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Abstract

In this work, interpolation and collocation approach is adopted
in deriving hybrid block method of steplength & = 1 for
solving third order initial value problems of ordinary
differential equations. In developing this method, power series
of order 7 is interpolated at the first three points while its third
derivative is collocated at all points in the selected interval. In
addition, some properties of the new method which include
zero stability, consistency, convergence, error constant, order,
and region of absolute stability are also established. The new
method performs better than the existing methods in term of
accuracy when solving the same problems.

Keywords: Hybrid method, Block method, Third order
differential equation, Single step, Three off step points.

Introduction
This paper considers the solution to general third order initial
value problem of the form

y' = f(=9.9.9), y(e) =m0,y () =m, ¥ (a) =m, z € [a,8].
Equation (1) can be solved by converting to its equivalent of
three first order ODEs and thereafter suitable numerical
methods for first order ODEs are employed. This approach,
therefore, enlarges Equation (1) and thus requires more
computation to be solved. To overcome this drawback,
numerous scholars have developed numerical methods for
solving initial value problems of third order ODEs directly.
Among these researchers are [1], [2], [5] and [6]. The
implementation of direct method can be done by using two
approaches namely block method and predictor-corrector
method. However, subroutines to supply the starting values
are needed in predictor-corrector method which leads to
inefficiency of the method in terms of error [4] and [9].
Conversely, the development of separate predictors in block
method is not needed and thus requires less computational
burden and human effort which resulted in high accuracy of
the method [3]. In general, using off-step points (hybrid
method) was introduced to overcome the zero stability barrier.
This barrier implies that the highest order of zero stability of
linear multistep method of step length & is k+2 when k is even
and k+1 when £ is odd [8].

Some hybrid block methods to present direct solution of
equation (1) have been proposed, for example [7], [10], [12],
[13] and [11]. In the same topic, [2] developed accurate

scheme by block method having an order seven for solving (1)
directly but the accuracy of the method can be improved. This
paper examines single step hybrid block method with uniform
order 5 for solving (1) directly. This method is an
improvement of existing method mentioned above.

Derivation of the Method
In this section, a hybrid single step block method with three

off-step points x , x , and x ,for solving (1) is
n+k n+2 n+
derived.

Let the power series of the form

vhm—1 i

v =3 a (55=) - s€bmmmal @
be an approximate solution to (1), wheren =0, 1, 2, ..., N-1, v
denotes of the number of interpolation points, m represents the
number of collocation points which is equal to the order of
differential equation and 4 = x,-x,.; is constant step size of
partition of interval [a, b] which is given by a = xy <x; <...<
Xn-; <X y=b. The Third derivative of (2) is given by (3)

I

y'(@) = flz,ny,y)

) u'ili(i—if3§i—2)ai(m —hmn)"‘3_ ®)

i=3

In this case, v =3 and m = 4.

Equation (2) is interpolated at X, X and x 2 while
n n 5

1

10

equation (3) is collocated at all points i.e. XX X s
10 5

x , and X, in the selected interval. This yields the

10
following equations which can be written in matrix form.
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Gaussian elimination method is
coefficients ; = (1)7.

applied to find the
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4 = Yn Evaluating Equation (5) at the non-interpolating point i.e.
40 25 5 W 1943 . .
U= Uiy — U~ GYns2 +mees —fa + 135000 — fo1 X and X, Next, evaluating (6) and (7) at all points
) 10
: 3 anL3 . . . . .
i 8830k L4 2h foa— 263k fa produce the discrete schemes and its derivatives. This can be
1512000 ™16 2625° ™3 15120007 "1 written as
00 25 22043 13003 4
an = 25y — — +22 _ ABlsyBs = gl glls o p3 (plS glds o plil Fﬂs] g
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1664’”} 19.’13}_ 4303 f h
309300 nds 270073 T 9880077+ where,
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The values of a;, = 0(1)7 are then substituted into equation 0520000000100 yr:”’
n
() to glve a continuous 1mp1101t scheme of the form 3 s 0000000010 \ v )
200 50
\ 0000000001/
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The first and second derivative of equation (5) are given in the 10, U] : ~ 12000
. . . 2 _ ;
followmglequatlons (6) and (7) respectlvely. ;15 g i e
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where, w 0 o o,
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Multiplying equation (8) by inverse of 4[* gives a hybrid
block method as below
Ayl — gl gl 4 g3 [Dm: R 4 Enhﬁgﬂz] ®)

where,
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In finding the order of the main block in (8). The vectors

Ynyt = f""" 6
y-n,+% f'ﬂ+ %
yn+ % f n+ 1%

Yn+1 for1
2

are expanded in Taylor series and its terms are collected in
powers of 4 to give
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Comparing the coefficients of 7/ and y /. This gives the order
of the method to be [5, 5, 5, 5] with error constant

6.414187F-1°
—3.027302E-8
—6.150938 -8
2.5793656FE 7

Zero Stability

Definition 1:

The hybrid block method is said to be zero stable if the first
characteristic polynomial 7 (r) having roots such that

Ir ., |<1, and if | r , | = 1 then the multiplicity of r , must not
greater than two. In finding the zero-stability, we only put into
consideration the coefficients of y-function according to
Definition 1. That is

I(r) = |r 1B — BBs| = ¢

3] B313ls .
Whereﬂ s and P are the coefficients of
Va+il = %,%,% and y , in (8). This yields,
1 000 0001
T8l _ Bl _ 0100] 10001
Ir 1% — B loo1o 0001
0001 0001
Sir—=1)

This implies » :_(), , 0, 1. Hence, our method is zero stable

Consistency

Definition 2:

The new one step hybrid block method in (8) is said to be
consistent if order of the method is greater than or equal one
e P>1.

This mean, our method is consistent, because it satisfies the
conditions listed in Definition 2

Convergence

Theorem [Henrici, 1962]

Consistency and zero stability are sufficient conditions for a
linear multistep method to be convergent.

Therefore, since our method is consistent and zero stable, it
implies the main method is convergent.

Region of Absolute Stability
The hybrid block method in (8) is said to be absolutely stable
if for a given 4, all roots of the characteristic polynomial

T (z, h) =p (2)- h o (z), satisfies |z, | <I.

In this article, the boundary locus method was adopted to
determine the region of absolute stability. The test equation
y" =1’y is substituted in the main method in (8) where

h=2K" and i=
considering real part ylelds

(7000000000000(cos(8) — 1))
(9 cos(8) — 958)

. Substituting » = cos6-i sin 8 and

R(6,h) = (10)

Hence, the interval of stability gives (0, 1. 4478¢'").
This is demonstrated in the Figure below.
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Figure 1: Region stability of new method

Numerical Example

In order to find the accuracy of our methods, the following
third order ODEs are tested. The new one step hybrid block
method solved the same problems the existing methods solved
in order to compare results in terms of error.

Problem 1:
Exact solution:

v +y=0,y0)=1,4(0)=-1,3"(0) = 1.
y(z) = e ® with h = 0.1.

e

Problem 2: y = —c% y(0) =1, y'(ﬂ) = -1, y"{t’]) =3.
Exact solution: y(z) = 2+ 222 — &* with h = 0.1.

Table 1: Comparison of the new method with Omar[3] for solving Problem 1

[z | exact solution | computed solution in | error in our | errors in|
our method method, P = | Omar[3],
5 P=7

0.1 | 0.90483741803505052 | (.00483741803505710 | 2 331468515 |
0.2 | 0.81873075307798182 | 0.81873075307798382 | 1.00R401 "% |
0.3 | 0.74081822068171777 | 0.74081822068177328 | 555111561 |
| 0.67032004603583584 | 1.965005E ™ |
0.60653065071309350 | 4.600

e
[ 1.0 [ 0.36787944117144233 | 0.36787944117603283 | -

5904055 | 1.048206

Table 2: Comparison of the new method with Omar([3] for solving Problem 2

[‘computed solution in | error in our | errors in |

our method method, P = | Omar[3],

5 P=T

| 0.1 | 0.914820081924352310 | 0.914820081024355080 | 2.775558 1 | 2.885470K 1 |
70,2 | 0.858507241830530220 | 0.858507241839058230 | 1.280087E 7 | 18371077 |
| 0.3 | 0.830141102423996080 | 0.830141192424547090 | 55011556 1% | 45722314 |
|'0.4 | 0.828175302358729710 | 0.828175302360100880 | 1.461165E 17 | 8. 56202812
0.5 | 0.851278720200871810 | 0.851278720302045130 | 2
| 0.6 | 0.897881199600491090 | 0897551199 I
| 0.7 | 0.966247292520523350 |
0.8 | 1.054450071507532400 | 1.064450071F A5E
| 0.9 | 1.160396888843060300 | 1. 160396888864665200 | -
| 1.0 | 1.281718171540054500 | 1.281718171571744100 | 3.
| 1.1 | 1.415833076053566500 | 1.4158330T6006066100 | 4.
| 1.2 | 155988307 7263452700 I 1.55988307T320625500 [

| = | exact solution

Conclusion

An accurate one step hybrid block method for solving
third order initial value problems directly has been
developed in this work. Numerical properties for the
new method which includes, consistency, order, zero
stability, error constant and convergence are established.

The results generated when the new method was applied
to some third order initial values problems are
demonstrated in Table 1 and Table 2 above.
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