to 
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evade existing intrusion detection systems. In C&C traffic analysis shows that at least 

ten prevalent malware families avoid well-known C&C carrier protocols, such as IRC 

and HTTP. Six of these families e.g., Zeus P2P, Pramro, Virut, and Sality do not 

exhibit any characteristic n-gram that could serve as payload-based signature in an 

IDS.  

Given knowledge of the C&C encryption algorithms, the algorithm detect 

these evasive C&C protocols by decrypting any packet captured on the network. In 

order to test if the decryption results in messages that stem from malware, PROVEX, 

a system that automatically derives probabilistic vectorized signatures. PROVEX 

learns characteristic values for fields in the C&C protocol by evaluating byte 

probabilities in C&C input traces used for training. This way to  identify the syntax of 

C&C messages without the need to manually specify C&C protocol semantics, purely 

based on network traffic. The evaluation shows that PROVEX can detect all studied 

malware families, most of which are not detectable with traditional means.  

Despite its naive approach to decrypt all traffic, we show that PROVEX scales 

up to multiple Gbit/s line speed networks.      

 

B. Detection of Zeus Botnet in Computers Networks and Internet 

Huge spread use of internet with wide scale spread of E-commerce processes becomes 

a great motivation for the attackers to move their goals from fun to finical profits. 

Attackers tend to use botnets which is a group of computers managed by botmaster to 

perform malicious activities which are criminal jobs. One of the most popular botnet 

is Zeus, which its main objective is to steal banking accounts for finical profit, so it is 

called king of botnet[6]. 

 

C. Detection of Spam Hosts and Spam Bots Using Network Flow Traffic 

Modeling  

An approach for detecting e-mail spam originating hosts, spam bots and their 

respective controllers based on network flow data and DNS metadata. Establishing 

SMTP traffic models of legitimate vs. spammer SMTP clients and then classifying 

unknown SMTP clients with respect to their current SMTP traffic distance from these 

models. An entropy-based traffic component extraction algorithm is then applied to 

traffic flows of hosts identified as e-mail spammers to determine whether their traffic 

profiles indicate that they are engaged in other exploits [8].  

Spam hosts that are determined to be compromised are processed further to 

determine their command-and-control using a two-stage approach that involves the 

calculation of several flow-based metrics, such as distance to common control traffic 

models, periodicity, and recurrent behavior. DNS passive replication metadata are 

analyzed to provide additional evidence of abnormal use of DNS to access suspected 

controllers. For examples of detected controllers in large HTTP(S) botnets such as 

Cutwail, Ozdok and Zeus, using flow data collected from backbone network. 

 

D. A Survey of Botnet and Botnet Detection 

Among the various forms of malware, botnets are emerging as the most serious threat 

against cyber-security as they provide a distributed platform for several illegal 
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activities such as launching distributed denial of service attacks against critical targets, 

malware dissemination, phishing, and click fraud. The defining characteristic of 

botnets is the use of command and control channels through which they can be 

updated and directed [9].  

Recently, botnet detection has been an interesting research topic related to 

cyber-threat and cyber-crime prevention. This paper is a survey of botnet and botnet 

detection. The survey clarifies botnet phenomenon and discusses botnet detection 

techniques. 

This survey classifies botnet detection techniques into four classes: signature-

based, anomaly-based, DNS-based, and mining-base. It summarizes botnet detection 

techniques in each class and provides a brief comparison of botnet detection 

techniques. 

 

E. A fuzzy pattern-based filtering algorithm for botnet detection 

Botnet has become a popular technique for deploying Internet crimes. Although 

signature-based bot detection techniques are accurate, they could be useless when bot 

variants are encountered. Therefore, behavior-based detection techniques become 

attractive due to their ability to detect bot variants and even unknown bots. The 

behavior is based botnet detection system based on fuzzy pattern recognition 

techniques.To identify bot-relevant domain names and IP addresses by inspecting 

network traces. If domain names and IP addresses used by botnets can be identified, 

the information can be further used to prevent protected hosts from becoming one 

member of a botnet[10].  

To work with fuzzy pattern recognition techniques, the design several 

membership functions based on frequently observed bots‟ behavior including:  

 Generate failed DNS queries 

 Have similar DNS query intervals 

 Generate failed network connections 

 Have similar payload sizes for network connections.  

 

Membership functions can be easily altered, removed, or added to enhance the 

capability of the proposed system. In addition, to improve the overall system 

performance, develop a traffic reduction algorithm to reduce the amount of network 

traffic required to be inspected by the proposed system. Performance evaluation 

results based on real traces show that the proposed system can reduce more than 70% 

input raw packet traces and achieve a high detection rate (about 95%) and a low false 

positive rates (0–3.08%). Furthermore, the proposed FPRF algorithm is resource-

efficient and can identify inactive botnets to indicate potential vulnerable hosts [6]. 

 

F. On the Analysis of the Zeus Botnet Crimeware Toolkit 

In presents reverse engineering results for the Zeus crimeware toolkit which is one of 

the recent and powerful crimeware tools that emerged in the Internet underground 

community to control botnets. Zeus has reportedly infected over 3.6 million 

computers in the United States. On analysis aims at uncovering the various 

obfuscation levels and shedding the light on the resulting code. Accordingly, explain 
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the bot building and installation/infection processes. In addition, detail a method to 

extract the encryption key from the malware binary and use that to decrypt the 

network communications and the botnet configuration information [11].  

The reverse engineering insights, together with network traffic analysis, allow 

for a better understanding of the technologies and behaviors of such modern HTTP 

botnet crimeware toolkits and opens an opportunity to inject falsified information into 

the botnet communications which can be used to defame this crimeware toolkit. 

Bot detection systems can be classified into two categories, i.e., signature-

based and behavior-based systems. Although a signature-based system is accurate, it 

has the following drawbacks. First, signature-based systems is not possible to detect 

unknown bots. Second, a string signature is for a specific bot. When a bot has a 

variant, even it behaves similar, string signatures cannot work for it. Hence, the false 

negative rates may increase when new bots are developed. Third, as the number of bot 

variants increases, the false positive rates may increase as well. This is because an 

extremely large database containing all identified bots‟ signatures may accidentally 

match benign software. Finally, it is possible for a bot to bypass signature- based 

checks by using code obfuscation techniques. On the contrast, behavior-based systems 

try to identify bot activities by using observed particular bot behavior. If well tuned, 

behavior-based systems are able to perform similar to signature-based systems in 

terms of detection rates. In addition, a behavior-based system does not need to 

maintain a signature database to detect bots. Such a system can be much more 

lightweight than a signature-based system. 

In this paper, propose a behavior-based system to detect malicious domain 

names and IP addresses used by Zeus botnets. The contribution of the paper is 

threefold. First, we propose an effective traffic reduction algorithm to reduce the 

amount of traffic that is required to be checked by a bot detection system[10].Second, 

propose a generic framework to detect zeus botnets based on Adopting key extraction 

method and malicious traffic detection using DNS. Evaluation results show that the 

proposed bot detection system has good detection rates. 

 

Roadmap 

This paper is composed as accompanies in Section 2 portray about the complete 

implementation of Zeus botnet, its components and configuration of Zeus bot. In 

Section 3 provided a detailed about botnet command & control, control panel 

installation and web page infusion. In Section 4, formally defines the main problem 

and sub-problems the proposed system is going to resolve and explains the core of the 

proposed system, introduce the methodology used for Zeus exposure and its 

elimination, providing an algorithm name called adopting key extraction and 

malicious traffic detection methods. While in Section 5, give some finishing up 

comments and future enhancement. 

 

 

II. IMPLEMENTATION OF ZEUS BOTNET 

A. Component of Zeus 

The Zeus wrongdoing ware tool compartment is a situated of systems which have 
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been depicted to setup a botnet over a high-scaled arranged framework. Harshly, the 

Zeus botnet plans to make machines act as spying executors with the plan of getting 

fiscal success. The Zeus malware can log inputs that are entered by the client and 

additionally to catch and change information that are laid out into website pages. 

Stolen information can hold message addresses, passwords, web saving money 

accounts, charge card numbers, and transaction validation numbers.  

The overall structure of the Zeus crime ware toolkit consists of five segments [6]: 

1)   A control panel which obliges a set of PHP scripts that is utilized to reviewer 

the botnet and gather the stolen data into MySQL database and afterward show 

it to the botmaster. It likewise permits the botmaster to screen, control, and 

oversee bots that are enrolled inside the botnet. 

2)  Configuration files that are used to contrive the botnet parameters. It 

incorporate two files: the configuration file (config.txt) that lists the basic 

information and the web injects file (webinjects.txt) that identifies the targeted 

websites and defines the content injection rules. 

3)   A generated encrypted configuration files config.bin, which dominance an 

encrypted version of the configuration parameters of the botnet.  

4)    A generated malware binary file bot.exe, which is considered as the bot binary 

file that infects the victims‟ machines. 

5)   A builder program that engender two files: the encrypted configuration file 

(config.bin) and the malware (actual bot) binary file bot.exe. 

 

B. Configuration and Botnet Creation 

Xampplite program is used which empower us to make our computer as a server that 

is Zeus botnet used client-Server approach, and Xampplite provide an environment to 

run and execute (.php) files where it is the extension of the server of Zeus botnet. The 

first step in constructing a bot executable is to edit the configuration file. The 

configuration instructs the bot how to connect to the botnet, and it also contains 

information on what user data to gather and how to do so. The configuration file is in 

two parts, Static & Dynamic Configuration. 

 

 

III. BOTNET COMMAND AND CONTROL 

Approximately 5% of PCs around the world efficacy be infected right now by a 

malicious code, so at least, 50 million. This significant rate can be explained by many 

factors like the lack of application and system updates, the lack of users‟ cautiousness 

or the rising number of attacks‟ vectors (social network, mobile applications, spam, 

compromised websites. Those machines are a set of infected hosts which 

communicate with one or several Command and Control servers, also name C&C 

servers. There are many advantages of owning a botnet for cybercriminals, such as: 

Stealing banking information, sending spam massively, Performing Denial of Service 

attacks [4], [14].  

 

A. Control Panel Installation 

The Control Panel is an open source PHP application that can be run on an IIS or 



Examining Zeus Botnet by Adopting Key Extraction 6993 

Apache web server. Some additional software, most of which is described in the 

documentation, is also required. A MySQL user with relevant permissions must also 

be set up. When the system is ready the Control Panel code can be transcribed into the 

web server directory. The install page can then be get hold of from a browser. If any 

errors are made when filling in this form, the user is given a helpful message. Once 

this form is completed the leftover of the setup is done automatically. 

 

 
Fig. 1.  Xampplite Control panel 

 

The following figure shows total number of bots and provision to look their 

summary with the help of control panel [6],[9] . 

 

B. Botnet Communication 

Information sent through the Zeus botnet is scrambled with Rc4 encryption. In this 

operation a key stream is produced from the botnet secret word, and is XOR with the 

information. The same watchword is utilized to encode all information that is passed 

through the botnet. Changing the botnet secret key obliges that the sum of the bot 

executables be redesigned to a raise that consolidates the new secret key. The 

dynamic config index additionally must be remodelled and the server secret word 

transformed from the Control Panel. The point when a computer is contaminated with 

the Zeus bot, its first correspondence with the server is a solicitation for the dynamic 

config file [14], [16].  

Stolen data is regularly sent to the botnet‟s dropzone through two different 

communication channels. The first one, referred in the Zeus configuration file as log, 

consists in a small keep-alive message containing all the main status information 

about the zombie, i.e. botID, botnetID, IPaddress, bot OS, etc. Notably, this packet is 
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sent to the dropzone every 2 min by default, and consists in the most frequent 

communication type between the zombie and its C&C. Thus, its periodic emission 

could be leveraged by an anomaly based IDS to identify an infected computer inside a 

network. The second communication flow used by 

Zeus, referred as report, occurs less frequently than the log one, i.e. by default 

every 10 min. As well as the zombie status information included in the log packet, it 

contains also all the data that has been stolen in the system. Hence, this message is 

usually bigger than the previous one, and packet fragmentation according to the 

network MTU size is often required by the OS for sending the entire TCP segment. 

 

C. Web Page Injection 

One extensive feature of the Zeus bot is its ability to progressively inject dynamic into 

web pages viewed from an infected computer. This is done on-the-fly, as data passes 

from the server to the client browser. A snippet of the configuration data for this is 

shown below. It does a fairly straight forward examination and inserts operation [7], 

[9]. 

 

Sample coding for web page injection: 

1:   set_url http://www.bank.com/login.html GP 

2:   date_before 

3:   name=”password”*</tr> 

4:   data_end 

5:   date_inject 

6:   <tr><td>PIN;</td><td><input type =”text” name=”pinnumber” 

id=”pinnumber”/></td></tr> 

7:   date_end 

8:   date_after 

9:   date_end 

 

Instantly, Zeus targets these URLs to steal information and to modify the 

content of specific web pages before they get advertised on the user„s screen[17]. The 

attacker can define rules that are used to yield a web form data. When a victim visits a 

targeted site, the bot steals the credentials that are entered by the victim. Thereafter, it 

posts the encrypted information to a drop location that is meant to store the bot update 

reports. This server decrypts the stolen information and stores it into a database [5]. 

 

 

IV. ZEUS EXPOSURE 

The working scenario of a Zeus botnet can be classified into two phases. One is the 

infection phase and another is the attack phase. In the infection phase, a bot herder 

tries to expand the size of its army of bots. The bot herder commands existing bots to 

compromise more users‟ computers. There are many techniques to compromise a 

computer such as exploiting software vulnerabilities and social engineering. Once a 

targeted host is compromised, remote controllable software, which is downloaded 

from a binary-download server, is installed and launched so that the information about 

http://www.bank.com/login.html%20GP2
http://www.bank.com/login.html%20GP2
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the compromised computer is reported to the bot herder. In the attack phase, a bot 

herder sends commands to compromised hosts, i.e., the bots. On receipt of the 

commands, each bot launches various tasks based on the instructions embedded in the 

commands. A bot herder is therefore able to ask bots to collect valuable information, 

report botnet status, and launch attacks to target hosts [18].  

There are three stages in the algorithm in figure 2: traffic reduction, Adopting 

Key Extraction and Malicious Traffic Detection. First, input traffic is passed to the 

traffic reduction stage. Then, filtered packets are passed to the feature extraction 

stage. Finally, the fuzzy pattern recognition stage is used to detect malicious domain 

names and IP addresses based on extracted features. 

 
Fig. 2. Functional architecture of the ZEUS Botnet detection system. 

 

A. Existing solution to Traffic Reduction 

It is common that the traffic generated by bots are mixed with regular network traffic. 

To improve botnet detection efficiency, existing researches often reduce the amount 

of input traffic by filtering out bot-irrelevant traffic. Hence, a bot detection algorithm 

is able to concentrate only on bot traffic. A good traffic reduction algorithm may 

improve the overall system performance. However, if not well designed, it could 

increase false negative rates and / or false positive rates. Some common criteria used 

to filter out input traces are listed below [10]: 

 

 Eliminate all port-scan activities 

Although port-scan is an essential step to compromise a remote host, it is not used 

when bots are communicating with each other. Therefore, it is possible to filter out 

port-scan activities without degrading the bot detection performance. Some port-scan 

packets have specific patterns. For example, a TCP port-scan packet with both the 

SYN flag and the RST flag are set. 

 Ignore peer-to-peer traffic: 

If a detection system focuses only on IRC botnets, it often filters out P2P traffic and 

hence gets a significant traffic reduction rate. However, such a system cannot detect 

P2P bots. There are already a lot of systems to identify peer-to-peer traffic. 
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 Skip short lived flows: 

Filter out flows containing only a few packets or lasting only for a few seconds. These 

flows do not correspond to bots that are standing by at the ready [12]. 

 

 Filter out based on black lists and white lists: 

If the source or the destination address of a packet is well-known, it is often not 

necessary to check it. Hence, the packet can be safely ignored. 

In Traffic reduction method It is common that input raw packet traces contain 

many different types of packets. Since most of them are not relevant to botnet 

detection, they should be filtered out. With an accurate and efficient traffic reduction 

algorithm, it enables a botnet detection system to run in a more efficient way. It is true 

that a good traffic reduction filter can reduce the data needed to be processed and 

hence increases the overall system performance. However, if a filter eliminates data 

improperly, bot detection rates could decrease. Therefore, criteria for traffic reduction 

must be carefully considered. In the proposed solution, we use only one intrinsic 

traffic reduction filter, as shown in Fig. 3. To prevent botnets from being detected, it 

is common for bots to dynamically retrieve the IP addresses of C&C servers. A bot 

herder is able to register several domain names and asks the bots to look up the IP 

addresses of these domain names. As a result, bots need to send DNS queries 

frequently to get the IP addresses currently being used by C&C servers. Since bots‟ 

activities often start with DNS queries, this characteristic can be used to filter out bot-

irrelevant traffic. Based on this feature, we check DNS query and response packets 

and put returned IP addresses from the DNS into an IP address list. A packet is sent to 

the feature extraction stage if and only if its source or destination address is listed in 

the IP address list [10]. 

 
 

Fig. 3. The procedure of traffic reduction. 

 

B. Adopting Key Extraction Methodology 

One of the aims of this research was to obtain enough parts of γ needed to decipher 

the Zeus configuration file, which is usually around 69 KB [15]. By executing a Zbot 

sample in our sandbox, it was possible to build a packet containing chosen-plaintext 
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by inflating a modified cookie, i.e. here in after contrast-cookie, with ordinary strings. 

The contrast-cookie takes a relevant role because it allows us to enrich our chosen-

plaintext to obtain a bigger known plain text, which implies being able to 

consecutively retrieve the desired size of γ. On top of that, we were able to extract the 

last m bytes of the derivate key γ and to decipher the configuration file without 

knowing neither the RC4 keystream K nor its seed. In addition, the proposed 

approach would also save the researchers from carrying out the static malware 

analysis to search either the keystream or the seed in the system volatile memory[4]. 

According to Obfuscation key Theorem [4],[19] the derivate key γ can be 

applied to any string Z obtained when ciphering a string Q formed by a set of n 

unknown values and m known ones with key K; however, in order to obtain γ, it is 

necessary to establish a correspondence between Pi and Pʹ i , which requires to know 

n in advance. A Zeus report contains two unknown substrings: the Zeus header and 

the Zeus trojan item 10002, i.e. the botnet-id. Although the length of the Zeus header 

is known, this is not the case for the Zeus botnet-id. Given that the mentioned field 

has a limited length, we tackle with this issue by performing a brute-force attack on 

the Zeus botnet-id item body length. According to the Zeus packet structure explained 

before, the length of every Zeus item body is declared in 4 bytes of its header. Thus, 

the maximum length of the field is 2
32

 bytes long. However, the Zeus Builder toolkit 

does not allow to create malwares containing a botnet-id value bigger than 20 

characters. Therefore, we just need to make an attempt over 20 different positions as 

for where to insert our known environmental item values. Algorithm 1 is in charge of 

creating the set of all the possible obfuscated texts Οʹ , depending on their different 

lengths. Note that in line 5 the insert function is used for adding the character „„A‟‟ at 

the fixed position
3
 x, and shifting all the next values by one byte in the string. The 

algorithm takes the chosen-plaintext as input, and returns a multimodal-array with all 

the related obfuscated texts[4]. 

 

Algorithm 1. Create Obfuscation Set algorithm 

1. function CREATEOBFSET (text)                   The chosen plain text 

2.  T               text 

3. x                              112 

4. for  i                     0, 20 do 

5.                 insert(Tx, „„A‟‟) 

6. Οiʹ                       visualEncrypt(T) 

7.  i                    i ++ 

8. end for 

9. return Οʹ               The obfuscated set 

10. end function 

 

 

Once we generate our set of Οʹ, we can use it for retrieving the derivate key as 

explained before. The key extraction pseudo code is expressed in Algorithm 2. 

 

 



6998  S. Nagendra prabhu and D. Shanthi 

Algorithm 2. Key extraction algorithm 

1. function EXTRACTKS(payload1,  payload2, knownPlain) 

2.  Pʹ              knownPlain 

3.  C          payload1 

4.  D           payload2 

5.  Οʹ           createObfSet (Pʹ ) 

6.  for i           0, | Οʹ | do 

7. for t           0, | Οʹ i|  do 

8.  Si, t           Οʹ i,t      Ct 

9.  i             t++ 

10. end for 

11.  i            i++ 

12. end for 

13.  for i           0, |S| do 

14.  for t           0, |Si| do 

15. Οʹ ʹ i,t             Si,t      Dt 

16.  i            t++ 

17. end for   

18.  Ei             calcEntropy(Οʹ ʹ i) 

19. i             i++ 

20. end for 

21.  v             calcMin(E) 

22.  γ             S[v] 

23. return γ 

24. end function 

 

In algorithm 2: Lines 1–4. The function EXTRACTKS() is called with three 

arguments: the intercepted payload C, the chosen-plain text Pʹ  previously generated, 

as well as a second payload D, corresponding to another infected computer belonging 

to the same botnet.  Line 5. The set of obfuscated texts Οʹ  is created in order to test 

all possible lengths of Zeus‟ botnet-id item. Lines 6–12. A derivate keys matrix S is 

generated as explained before, where every element Si corresponds to one possible 

Zeus botnet-id item length. Lines 13–20. In order to discover the appropriate derivate 

key, every key Si is tested against the second payload D. As a result, a matrix Οʹ ʹ  

containing all the possible decryptions of D is obtained. Moreover, the entropy of 

each possible decryption is computed in line 18. Lines 21–24. The appropriate 

derivate key Sv = γ is identified due to the lower entropy Ei resulting of its application 

to the payload D.   

In this research further demonstrates how the entropy of these obfuscated 

messages O remains nearly constant, allowing us to automatically identify malicious 

traffic even if it is not fully deobfuscated. This propriety derives from the zero 

padding strings used by Zeus for composing its messages. As can be seen in Fig. 4, 

when these strings are obfuscated by the Chronus algorithm[4]. This algorithm 

routine, the resulting output contains several text parts with repeated characters . As a 

result, the calculated entropy drastically decreases in comparison with the one 
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calculated for the cipher text. 

 

C. Malicious traffic identication 

The last phase consists of detecting certain Zeus traffic on a production network, 

having a set of valid Zeus keystreams ᴦ={ γ0 γ1 …γi}, obtained as detailed in 

previous subsection. To perform this test, set up five different virtual machines V = { 

v0,… v4 } in an isolated network, which constantly generate common network traffic 

towards a fixed hosts range S  = {s0, s2, . . . ,si}, e.g. web browsing and POP mail 

consulting. Next, we infected 

one of them with a previously created Zeus malware sample mw1, and 

recorded all network traffic generated by 

this machine during ∆te. As discussed above, botmasters tend to migrate C&C 

servers, to avoid remediation, and frustrate takedown efforts. To maximize the 

number of victims that migrate to a new C&C server, botmasters tend to favor shorter 

TTL periods for domains. This of course is not universally the case, but botnets that 

use lengthy TTL periods must keep C&C servers up for at least that length of time, or 

suffer a loss in victim population with each server migration. 

 

 
 

Fig no 4: A histogram of 20 sampled botnet C&C TTLs 

 

In the above figure it shows a distribution of botnet C&C TTLs. The sampling 

started with 20 “active botnets”. It typically had a TTL > 86400. Many of the domains 

have very short TTL periods for the life of the botnet. In general, a CDF shows what 

fraction of an overall distribution falls below a particular threshold. In Figure number, 

its shown that 50% of the population had a TTL below 2 hours, and 85% of the 

population used less than 3 hours. With some exceptions, TTL periods for legitimate 

sites are often set for days. Short TTL periods are therefore an indication (but not 

proof) that a domain is suspicious. At the very least, they help one rank domains, so 

that an analyst is more productive in a manual review. Caution should be used when 
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focusing exclusively on short-TTL values. First, this parameter is easily manipulated 

by botmasters. (For example, most Dynamic DNS services provide a simple interface 

to let domain owners adjust TTL values). As such, botnet detection based solely on 

TTL values is extremely brittle. Second, it is quite common for legitimate domain 

owners to shorten TTL values in advance of IP renumberings or server migration. 

That is, many legitimate domains with long TTL values (e.g., TTL = 86400) will 

shorten TTLs in advance of network maintenance that results in IP changes, all to 

minimize disrupting clients. Network administrators observing DNS traffic at their 

network edge can use short TTLs to prioritize suspicious domains, and assist 

investigations. Similarly, researchers who encounter domains gathered from 

honeypots and binary analysis should note short TTL periods, since they are a 

hallmark of suspicious activities. 

 

 
 

Fig no 5: A CDF of Botnet C&C TTL. Here the majority of the population is 

under a few hours. 

 

 

V. EVALUATION 
To generate real botnet traces, Zeus file is created using Zeus crime ware toolkit and 

then run executable bots in an unpatched Windows XP SP3 operating system installed 

in VirtualBox virtual machines. All input and output network traces of the virtual 

machines are captured and stored in a MySQL database. Each bot is run for 24 h. 

Both packet headers and complete packet payloads are stored for further analysis. In 

addition to collect traffic generated by bots, we also collect real network traces from a 

campus network.  

In IP phae for each destination IP address identified in network flows, where, 

 Suppose the maximum time interval between a request and its response is less 

than n seconds. We define α as a fixed size set that contains n counters, i.e., α 

= {a1,a2, . . . ,an}. Each counter in α has an initial value of zero. 

 β is the total number of network requests. 
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 Suppose the maximum payload size is less than b bytes. We define γ as a fixed 

size set that contains          b   + 1 counters, i.e., γ = {r0, r1, r2, . . . , rb}. Each 

counter in c has an initial value of zero. 

 

In IP phase, defining the following three states and their corresponding 

membership functions: 

a) Inactive malicious IP address:  Assume that if an IP address receives many 

requests but does not respond, it is highly probable that the destination IP 

address is an inactive malicious IP address. We define a membership function 

X1 to calculate the probability of being an inactive malicious IP address: 

                 --------------   (1) 

In the equation,  is a threshold for the number of retries. When a destination 

IP address has been reconnected for more than  times, the destination IP address is 

treated as malicious. 

b) Malicious IP address: Since the computer with malicious IP address, e.g C&C 

server, often provide the same commands to bots, it can be observed that 

connections to these malicious IP addresses would have similar payload sizes. 

Without counting a payload size of zero, we define a membership function X2 

to calculate the probability of being a malicious IP address 

                     ----------------   (2) 

Here bots always try to reach malicious IP addresses as possible as they could. 

If the number of network flows established with the destination IP address is less than 

a threshold , the IP addresses is treated as benign and thus X2 has a value of zero. 

c) Normal IP address: Defining a membership function X3 to calculate the 

probability of being a normal IP address. If a destination IP address has no 

failed network flows and the payload sizes are diverse, it would be a benign 

address. Therefore, the function X3 is defined as 

                   -----------------   (3)     

 In DNS phase, for each identified domain name, we define a feature vector x 

= (α,β,γ) for the domain name, where 

 Suppose the maximum time interval between two successive DNS queries is 

less than n seconds. Define α as a fixed size set that contains n counters, i.e., α 

= {a1,a2, . . . ,an}. Each counter in α has an initial value of zero. 

 β is the total number of DNS responses. 

 γ is the number of failed DNS responses. 

In this phase, we define the following three states and each state has its own 

membership function: 

a) Inactive malicious DNS query, assume that a DNS query about an inactive 

malicious domain name usually gets a failed DNS response. Therefore, more 

failed DNS responses  should lead to a higher membership value. Based on the 

observation, we define a membership function X1 which is used to calculate 

the probability of being an inactive malicious DNS query. The function X1 is 
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defined as 

                      -----------------    (4)  

b) Malicious DNS query Since malicious DNS queries usually have similar time 

intervals. If most DNS queries for an identified domain name have similar 

time intervals, it could be a malicious domain name. We define a membership 

function X2 to calculate the probability of contacting a malicious domain 

name. The function X2 is defined as 

             --------------    (5) 

In the equation, we define a threshold . If the number of observed DNS 

queries is less than , we believe that   the identified domain name is benign and thus 

X2 has a value of zero. 

c) Normal DNS query We define a membership function X3 to calculate the 

probability of being a normal DNS query. If an identified domain name has no 

failed DNS response, low query frequency, and diverse time intervals, it 

would be a benign domain name. Therefore, the function X3 is defined as 

X3(x) =1-max {X1(x), X2(x)}                    -------    (3) 

 

 Numeric results 

In this result it is tried for different thresholds of  for botnet traces to check the false 

negative rates (FNR) of malicious domain names and IP addresses. As  increases, 

FNR also increases. This is because some bots generate very few packets and the 

involved domain names or malicious IP addresses would not be detected if  is too 

large. 

 

 
 

Fig no 6:  Malicious domain names and IP addresses: false negative rate vs.  
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DNS Request Rates 

To help identify suspicious domains, we can rank and prioritize domains based on 

their associated request rates. The theory is that malicious domains (with large 

numbers of victims) should tend to have a larger volume of recursive and SOA 

refreshes. The problem of course is that some legitimate domains also have very high 

request rates. To address this problem, we can look at patterns of resolutions 

associated with different levels of a domain. We can classify DNS requests as either 

second-level domain (SLD) requests, such as example.com, or third-level subdomain 

requests (3LD), such as foo.example.com. To avoid increased costs and additional 

risks, botmasters tend create botnets within 3LDs, all under a common SLD. For 

example, a botmaster may purchase the string example.com from a registrar, and then 

also arrange for DNS service for the 3LDs botnet1.example.com, botnet2..., and so 

on. The botmasters use subdomains in order to avoid creating a new domain, different 

SLD for each new botnet, e.g., example1.com, example2.com. 

Each transaction to create such a domain involves risk. The seller may be 

recording the originating IP for the transaction, requiring the bot master to use 

numerous stepping stones or proxies. Some registrars are careful about screening and 

validating the whois contact information provided by the domain purchaser. Some 

dynamic registrars require phone numbers and other identification. If the purchase is 

performed with stolen user accounts, there is a further risk of being caught. Since 

many DNS providers offer subdomain packages (e.g., a few free subdomains with 

DNS service) this allows the botmaster to reuse their purchased domain, and 

minimize both their costs and risk. Botmasters see another advantage in using 

subdomains. Even if service to a 3LD is suspended, service to other 3LDs within the 

same SLD is usually not disrupted. So, if botnet1.example.com is blocked, traffic to 

normaluser.example.com and botnet2.example.com is not disrupted. This lets 

botmasters create multiple, redundant DDNS services for their networks, all using the 

same SLD. 

By comparison, most normal users usually do not employ subdomains when 

adding subcategories to an existing site. For example, if a legitimate company owns 

example.com, and wants to add subcategories of pages on their web site, they are 

more likely to expand the URL (e.g., example.com/products) instead of using a 3LD 

subdomain (e.g., products.example.com). This lets novice web developers create new 

content cheaply and quickly, without the need to perform complicated DNS updates 

(and implement virtual hosts checking in the web server) following each change to a 

web site. This is, of course, essentially a sociological observation about how 

botmasters and normal users behave when creating subdomains and domain content. 

There will be exceptions, and the behavior of both groups can also change. But the 

motivating factors (risk, cost, and convenience) should persist. We therefore assume 

that, in the large, this observation may hold for a class of botnets (but certainly not 

all). This fact helps us design a simple detection system. We can score domains based 

on the number of sibling and child domain lookups that occur. Thus, we can 

“penalize” the ranking of domains using the traffic volumes set to sister domains. For 

example, if one observes large amounts of legitimate traffic to google.com, and large 

volumes of botnet traffic to botnet1.example.com and botnet2.example.com, we can 
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sift out the botnets by scoring the parent zone, example.com, based on the traffic 

directed at its children. One can think of this as ranking families of domains, based on 

the amount of traffic sent to the parent zone‟s subtree. Similarly, it mirrors some of 

the analysis provided by Fig no 6, when run in trace mode, as discussed above. 

Logically, this must start at the SLD-level. 

 

 
 

Fig no 6:  Comparison of Canonical DNS Request Rates 
 

When SLD domain traffic is placed into a canonical form (based on the 

volume of traffic directly to subdomains), it becomes much easier to distinguish the 

normal and bot traffic. Since the botnet traffic tends to favor a family of related 

domains (e.g., botnet1.example.com, botnet2.example.com), ranking the domains 

based on the traffic to a particular subtree helps separate the signal (bot traffic) from 

the noise (normal traffic). 

 

 

VI. CONCLUSION AND FUTURE WORK  

This paper has discussed key properties of traffic reduction algorithm to reduce the 

amount of traffic and how botnets are identified by adopting key extraction and 

malicious traffic detection methods using DNS. Based on common bot host behavior, 

the algorithm is divided into two stages: (1) Key extraction: identify the input raw 

data and processing of the Bots specific activities; and (2) malicious Traffic Detection 

using DNS. Botnets generate large waves of DNS traffic. This is dampened by the 

impact of caching, both at the host application/stub level, and at the recursive level. 

The detection and remediation of botnets is assisted by DNS sensors as well. By 

logging all addresse associated with a domain, passive DNS lets administrators 

expand investigations, and implement more complete remediations. To increase the 

network agility of a botnet, botmasters favor short TTL periods, or the time a domain 

is cached by a host or caching DNS server. Since botnets often have many victims, 

large volumes of DNS traffic are associated with botnets, particular at authority DNS 
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servers. Many legitimate domains also experience large volumes of traffic. These 

detection techniques are merely heuristics. Botmasters are human adversaries, and can 

respond to detection strategies.   

In the proposed paper, Although traffic reduction brings benefits, the above 

criteria, it also raise some concerns. First, ignoring P2P traffic eliminates the 

possibility of identifying P2P bots. Second, skipping short lived flows may cause 

failures in detecting inactive botnet traffic. An inactive bot is a bot that is not able to 

connect to its command and control (C&C) server either temporarily or persistently. 

An inactive bot should also be detected so that the network can be protected if the bot 

becomes active again. Third, when black lists and white lists are used to reduce input 

traffic, the lists must be well managed and make sure that the lists are up-todate. This 

is because a benign host may be compromised and then turned into a malicious one at 

any time. If a list is not updated accordingly, the malicious traffic involved with a 

newly compromised host may be incorrectly ignored. The highlighed future work will 

be rectified soon. 
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