
International Journal of Applied Engineering Research
ISSN 0973-4562 Volume 10, Number 3 (2015) pp. 6731-6743
© Research India Publications
http://www.ripublication.com

Improved Bee Colony Optimization For Efficient
Task Scheduling In Cloud Environment

1 R.Jemina Priyadarsini and 2 Dr.L.Arockiam

1 Department of Computer science, St.Joseph’s College, Trichirapalli,
Tamil Nadu,620002, India,jemititus@gmail.com

2 Associate Professor,Department, of Computer science, St.Joseph’s College,
Trichirapalli,

Tamil Nadu,620002, India,larockiam@yahoo.com

ABSTRACT

Cloud computing is a new technology in academic world. On cloud computing
platform, resources are provided as service and by needs, and it guarantees to the
subscribers that it sticks to the Service Level Agreement (SLA).Job Scheduling is
used to allocate certain jobs to particular resources in particular time. Job scheduling
in cloud computing mainly focuses to improve the efficient utilization of resource
that is bandwidth, memory and reduction in completion time. In this paper we propose
a Improved Bee Colony Optimization (IBCO) for efficient task scheduling in cloud
services that takes both data transmission cost and computation cost into account.
Comparisons are made on makespan and resource utilization with the Min-Min and
Max-Min algorithm. Simulation is carried out using Cloud Sim toolkit. Experimental
results show that the proposed algorithm achieves better performance on makespan
and resource utilization.

Keywords: Cloud Computing, Scheduling, Virtualization, Bee Colony Optimization
(BCO).

1. INTRODUCTION
Cloud computingis a technology that uses the internet and central remote servers to
maintain data and applications. Cloud computing can be defined as “a type of parallel
and distributed system consisting of a collection of inter-connected and virtualized
computers that are dynamically provisioned and presented as one or more unified
computing resources based on service-level agreements established through
negotiation between the service provider and consumers” [1]. Cloud computing
delivers infrastructure, platform, and software as services, which are made available

6732 R.Jemina Priyadarsini and Dr.L.Arockiam

as subscription-based services in a pay-as-you-go model to consumers. These services
in industry are respectively referred to as Infrastructure as a Service (IaaS), Platform
as a Service (PaaS), and Software as a Service (SaaS) [2].

Virtualization plays a major role in the cloud computing technology, normally
in the cloud computing, users share the data present in the clouds like application etc.
but with virtualization users shares the Infrastructure. the main usage Virtualization
Technology is Normally cloud providers provide the applications with the standard
versions to their cloud users, for suppose if the next version of that application is
released, then cloud provider has to provide the latest version to their cloud users and
practically it is possible but it is more cost expensive [3]. In sever virtualization, all
physical servers are virtualized and they run multiple servers with either same or
different application. As one physical server acts as multiple physical servers, it
curtails the need for more physical machines [4].

Optimal resource allocation or task scheduling in the cloud should decide
optimal number of systems required in the cloud so that the total cost is minimized
and the SLA is upheld [5].Cloud service scheduling is categorized at user level and
system level. At user level scheduling deals with problems raised by service provision
between providers and customers. The system level scheduling handles resource
management within datacenter. In cloud computing, job- scheduling problem is a
biggest and challenging issue. Hence the job scheduler should be dynamic.

Job scheduling in cloud computing is mainly focuses to improve the efficient
utilization of resource that is bandwidth, memory and reduction in completion time
[6]. An efficient job scheduling strategy must aim to yield less response time so that
the execution of submitted jobs takes place within a possible minimum time and there
will be an occurrence of in-time where resources are reallocated. Because of this, less
rejection of jobs takes place and more number of jobs can be submitted to the cloud
by the clients which ultimately show increasing results in accelerating the business
performance of the cloud. There are different types of scheduling based on different
criteria, such as static vs. Dynamic, centralized vs. Distributed, offline vs. Online etc.

Static scheduling allows for pre-fetching required data and pipelining different
stages of task execution. Static scheduling imposes less runtime overhead. In case of
dynamic scheduling information of the job components/task is not known beforehand.
Max-min algorithm allocates task Ti on the resource Rj where large tasks have
highest priority rather than smaller tasks [7]. For example, if we have one long task,
the Max-min could execute many short tasks concurrently while executing large one.
The total makespan, in this case is determined by the execution of long task. But if
meta-tasks contains tasks have relatively different completion time and execution
time, the makespan is not determined by one of submitted tasks. They try to minimize
waiting time of short jobs through assigning large tasks to be executed by slower
resources [8].

Task scheduling is an important issue and in dynamic environment resource
availability and load on resources is changed time to time [9].NP is the set of decision
problems that are solvable on a nondeterministic Turing machine in polynomial time,
but a candidate solution of the problem of Class NP can be confirmed by a
polynomial time algorithm, which means that the problem can be verified quickly.

Improved Bee Colony Optimization For Efficient Task Scheduling 6733

NP-hard is the set of optimization problems, to which all NP problems can be
polynomial transformable, but a NP-hard problem is not necessarily in class NP.

Many optimization algorithms have been applied to solve this problem[10].
Different researchers have proposed various algorithms for allocating and scheduling
the resources efficiently in the cloud. To solve NP-complete problems, it almost is
used evolutionary and heuristic algorithms, toward scheduling problem in distributed
systems used some algorithms such as: Partial swarm optimization (PSO), Simulated
Annealing, Tabu Search, Genetic Algorithm (GA) and etc. Among them GA is good
to gain an optimized response in parallel search.

The rest of the paper is structured as follows: Section 2 describes the related
work. Section 3discusses the problem formulation and Section 4 describes method
used in this work. A brief overview of the evaluation of the conducted experiments is
given in Section5. Experiment results are discussed in Section 6 and this paper is
concluded in Section7.

2. RELATED WORKS
Zhang et al., [11] proposed a new iterative ordinal optimization (IOO) method. In
cloud experiments on IBM RC2 cloud, 20,000 tasks executed in Laser Interferometer
Gravitational-wave Observatory (LIGO) verification workflow on 128 virtual
machines. The IOO schedule was generated in less than 1,000 seconds, while using
the Monte Carlo simulation takes 27.6 hours, 100 times longer to yield an optimal
schedule. The IOO-optimized schedule results in a throughput of 1100 tasks/sec with
7 GB memory demand compared with 60% decrease in throughput and 70% increase
in memory demand in using the Monte Carlo method. The LIGO experimental results
demonstrated the advantage of using the IOO-based workflow scheduling over the
traditional blind-pick, ordinal optimization, or Monte Carlo methods.

Effective job scheduling is critical in achieving on-demand resources
allocation in dynamic cloud computing paradigm. Song et al., [12] proposed an Ant
Colony Optimization based job scheduling algorithm, which adapted to dynamic
characteristics of cloud computing and integrated specific advantages of Ant Colony
Optimization in NP-hard problems. It aimed to minimize job completion time based
on pheromone. Experimental results obtained showed that it is a promising Ant
Colony Optimization algorithm for job scheduling in cloud computing environment.

Tawfeek et al., [13] presented a comparison of a cloud task scheduling policy
based on ant colony optimization algorithm with different scheduling algorithms
FCFS and round-robin. The main goal of these algorithms is minimizing the
makespan of a given tasks set. Ant colony optimization is random optimization search
approach that will be used for allocating the incoming jobs to the virtual machines.
Algorithms have been simulated using Cloudsim toolkit package. Experimental
results showed that the ant colony optimization outperformed FCFS and round-robin
algorithms.

Liu et al., [14] proposed a model of service flow scheduling with various
quality of service (QoS) requirements in cloud computing firstly, then the use of an
ant colony optimization (ACO) algorithm was adapted to optimize service flow

6734 R.Jemina Priyadarsini and Dr.L.Arockiam

scheduling. In the proposed model, default rate was used to describe the radio of
cloud service provider breaking service level agreement (SLA), and also introduce an
SLA monitoring module to monitor the running state of cloud services.

Wang et al., [15] presented a combined approach known as SIWPSO; the main
idea of this approach is to get the optimal allocation of cloud service resources to
improve the overall outcome of cloud manufacturing. The particle swarm
optimization with stochastic inertia weight strategy (SIWPSO) was adopted for the
proposed model. Its efficiency is compared with other three particle swarm
optimization algorithms. Simulation results showed its effectiveness and superiority to
solve cloud service resources scheduling and assignment problem.

Li et al., [16] proposed a cloud task scheduling policy based on Load
Balancing Ant Colony Optimization (LBACO) algorithm. The main contribution of
the proposed work was to balance the entire system load while trying to minimizing
the make span of a given tasks set. The new scheduling strategy was simulated using
the CloudSim toolkit package. Experiments results showed the proposed LBACO
algorithm outperformed FCFS (First Come First Serve) and the basic ACO (Ant
Colony Optimization).

Luo et al., [17] studied the relationship between infrastructure components and
power consumption of the cloud computing environment, and discussed the matching
of task types and component power adjustment methods, and then presented a
resource scheduling algorithm of Cloud Computing based on energy efficient
optimization methods. The experimental results demonstrated that, for jobs that not
fully utilized the hardware environment, using the proposed algorithm could
significantly reduce energy consumption.

Resource scheduling based on Service Level Agreement (SLA) in cloud
computing is NP-hard problem. There is no efficient method to solve it. Li &Guo[18]
proposed a new method to solve the problem by applying stochastic integer
programming for optimal resource scheduling in cloud computing. Applying Grobner
bases theory for solving the stochastic integer programming problem and the
experimental results of the implementation were also presented.

3. TASK SCHEDULING PROBLEM FORMULATION
We denote the task scheduling as a task interaction graph (TIG). We describe the TIG
by G(V,E), where V={1,2, …, n} represents the tasks of an application and E={Cij}
indicates the information exchange between these tasks. The edge weigh eij between
node i and j denotes the information exchange between these pair of tasks. The node
is defined for processor centers. The node weigh w corresponds to the work capacity
of the node. The processors in the cloud computing are heterogeneous and they have
different processing ability which depend on their amount units of memory and
performance of cup's capacity. A task's processing cost will be variety according to
the task being assignment to different processors [19].

On the other hand, the communication cost between two nodes will be
changing because between two different node's bandwidth have diversity and
changing over time. The target is to minimize the communication time and execution

Improved Bee Colony Optimization For Efficient Task Scheduling 6735

cost. In order to formulate the task scheduling, we define Tii= {1, 2, 3, …, n} as n
independent tasks permutation and Pjj=B{1, 2, 3, …, m} as m computing resources
and Bij,i, j={1, 2, 3, …, k}as the bandwidth between two nodes and k is the number of
node；xik=1 if task i is assigned to processor k, and xik=0, otherwise; yijkl=1 if k≠land
task i is assigned to processor k and task j is assigned to processor l, and yijkl=0
otherwise; n is the number of tasks; m is the number of processors; DEik is the amount
of data that the i task assigning to the processor k and Pm and Pc are the processor's
memory and CPU's capacity; DTij is the interchange data amount between task i and
task j;

(ܯ)௘௫௘ܥ = ෍෍ݔ௜௞ ∗
௜௞ܧܦ
௠ܲ ∗ ௖ܲ

௠

௞ୀଵ

௡

௜ୀଵ

 −− −− −− −−(1)

(ܯ)௧ܥ = ෍ ෍ ∗ ௜௝௞௟ݕ
ܦ ௜ܶ௝

௜௝ܤ

௡

௝ୀ௜ାଵ

௡ିଵ

௜ୀଵ

 −− −− −− −−(2)

(ܯ) ݈ܽݐ݋ܶ = (ܯ) ௘௫௘ܥ −(ܯ) ௧ܥ + −− − −− −− − (3)

= ௜௞ݔ෍ ݋ݐ ݐ݆ܾܿ݁ݑܵ 1, ∀ ݅ = 1, 2, … … … . .݊
௠

௞ୀଵ

− −− −− − −− − (4)

෍෍ݕ௜௝௞௟

௠

௟ୀଵ

௠

௞ୀଵ

= 1,∀ ݅, ݆ = 1,2, … … … …݊, ݇ ≠ ݈ − − −− −− −− − (5)

Equation (1) and (2) respectively represent the executing cost and the

transforming time. Supposing that the processing time is known for task i executing
on processor j and the communication time is known for transmitting the data from i
node to j node. Our purpose is to map all the tasks to all the processors and make the
total time and cost minimizing, which helps reduce the makespan with equation (3)
value is minimum.

4. METHODOLOGY
In this study, Bee Colony Optimization is used for scheduling in cloud computing.
Bee swarm behavior in nature is first and foremost characterized by autonomy
,distributed functioning and self-organizing. The BCO is capable to solve
deterministic combinatorial problems as well as combinatorial problems characterized
by uncertainty.

4.1 Bee Colony Optimization (BCO)
Bee Colony Optimization (BCO) is a specialization to Swarm Intelligence (SI) where
the workers/members/agents to the group are honey bees. They communicate by a
mechanism called “Waggle Dance” and exchange important information regarding
rich food source’s location [20]. Figure 1. Gives the general process of BCO.BCO is
inspired by bees’ behavior in the nature. The basic idea behind the BCO is to create
the multi agent system (colony of artificial bees) capable to successfully solve

6736 R.Jemina Priyadarsini and Dr.L.Arockiam

difficult combinatorial optimization problems. The BCO is a population based
algorithm. Population of artificial bees searches for the optimal solution. Artificial
bees represent agents, which collaboratively solve complex combinatorial
optimization problems. The algorithm consists of two alternating phases: forward pass
and backward pass.

Figure 1 Flowchart for Basic BCO

In each forward pass, every artificial bee explores the search space. It takes a
predefined number of moves which construct and improve the solution, yielding to a
new solution. Having obtained new partial solutions, the bees go again to the nest and
start the second phase, the so called backward pass. In the backward pass, all artificial
bees share information about their solutions. The pseudo-code of the BCO algorithm
is given below [21]:

Initialization: Read problem data, parameter values (B and
NC),and stopping criterion.

Do

START

Initialize Bee population

Identify Food sources

Perform scout bee Scenario

Perform forager bee scenario

Select food source with Best food source Quality

STOP

Is stopping criteria
met?

No

Yes

No

Yes

Is stopping criteria
met?

Improved Bee Colony Optimization For Efficient Task Scheduling 6737

 (1) Assign a(n) (empty) solution to each bee.
(2) For (i = 0; i <NC; i + +)

//forward pass
(a) For (b = 0; b <B; b + +)

For (s = 0; s <f (NC); s + +)//count moves
(i) Evaluate possible moves;
(ii) Choose one move using the roulette

wheel;
//backward pass
(b) For (b = 0; b <B; b + +)
Evaluate the (partial/complete) solution of bee b;
(c) For (b = 0; b <B; b + +)
Loyalty decision for bee b;
(d) For (b = 0; b <B; b + +)
If (b is uncommitted), choose a recruiter by the

roulette wheel.
(3) Evaluate all solutions and find the best one. Update

xbest and f (xbest)
While stopping criterion is not satisfied.
Return (xbest; f (xbest))

Constructive moves in forward pass
Each constructive move in the forward pass consists of choosing a task-processor
pair. Following the idea of LPT algorithm, that it is better to choose longer tasks first
and then use the shorter ones to refine the schedule, we set up pi (the probability that
specific bee chooses task i) to:

௜ܲ =
݈௜

∑ ݈௞௞
௞ୀଵ

, ݅ = 1,2, …݊ − − − −− (7)

Where:
li - processing time of the i-th task;
K- the number of “free” tasks (not previously chosen)

Obviously tasks with a higher processing time have a higher chance to be
selected. Using relation (7) and a random number generator, we determine a task to be
selected by each bee. Once the task to be scheduled is selected corresponding
processor should be selected. Since our goal is to minimize maximum (over all
processors) running time it is obvious that processors with a lower value of the current
running times should have a higher chances to be chosen. Let us denote by pj the
probability that specific bee chooses processor j. We assume that the probability of
choosing processor j equals [22]:

௝݌ = ௝ܸ

∑ ௞ܸ
௠
௞ୀଵ

, ݆ = 1,2, … …݉ − −− −− −− −(8)

Where:

௝ܸ =
max ܨ − ௝ܨ

max F − min F , ݆ = 1,2 … … . .݉ − −− −− −− −− (9)

6738 R.Jemina Priyadarsini and Dr.L.Arockiam

And
Fj – running time of processor j based on tasks already scheduled

to it;
max F – maximum over all processors running times (based on

already scheduled tasks);
min F – minimum over all processors running times (based on

already scheduled tasks).
Therefore, Vj represents normalized value for the running time of

corresponding processor. Using relation (8) and a random number generator, we
select a processor for previously chosen task.

Within a single forward pass, each bee has to determine NC task-processor
pairs. In total, B bees choose B*NC task-processor pairs after each forward pass.
When scheduling tasks to processors is done for all pairs within a single forward pass,
we update processors’ running times and start the backward pass.
Bee’s partial solutions comparison mechanism

All bees return to the hive after generating the partial solutions. All these
solutions are then evaluated by all bees. (The latest time point of finishing the last task
at any processor characterizes every generated partial solution).

Let us denote by Cb (b=1,2,…,B) the latest time point of finishing the last task
at any processor in the partial solution generated by the b-th bee. We denote by Ob
normalized value of the time point Cb, i.e.:

௕݋ =
௠௔௫ܥ − ௕ܥ
௠௔௫ܥ − ௠௜௡ܥ

, ܾ = 1,2, … … ܤ… −− −− −− − (10)

Where minC and maxC are respectively the smallest and the largest time point
among all time points produces by all bees. The probability that b-th bee (at the
beginning of the new forward pass) is loyal to the previously discovered partial
solution is calculated in the following way:

௕௨ାଵ݌ = ݁ି
೚೘ೌೣష ೚್

ೠ , ܾ = 1,2, … … ܤ… − −− −− −− (11)
where u is the ordinary number of the forward pass.

Using relation (11) and a random number generator, every artificial bee
decides to become uncommitted follower, or to continue flight along already known
path.

The better the generated partial solution (higher Ob value), higher the
probability that the bee will be loyal to the previously discovered partial solution. The
great the ordinary number of the forward pass, the higher the influence of the already
discovered partial solution. This is expressed by the term u in the denominator of the
exponent (relation 11). In other words, at the beginning of the search process bees are
“more brave” to search the solution space. The more forward passes they make, the
bees have less courage to explore the solution space. The more we are approaching
the end of the search process, the more focused the bees are on the already known
solutions.
5. EXPERIMENTAL EVALUATION
In this section, we present the metric of comparison, the experiment setup and the
results.

Improved Bee Colony Optimization For Efficient Task Scheduling 6739

5.1 Performance metric
As a measure of performance, we used cost for complete execution of application as a
metric. We computed the total cost of execution of a workflow using two heuristics:
BCO based cost optimization, and best resource selection (based on minimum
completion time by selecting a resource with maximum cost) [23].

5.2 Data and Implementation
We have used three matrices that store the values for:

a) Average computation cost of each task on each resource (TP-
matrix),

b) Average communication cost per unit data between compute
resources (PP-matrix), and

c) Input/ output Data Size of each task (DS-matrix).

The values for PP-matrix resemble the cost of unit data transfer between

resources given by Amazon Cloud Front. We assume PC1 to be in US, PC2 in Hong
Kong (HK) and PC3 in Japan (JP), respectively. We randomly choose the values in
the matrix for every repeated experiment, but keep these values constant during the
BCO iterations. The values for TP-matrix vary for two classes of experiments. While
varying the size of data, we choose the TPmatrix values to resemble the Evolutionary
Multi-objective Optimization (EMO) application. As each task has its own DS-matrix,
the sum of all the values in the matrix varies according to the size of data we
experiment (64-1024 MB).

The total data is divided among tasks such that if x is the output data size of
T1, then tasks T2, T3,&T4 each receive x data as input and produce x data as output.
Finally, task T5 consumes 3x data and produces 6x data.

6. EXPERIMENTAL RESULTS
Experiments are conducted with different number of tasks assigned to Cloud with 4
resources. The resources are located at two data centres. Each resource has 1 CPU
with 1 Gb RAM. Each task is of size ranging from 1-7 units.

Table 1 Makespan (in sec)

Number of tasks Min Min Max Min Proposed IBCO (sec)
40 47 44 42.7
80 94.4 88.4 85.8

160 190.2 177.7 172.5
320 382.9 357.1 346.5
640 769.6 718.7 698

6740 R.Jemina Priyadarsini and Dr.L.Arockiam

Figure 2 Makespan

Table 1 shows that the proposed method gives the better makespan by

9.9808% when compared with Min Min algorithm and 3.0131% than Max Min
method with 320 number of tasks.The results are also depicted in figure 2 with
respect to number of task with makespan.

Table 2 Resource Utilization

Number of tasks Min Min Max Min Proposed IBCO
40 79.5 81 81.9
80 79.9 78.7 81.3

160 81 78.8 82.5
320 80.4 82.2 79.6
640 79.7 80.7 80.5

0
100
200
300
400
500
600
700
800
900

40 80 160 320 640

M
ak

es
pa

n

Number of tasks
Min Min Max Min Proposed Bee Swarm OptimizationIIBCO

Improved Bee Colony Optimization For Efficient Task Scheduling 6741

Figure 3 Resource Utilization

Similarly Table 2 and figure 3 shows that the proposed method also gives

better utilization of resources by 2.974% when compared with Min min algorithm and
1.105% than Max min method with 320 number of tasks[24].

Figure 4 Best Fitness

7. CONCLUSION
In this paper, Improved Bee Colony Algorithm(IBCO) for efficient task scheduling is
proposed to schedule applications among cloud services that takes both data
transmission cost and computation cost into account. Experiments were conducted
using CloudSim tool kit with a set of tasks and Comparison was made on makespan
and resource utilization with Min min and Max min algorithm. Experimental results

76

77

78

79

80

81

82

83

40 80 160 320 640

R
es

ou
rc

e
U

til
iz

at
io

n

Number of tasks
Min Min Max Min Proposed Bee Swarm OptimizationIBCO

40
41
42
43
44
45
46
47
48

1 30 60 90 12
0

15
0

18
0

21
0

24
0

27
0

30
0

33
0

36
0

39
0

42
0

45
0

48
0

B
es

t F
itn

es
s

Number of iterations

Best fitness - 40 tasks

6742 R.Jemina Priyadarsini and Dr.L.Arockiam

showed that the proposed IBCO achieves better performance on makespan and
resource utilization.

REFERENCES

1. Bhatt, K., &Bundele, M. (2013). Review Paper on PSO in workflow scheduling

and Cloud Model enhancing Search mechanism in Cloud Computing.
International Journal of Advanced Research in Computer Science and Software
Engineering 3(8), pp. 1279-1287

2. Buyya, R., Ranjan, R., &Calheiros, R. N. (2009, June). Modeling and simulation
of scalable Cloud computing environments and the CloudSim toolkit: Challenges
and opportunities. In High Performance Computing & Simulation, 2009.
HPCS'09. International Conference on (pp. 1-11). IEEE.

3. tejKoganti, K., Patnala, E., Narasingu, S. S., &Chaitanya, J. N. Virtualization
Technology in Cloud Computing Environment.

4. SrinivasaRao, V., &NageswaraRao, N. K. (2009). E KusumaKumari,“Cloud
Computing: An Overview”. Journal of Theoretical and Applied Information
Technology, 9(1).

5. Chawla, Y., &Bhonsle, M. (2012). A Study on Scheduling Methods in Cloud
Computing. International Journal of Emerging Trends & Technology in
Computer Science (IJETTCS), 1(3), 12-17.

6. Patel, S., & Bhoi, U. (2013). Priority Based Job Scheduling Techniques In Cloud
Computing: A Systematic Review. International Journal of Scientific &
Technology Research, 2(11).

7. Bhoi, U., &Ramanuj, P. N. (2013). Enhanced Max-min Task Scheduling
Algorithm in Cloud Computing. International Journal of Application or
Innovation in Engineering and Management (IJAIEM), ISSN, 2319-4847.

8. Gupta, H., Singh, D., & Gupta, B. K. Scheduling Techniques in Cloud
Computing: A Systematic Review.

9. Thilagavathi, D., &Thanamani, A. S. Scheduling in High Performance
Computing Environment using Firefly Algorithm and Intelligent Water Drop
Algorithm. International Journal of Engineering Trends and Technology
(IJETT)–Vol, 14.

10. Bilgaiyan, S., Sagnika, S., & Das, M. (2014). An Analysis of Task Scheduling in
Cloud Computing using Evolutionary and Swarm-based
Algorithms.International Journal of Computer Applications, 89(2), 11-18.

11. Zhang, F., Cao, J., Hwang, K., Li, K., & Khan, S. (2014). Adaptive Workflow
Scheduling on Cloud Computing Platforms with Iterative Ordinal Optimization.

12. Song, X., Gao, L., & Wang, J. (2011, June). Job scheduling based on ant colony
optimization in cloud computing. In Computer Science and Service System
(CSSS), 2011 International Conference on (pp. 3309-3312). IEEE.

13. Tawfeek, M. A., El-Sisi, A., Keshk, A. E., &Torkey, F. A. (2013, November).
Cloud task scheduling based on ant colony optimization. In Computer

Improved Bee Colony Optimization For Efficient Task Scheduling 6743

Engineering & Systems (ICCES), 2013 8th International Conference on (pp. 64-
69). IEEE.

14. Liu, H., Xu, D., & Miao, H. (2011, December). Ant colony optimization based
service flow scheduling with various QoS requirements in cloud computing.
InSoftware and Network Engineering (SSNE), 2011 First ACIS International
Symposium on (pp. 53-58). IEEE.

15. Wang, Z., Zhang, J., & Si, J. (2014, July). Application of particle swarm
optimization with stochastic inertia weight strategy to resources scheduling and
assignment problem in cloud manufacturing environment. In Control Conference
(CCC), 2014 33rd Chinese (pp. 7567-7572). IEEE.

16. Li, K., Xu, G., Zhao, G., Dong, Y., & Wang, D. (2011, August). Cloud task
scheduling based on load balancing ant colony optimization. In Chinagrid
Conference (ChinaGrid), 2011 Sixth Annual (pp. 3-9). IEEE.

17. Luo, L., Wu, W., Di, D., Zhang, F., Yan, Y., & Mao, Y. (2012, June). A resource
scheduling algorithm of cloud computing based on energy efficient optimization
methods. In Green Computing Conference (IGCC), 2012 International (pp. 1-6).
IEEE.

18. Li, Q., &Guo, Y. (2010, September). Optimization of Resource Scheduling in
Cloud Computing. In SYNASC (pp. 315-320).

19. Guo, L., Zhao, S., Shen, S., & Jiang, C. (2012). Task scheduling optimization in
cloud computing based on heuristic algorithm. Journal of Networks, 7(3), 547-
553.

20. Teodorović, D. (2009). Bee colony optimization (BCO). In Innovations in swarm
intelligence (pp. 39-60). Springer Berlin Heidelberg.

21. Davidovic, T., Teodorovic, D., &Selmic, M. (2014). Bee colony optimization
Part I: The algorithm overview. Yugoslav Journal of Operations Research ISSN:
0354-0243 EISSN: 2334-6043, 24(2).

22. Davidovic, T., Selmic, M., &Teodorovic, D. (2009, June). Scheduling
independent tasks: bee colony optimization approach. In Control and
Automation, 2009. MED'09. 17th Mediterranean Conference on (pp. 1020-1025).
IEEE.

23. Pandey, S., Wu, L., Guru, S. M., & Buyya, R. (2010, April). A particle swarm
optimization-based heuristic for scheduling workflow applications in cloud
computing environments. In Advanced Information Networking and Applications
(AINA), 2010 24th IEEE International Conference on (pp. 400-407). IEEE.

24. Jemina Priyadarsini R and Arockiam L, “Performance Evaluation of Min-Min
and Max-Min algorithms for job scheduling in federated cloud”, International
Journal of Computer Applications (IJCA), Vol. 99, Number 18 August 2014,
ISSN: 0975-8887, pp. 47-54. (IF 0.824).

6744 R.Jemina Priyadarsini and Dr.L.Arockiam

