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ABSTRACT 
 

Cloud computing is a new technology in academic world. On cloud computing 
platform, resources are provided as service and by needs, and it guarantees to the 
subscribers that it sticks to the Service Level Agreement (SLA).Job Scheduling is 
used to allocate certain jobs to particular resources in particular time. Job scheduling 
in cloud computing  mainly focuses to improve the efficient utilization of resource 
that is bandwidth, memory and reduction in completion time. In this paper we propose 
a Improved Bee Colony Optimization (IBCO) for efficient task scheduling in cloud 
services that takes both data transmission cost and computation cost into account. 
Comparisons   are made on makespan and resource utilization with the Min-Min and 
Max-Min algorithm. Simulation is carried out using Cloud Sim toolkit. Experimental 
results show that the proposed  algorithm  achieves better performance on makespan 
and resource utilization. 
 
Keywords: Cloud Computing, Scheduling, Virtualization, Bee Colony Optimization 
(BCO). 
 
 
1. INTRODUCTION 
Cloud computingis a technology that uses the internet and central remote servers to 
maintain data and applications. Cloud computing can be defined as “a type of parallel 
and distributed system consisting of a collection of inter-connected and virtualized 
computers that are dynamically provisioned and presented as one or more unified 
computing resources based on service-level agreements established through 
negotiation between the service provider and consumers” [1]. Cloud computing 
delivers infrastructure, platform, and software as services, which are made available 
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as subscription-based services in a pay-as-you-go model to consumers. These services 
in industry are respectively referred to as Infrastructure as a Service (IaaS), Platform 
as a Service (PaaS), and Software as a Service (SaaS) [2]. 

Virtualization plays a major role in the cloud computing technology, normally 
in the cloud computing, users share the data present in the clouds like application etc. 
but with virtualization users shares the Infrastructure. the main usage Virtualization 
Technology is Normally cloud providers provide the applications with the standard 
versions to their cloud users, for suppose if the next version of that application is 
released, then cloud provider has to provide the latest version to their cloud users and 
practically it is possible but it is more cost expensive [3]. In sever virtualization, all 
physical servers are virtualized and they run multiple servers with either same or 
different application. As one physical server acts as multiple physical servers, it 
curtails the need for more physical machines [4]. 

Optimal resource allocation or task scheduling in the cloud should decide 
optimal number of systems required in the cloud so that the total cost is minimized 
and the SLA is upheld [5].Cloud service scheduling is categorized at user level and 
system level. At user level scheduling deals with problems raised by service provision 
between providers and customers. The system level scheduling handles resource 
management within datacenter. In cloud computing, job- scheduling problem is a 
biggest and challenging issue. Hence the job scheduler should be dynamic.  

Job scheduling in cloud computing is mainly focuses to improve the efficient 
utilization of resource that is bandwidth, memory and reduction in completion time 
[6]. An efficient job scheduling strategy must aim to yield less response time so that 
the execution of submitted jobs takes place within a possible minimum time and there 
will be an occurrence of in-time where resources are reallocated. Because of this, less 
rejection of jobs takes place and more number of jobs can be submitted to the cloud 
by the clients which ultimately show increasing results in accelerating the business 
performance of the cloud. There are different types of scheduling based on different 
criteria, such as static vs. Dynamic, centralized vs. Distributed, offline vs. Online etc. 

Static scheduling allows for pre-fetching required data and pipelining different 
stages of task execution. Static scheduling imposes less runtime overhead. In case of 
dynamic scheduling information of the job components/task is not known beforehand. 
Max-min algorithm allocates task Ti on the resource Rj where large tasks have 
highest priority rather than smaller tasks [7]. For example, if we have one long task, 
the Max-min could execute many short tasks concurrently while executing large one. 
The total makespan, in this case is determined by the execution of long task. But if 
meta-tasks contains tasks have relatively different completion time and execution 
time, the makespan is not determined by one of submitted tasks. They try to minimize 
waiting time of short jobs through assigning large tasks to be executed by slower 
resources [8]. 

Task scheduling is an important issue and in dynamic environment resource 
availability and load on resources is changed time to time [9].NP is the set of decision 
problems that are solvable on a nondeterministic Turing machine in polynomial time, 
but a candidate solution of the problem of Class NP can be confirmed by a 
polynomial time algorithm, which means that the problem can be verified quickly. 
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NP-hard is the set of optimization problems, to which all NP problems can be 
polynomial transformable, but a NP-hard problem is not necessarily in class NP. 

Many optimization algorithms have been applied to solve this problem[10]. 
Different researchers have proposed various algorithms for allocating and scheduling 
the resources efficiently in the cloud. To solve NP-complete problems, it almost is 
used evolutionary and heuristic algorithms, toward scheduling problem in distributed 
systems used some algorithms such as: Partial swarm optimization (PSO), Simulated 
Annealing, Tabu Search, Genetic Algorithm (GA) and etc. Among them GA is good 
to gain an optimized response in parallel search. 

The rest of the paper is structured as follows: Section 2 describes the related 
work. Section 3discusses the problem formulation and Section 4 describes method 
used in this work. A brief overview of the evaluation of the conducted experiments is 
given in Section5. Experiment results are discussed in Section 6 and this paper is 
concluded in Section7. 
 
 
2. RELATED WORKS 
Zhang et al., [11] proposed a new iterative ordinal optimization (IOO) method. In 
cloud experiments on IBM RC2 cloud, 20,000 tasks executed in Laser Interferometer 
Gravitational-wave Observatory (LIGO) verification workflow on 128 virtual 
machines. The IOO schedule was generated in less than 1,000 seconds, while using 
the Monte Carlo simulation takes 27.6 hours, 100 times longer to yield an optimal 
schedule. The IOO-optimized schedule results in a throughput of 1100 tasks/sec with 
7 GB memory demand compared with 60% decrease in throughput and 70% increase 
in memory demand in using the Monte Carlo method. The LIGO experimental results 
demonstrated the advantage of using the IOO-based workflow scheduling over the 
traditional blind-pick, ordinal optimization, or Monte Carlo methods. 

Effective job scheduling is critical in achieving on-demand resources 
allocation in dynamic cloud computing paradigm. Song et al., [12] proposed an Ant 
Colony Optimization based job scheduling algorithm, which adapted to dynamic 
characteristics of cloud computing and integrated specific advantages of Ant Colony 
Optimization in NP-hard problems. It aimed to minimize job completion time based 
on pheromone. Experimental results obtained showed that it is a promising Ant 
Colony Optimization algorithm for job scheduling in cloud computing environment. 

Tawfeek et al., [13] presented a comparison of a cloud task scheduling policy 
based on ant colony optimization algorithm with different scheduling algorithms 
FCFS and round-robin. The main goal of these algorithms is minimizing the 
makespan of a given tasks set. Ant colony optimization is random optimization search 
approach that will be used for allocating the incoming jobs to the virtual machines. 
Algorithms have been simulated using Cloudsim toolkit package. Experimental 
results showed that the ant colony optimization outperformed FCFS and round-robin 
algorithms. 

Liu et al., [14] proposed a model of service flow scheduling with various 
quality of service (QoS) requirements in cloud computing firstly, then the use of an 
ant colony optimization (ACO) algorithm was adapted to optimize service flow 
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scheduling. In the proposed model, default rate was used to describe the radio of 
cloud service provider breaking service level agreement (SLA), and also introduce an 
SLA monitoring module to monitor the running state of cloud services. 

Wang et al., [15] presented a combined approach known as SIWPSO; the main 
idea of this approach is to get the optimal allocation of cloud service resources to 
improve the overall outcome of cloud manufacturing. The particle swarm 
optimization with stochastic inertia weight strategy (SIWPSO) was adopted for the 
proposed model. Its efficiency is compared with other three particle swarm 
optimization algorithms. Simulation results showed its effectiveness and superiority to 
solve cloud service resources scheduling and assignment problem. 

Li et al., [16] proposed a cloud task scheduling policy based on Load 
Balancing Ant Colony Optimization (LBACO) algorithm. The main contribution of 
the proposed work was to balance the entire system load while trying to minimizing 
the make span of a given tasks set. The new scheduling strategy was simulated using 
the CloudSim toolkit package. Experiments results showed the proposed LBACO 
algorithm outperformed FCFS (First Come First Serve) and the basic ACO (Ant 
Colony Optimization). 

Luo et al., [17] studied the relationship between infrastructure components and 
power consumption of the cloud computing environment, and discussed the matching 
of task types and component power adjustment methods, and then presented a 
resource scheduling algorithm of Cloud Computing based on energy efficient 
optimization methods. The experimental results demonstrated that, for jobs that not 
fully utilized the hardware environment, using the proposed algorithm could 
significantly reduce energy consumption. 

Resource scheduling based on Service Level Agreement (SLA) in cloud 
computing is NP-hard problem. There is no efficient method to solve it. Li &Guo[18] 
proposed a new method to solve the problem by applying stochastic integer 
programming for optimal resource scheduling in cloud computing. Applying Grobner 
bases theory for solving the stochastic integer programming problem and the 
experimental results of the implementation were also presented. 
 
 
3. TASK SCHEDULING PROBLEM FORMULATION 
We denote the task scheduling as a task interaction graph (TIG). We describe the TIG 
by G(V,E), where V={1,2, …, n} represents the tasks of an application and E={Cij} 
indicates the information exchange between these tasks. The edge weigh eij between 
node i and j denotes the information exchange between these pair of tasks. The node 
is defined for processor centers. The node weigh w corresponds to the work capacity 
of the node. The processors in the cloud computing are heterogeneous and they have 
different processing ability which depend on their amount units of memory and 
performance of cup's capacity. A task's processing cost will be variety according to 
the task being assignment to different processors [19].  

On the other hand, the communication cost between two nodes will be 
changing because between two different node's bandwidth have diversity and 
changing over time. The target is  to minimize the communication time and execution 
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cost. In order to formulate the task scheduling, we define Tii= {1, 2, 3, …, n} as n 
independent tasks permutation and Pjj=B{1, 2, 3, …, m} as m computing resources 
and Bij,i, j={1, 2, 3, …, k}as the bandwidth between two nodes and k is the number of 
node；xik=1 if task i is assigned to processor k, and xik=0, otherwise; yijkl=1 if k≠land 
task i is assigned to processor k and task j is assigned to processor l, and yijkl=0 
otherwise; n is the number of tasks; m is the number of processors; DEik is the amount 
of data that the i task assigning to the processor k and Pm and Pc are the processor's 
memory and CPU's capacity; DTij is the interchange data amount between task i and 
task j;  
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Equation (1) and (2) respectively represent the executing cost and the 

transforming time. Supposing that the processing time is known for task i executing 
on processor j and the communication time is known for transmitting the data from i 
node to j node. Our purpose is  to map all the tasks to all the processors and make the 
total time and cost minimizing, which helps reduce the makespan with equation  (3) 
value is minimum.  
 
 
4. METHODOLOGY 
In this study, Bee Colony Optimization is used for  scheduling in cloud computing. 
Bee swarm behavior in nature is first and foremost characterized by autonomy 
,distributed functioning and self-organizing. The BCO is capable to solve 
deterministic combinatorial problems as well as combinatorial problems characterized 
by uncertainty. 
 
4.1 Bee Colony Optimization (BCO) 
Bee Colony Optimization (BCO) is a specialization to Swarm Intelligence (SI) where 
the workers/members/agents to the group are honey bees. They communicate by a 
mechanism called “Waggle Dance” and exchange important information regarding 
rich food source’s location [20]. Figure 1. Gives the general  process of BCO.BCO is 
inspired by bees’ behavior in the nature. The basic idea behind the BCO is to create 
the multi agent system (colony of artificial bees) capable to successfully solve 
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difficult combinatorial optimization problems. The BCO is a population based 
algorithm. Population of artificial bees searches for the optimal solution. Artificial 
bees represent agents, which collaboratively solve complex combinatorial 
optimization problems. The algorithm consists of two alternating phases: forward pass 
and backward pass. 

 

 
 

Figure 1 Flowchart for Basic BCO 
 

In each forward pass, every artificial bee explores the search space. It takes  a 
predefined number of moves which construct and  improve the solution, yielding to a 
new solution. Having obtained new partial solutions, the bees go again to the nest and 
start the second phase, the so called backward pass. In the backward pass, all artificial 
bees share information about their solutions. The pseudo-code of the BCO algorithm 
is given below [21]: 

Initialization: Read problem data, parameter values (B and 
NC),and stopping criterion. 

Do 

START 

Initialize Bee population 

Identify Food sources 

Perform scout bee Scenario 

Perform forager bee scenario 

Select food source with Best food source Quality  

STOP 

Is stopping criteria 
met? 

No 

Yes 

No 

Yes 

Is stopping criteria 
met? 
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 (1) Assign a(n) (empty) solution to each bee. 
(2) For (i = 0; i <NC; i + +) 

//forward pass 
(a) For (b = 0; b <B; b + +) 

For (s = 0; s <f (NC); s + +)//count moves 
(i) Evaluate possible moves; 
(ii) Choose one move using the roulette 

wheel; 
//backward pass 
(b) For (b = 0; b <B; b + +) 
Evaluate the (partial/complete) solution of bee b; 
(c) For (b = 0; b <B; b + +) 
Loyalty decision for bee b; 
(d) For (b = 0; b <B; b + +) 
If (b is uncommitted), choose a recruiter by the 

roulette wheel. 
(3) Evaluate all solutions and find the best one. Update 

xbest and f (xbest) 
While stopping criterion is not satisfied. 
Return (xbest; f (xbest)) 

 
Constructive moves in forward pass 
Each constructive move in the forward pass consists of choosing a task-processor 
pair. Following the idea of LPT algorithm, that it is better to choose longer tasks first 
and then use the shorter ones to refine the schedule, we set up pi (the probability that 
specific bee chooses task i) to: 

௜ܲ =
݈௜

∑ ݈௞௞
௞ୀଵ

,         ݅ = 1,2, …݊ − − − −− (7) 

 
Where:  
li - processing time of the i-th task; 
K- the number of “free” tasks (not previously chosen) 

Obviously tasks with a higher processing time have a higher chance to be 
selected. Using relation (7) and a random number generator, we determine a task to be 
selected by each bee. Once the task to be scheduled is selected corresponding 
processor should be selected. Since our goal is to minimize maximum (over all 
processors) running time it is obvious that processors with a lower value of the current 
running times should have a higher chances to be chosen. Let us denote by pj the 
probability that specific bee chooses processor j. We assume that the probability of 
choosing processor j equals [22]: 

௝݌ = ௝ܸ

∑ ௞ܸ
௠
௞ୀଵ

,   ݆ = 1,2, … …݉ − −− −− −− −(8) 

Where: 

௝ܸ =
max ܨ − ௝ܨ 

max F − min F , ݆ = 1,2 … … . .݉ − −− −− −− −− (9) 
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And 
Fj – running time of processor j based on tasks already scheduled 

to it; 
max F – maximum over all processors running times (based on 

already scheduled tasks); 
min F – minimum over all processors running times (based on 

already scheduled tasks). 
Therefore, Vj represents normalized value for the running time of 

corresponding processor. Using relation (8) and a random number generator, we 
select a processor for previously chosen task. 

Within a single forward pass, each bee has to determine NC task-processor 
pairs. In total, B bees choose B*NC task-processor pairs after each forward pass. 
When scheduling tasks to processors is done for all pairs within a single forward pass, 
we update processors’ running times and start the backward pass. 
Bee’s partial solutions comparison mechanism 

All bees return to the hive after generating the partial solutions. All these 
solutions are then evaluated by all bees. (The latest time point of finishing the last task 
at any processor characterizes every generated partial solution). 

Let us denote by Cb (b=1,2,…,B) the latest time point of finishing the last task 
at any processor in the partial solution generated by the b-th bee. We denote by Ob 
normalized value of the time point Cb, i.e.: 

௕݋ =
௠௔௫ܥ − ௕ܥ 
௠௔௫ܥ − ௠௜௡ܥ 

,        ܾ = 1,2, … … ܤ… −− −− −− − (10) 

Where minC and maxC  are respectively the smallest and the largest time point 
among all time points produces by all bees. The probability that b-th bee (at the 
beginning of the new forward pass) is loyal to the previously discovered partial 
solution is calculated in the following way: 

௕௨ାଵ݌ = ݁ି
೚೘ೌೣష ೚್

ೠ    ,   ܾ = 1,2, … … ܤ… − −− −− −− (11) 
where u is the ordinary number of the forward pass. 

Using relation (11) and a random number generator, every artificial bee 
decides to become uncommitted follower, or to continue flight along already known 
path. 

The better the generated partial solution (higher Ob value), higher the 
probability that the bee will be loyal to the previously discovered partial solution. The 
great the ordinary number of the forward pass, the higher the influence of the already 
discovered partial solution. This is expressed by the term u in the denominator of the 
exponent (relation 11). In other words, at the beginning of the search process bees are 
“more brave” to search the solution space. The more forward passes they make, the 
bees have less courage to explore the solution space. The more we are approaching 
the end of the search process, the more focused the bees are on the already known 
solutions. 
5. EXPERIMENTAL EVALUATION 
In this section, we present the metric of comparison, the experiment setup and the 
results. 
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5.1 Performance metric 
As a measure of performance, we used cost for complete execution of application as a 
metric. We computed the total cost of execution of a workflow using two heuristics: 
BCO based cost optimization, and best resource selection (based on minimum 
completion time by selecting a resource with maximum cost) [23]. 
 
5.2 Data and Implementation 
We have used three matrices that store the values for: 

a) Average computation cost of each task on each resource (TP-
matrix),  

b) Average communication cost per unit data between compute 
resources (PP-matrix), and  

c) Input/ output Data Size of each task (DS-matrix). 
 
The values for PP-matrix resemble the cost of unit data transfer between 

resources given by Amazon Cloud Front. We assume PC1 to be in US, PC2 in Hong 
Kong (HK) and PC3 in Japan (JP), respectively. We randomly choose the values in 
the matrix for every repeated experiment, but keep these values constant during the 
BCO iterations. The values for TP-matrix vary for two classes of experiments. While 
varying the size of data, we choose the TPmatrix values to resemble the Evolutionary 
Multi-objective Optimization (EMO) application. As each task has its own DS-matrix, 
the sum of all the values in the matrix varies according to the size of data we 
experiment (64-1024 MB).  

The total data is divided among tasks such that if x is the output data size of 
T1, then tasks T2, T3,&T4 each receive x data as input and produce x data as output. 
Finally, task T5 consumes 3x data and produces 6x data.  
 
 
6. EXPERIMENTAL RESULTS 
Experiments are conducted with different number of tasks assigned to Cloud with 4 
resources. The resources are located at two data centres. Each resource has 1 CPU 
with 1 Gb RAM. Each task is of size ranging from 1-7 units. 

 
Table 1 Makespan (in sec) 

Number of tasks Min Min Max Min Proposed IBCO (sec) 
40 47 44 42.7 
80 94.4 88.4 85.8 

160 190.2 177.7 172.5 
320 382.9 357.1 346.5 
640 769.6 718.7 698 
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Figure 2 Makespan 
 
Table 1 shows that the proposed method gives the better makespan by 

9.9808% when compared with Min Min algorithm and 3.0131% than Max Min 
method with 320 number of tasks.The results  are also depicted in figure 2 with 
respect to number of task with makespan. 

 
Table 2 Resource Utilization 

 

Number of tasks Min Min Max Min Proposed IBCO 
40 79.5 81 81.9 
80 79.9 78.7 81.3 

160 81 78.8 82.5 
320 80.4 82.2 79.6 
640 79.7 80.7 80.5 
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Figure 3 Resource Utilization 
 
Similarly Table 2 and figure 3 shows  that the proposed method also gives 

better utilization of resources by 2.974% when compared with Min min algorithm and 
1.105% than Max min method with 320 number of tasks[24]. 

 

 
 

Figure 4 Best Fitness 
 

7. CONCLUSION 
In this paper, Improved Bee Colony Algorithm(IBCO) for  efficient task scheduling is 
proposed  to schedule applications among cloud services that takes both data 
transmission cost and computation cost into account. Experiments were conducted 
using CloudSim tool  kit  with a set of tasks and Comparison was made on makespan 
and resource utilization with Min min and Max min algorithm. Experimental results 
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showed that the proposed IBCO  achieves  better performance on makespan and 
resource utilization. 
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