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Abstract

The problem of existence of equilibrium solution and stability
for certain non-linear differential equations is one of the most
fundamental areas of research in dynamical systems, usually
governed by the non-linear differential equations. In this paper
we implore Quantitative study approach with the use of
eigenvalue and eigenvector, to obtain differential equation
properties such as equilibrium and stability. Also, important
characteristics of the solutions of the differential equations are
deduced without actually solving them. Mathematical model
for pendulum clock are considered in analysing the
equilibrium points and the stability of an equilibrium point,
The analysis show that the equilibrium points reduce to the
only point at the origin and suggests that the solutions of the
nonlinear system circle and dye at the origin.
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Introduction

The quantitative study of different equations is concerned
with how to deduce important characteristic of the solutions of
differential equations without actually solving them [17, 18].
In this study we implored this quantitative study approach;
which is used extremely for obtaining, from the differential
equation, such properties as equilibrium and stability. We
have seen how a lot of information about the solutions of a
differential equation is available without solving it explicitly.
In particular, there are oftentimes constant solutions which we
called equilibrium solutions or fixed points of the differential
equation [17, 19, 20]. These are important because they
represent behaviour which persists in time. The classical
pendulum problem shows how this approach may be used to
reveal all the main features of the solutions of a particular
differential equation [12, 18, 20]. Here is an analogy for
stability and equilibrium: consider a rigid rod which is firmly
attached to the wall on one end and allowed to pivot as a
pendulum. If we work very hard, we could balance it so that it
points straight up. However, just the slightest touch will cause
it to move and eventually point downwards. This is an
unstable equilibrium. Another equilibrium is when the
pendulum points downwards. If we move it to some nearby
place, it will swing until it eventually returns to the downward

position. This is a stable equilibrium [3, 20]. In practice, a
stable equilibrium is important because it represents behaviour
which cannot easily be changed, it represents a fundamental
feature of the system. For example, stable equilibria can be
useful for making predictions because lots of solutions
eventually settle down near the stable equilibria (like in the
pendulum clock)[8, 10, 11, 15]. A pendulum clock is a simple
non-linear system. Figure 1 shows the main features of the
pendulum clock. The “escape wheel” is a toothed wheel,
which drives the hand of the clock through a succession of
gears. It has a spindle around which is around a wire with
weight at its free end. The escape wheel is arrested by the
“anchor” which has two teeth. The anchor is attached to the
shaft of the pendulum and rocks with it, controlling the
rotation of the escape wheel. Its teeth are so designed that as
the pendulum reaches its maximum amplitude on one side one
teeth of the escape wheel is released, and the escape wheel is
then stopped again by the other tooth on the anchor.[16] Every
time this happens the anchor receives a small impulse or
pressure. It is this impulse that maintains the oscillation of the
pendulum, which would otherwise die away.[5, 6] The loss of
potential energy due to the weight’s descent is therefore fed
periodically into the pendulum via the anchor mechanism. It
can be shown that the system will settle into steady oscillation
of fixed amplitude independently of sporadic disturbance and
of initial condition.[10, ] If the pendulum is swinging with
two great amplitude its loss of energy per cycle due to friction
is large, and the impulse supplied by the escapement is
insufficient to offset this.[1, 4, 13] The amplitude
consequently decreases, if the amplitude is too small, and the
frictional loss is small, the impulse will over compensate and
the amplitude will build up. A balanced state is therefore
approached, which appears in the 0, 8 plane.[18] The motion
of nonlinear pendulum is determined by Newton’s law.
Nonlinear dynamics has profoundly changed how scientist
view the world generally.
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Figure 1. Weight driven clock mechanism

2. Preliminaries

2.1 Basic Definitions

With reference to the articles [17, 18, 20] we introduce in this
section the following basic definitions and theorems:
2.1.1Definition 1

A physical system is said to be autonomous if its differential
equation does not contain the independent variable (time t,
say) explicitly. Hence if this differential equation is of second
order, it is of the form

F(y.y,y)=0 (1)
where
y'= d—y =V, is the velocity )
dt
By chain rule
,_Odv _dvdy adav

Vi=—=— —=—V (3)
dt dy dt dy

2.1.2.Definition 2
An equilibrium solution of the system

y'=Ay 4)
is a point (Y;,Y,) where

y'=0 (5)
that is

y:1=0=yY5 6)

An equilibrium solution is a constant solution of the system,
and is usually called a critical point.

2.1.3.Definition 3
A plane autonomous system is a pair of simultaneous first-
order differential equations X'= f (X,y),Y' = g(X,y). This

system has an equilibrium point (or fixed point or critical
point  or point)  (X,,Y,) when

f(xwyo) = g(xo’yo) =0

singular

2.1.4.Definition 4
The equilibrium point q is said to be stable if given & >0
there isa 0 >0 such that Ug(t,p)—qle forall t >0

and for all p such that [ p—qll< ¢ if 0 can be chosen not
only so that the solution g is stable but also so that
#(t,p) > q as t — oo, then q is said to be asymptotically
stable. If g is not stable it is said to be unstable.

2.2.Basic Theorem

2.2.1. Stability theorem:

Let @ = f(0) be an autonomous differential equation. Suppose
0(t ) = 0. is an equilibrium, that is, f *(8,) = 0, then if f *(8,) <
0, the equilibrium 6(t ) = 0, is stable and if f ‘(8;) > 0, then
equilibrium 6(t ) = 0. is unstable.

3. Governing Equation and Analysis
3. Governing Equation and Analysis
The equation that governs the motion of a pendulum clock can
be approximated as follows [7, 17, 18]

16 + K6 + C 0 =1f(0) (7
Which can be written as

162 + K6 +C 0= f6) (8)
where,

I is the moment of the inertia of the pendulum, K is a small
damping constant, C is another constant determined by
gravity, 0 is the angular displacement, and f(8) is the moment
Equation (8) relates # and 0 instead of 6 and t. It is an
autonomous system. By integrating it with respect to 6;

1[0% do+K [6do+C [0do= [f©)d0  (9)
which becomes
21924 K0+1C02= [ £(0)do (10)

A given pair of values ( 8, 8) is called a state of the dynamical
system. A state evolves as time progresses; we know that a
given state determines all subsequent states since it serves as
initial conditions for the subsequent motion.[2, 9, 18]
Equation (10) is a differential equation for 6 in terms of t, but
it cannot be solved in terms of elementary functions. It is
therefore not easy to obtain a useful representation of 6 as a
function of time. We shall show how it is possible by working
directly with equation (10) to reveal the main characteristics
of the solution. Note that when the pendulum hangs without
swinging, 6 = 0, & = 0. The corresponding function 0(t) = 0.
This is a perfectly legitimate constant solution of equation
(10). If the suspension consists of light rod there is a second
position of equilibrium, where it is balanced vertically on end.
This is the state & = , 8 = 0, another constant solution of
equation (10). Substituting three particular states into equation
(10) we obtain the value of I, K and C by solving the resulting
system of equations.
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Taking [ f (8) to be 0 which its value is at (0, 0) and
considering the following states of the system:

i) (6, 6) = (1,0)

ii) (6, 6) = (-m,0)

iii) (6,6) = (2m,0)

By substituting these states into the following equation

102+ K6+ -C02=0 (11)
we have respectively:

S1(0) +Kn+ 1/, cn? =0 (12)
1) —Kn+ 1/, C(-m)? =0 (13)
S1(0)+ 2K+ 1/, cem? =0 (14)
Equation (12), (13) and (14) become respectively:
Ka+-m2C=0 (15)
Kn+-m2C=0 (16)
2Kn +2m% C=0 (17)
Subtracting equation (16) from (15) we have

2Kn=0 (18)
Substitute equation (18) into equation (17) we have

2m*C =0 (19)

Equations (18) and (19) give K = 0 and C = 0 Also
substituting K = 0, C = 0 into equation (11), we have | =0.
Therefore, for any state of the system of the form (nz, 0), n =
1,2,3, ..., the constants I, K and C in equation (9) are always
zero if [f(@) is taking to be  zero.
[/ f(6) = 0 for state (0, 0)]

Now for  [f(8) # 0,and f(8) a periodic function in ,

Fourier series of f(6) on —L <6 <L is given as [21, 22]
nmo

f0) =Y>_,An Cos (—)

+ Z,Cf_l Bn SlTL(T) (20)
Determining formulae for the coefficients of An and Bn, we
nmo

take advantage of the fact that [Cos (—)]n o and [Sin

(nLLQ)]n_1 are naturally orthogonal on-L <6 <L.
Let us consider the following formula

L nnd mno
J-, Cos (T)C ( )dG =2Lifn=m=0
Lifn=m#0

Oifn#m (21)
ft sin =2y sin (") do = Lifn =

Oifn#m (22)
St sin %2 cos (™22)do = 0 (23)

Now, multlplymg both sides of equation (20) by
Cos (ane) and integrating from —L to L, we have

I, r@)cos (“5%)do =
f p 0Anf Cos (nLLG) Cos (mnG) de +
f > 1BnSm( )Co (mﬂg) de (24)

Interchange the mtegral and the summation we have
St F(6)Cos (™) do =
® o An f Co s(—e) Cos (mﬂg)de +
© Bn [" Sm( )Co (mﬂg) de (25)

Taking advantage of the fact that the trigonometric ratios, sine
and cosine are naturally orthogonal; the integral in equation
(25) will always be zero and in the first series the integral will
be zero if n #m and so this reduces to,

I*, f@®)Cos (™) d6 = Am (2L) ifn=m=0

Am (L) ifn=m#0 (26)
Solving for Am gives

Ao=—[* f(6)d6, m=0 27
Am =1 [* £(0)Cos (") do, m=1,2,3. (28)

Similarly, multiply both side of equation (20) by Sin(mT"e) and

integrating both side from —L to L and interchanging the
integral and summation gives

L . mmO
It r@)sin (") do =

7o An J*, Cos (%) sin (") do +

z . Bn [*, sin () sin (“2) do (29)
In this case the integral in the first series will always be zero
and the second will be zero if n #m and so we have

It £©)sin (") do = Bn(L) (for n =m) (30)
Flnally, solving for Bn gives

. mmO
Bn=1 J" £(0) Sin (“=)do,m=1,2,3. (31)
Now from equation (28), forn=m #0
An=1 [" f(@)cCos ("”’9) do,m=1,23. (32)

So equation (20) becomes
£(8) =X5.0% J*, F(O)Cos (™) Cos (*2) do +
s I f(G)Sm( ?) sin (%) a6 @33)

For our problem n=m, therefore
£(6) = Lz [' F0)Cos (22) Cos (%) do +
e f(e)Sm( 2 sin (*22) do (34)

Generally, equation (34) can be written as

£(6) = 237, [, FO)[Cos? (*22) + sin? (*22)] d6 (35)
f(0) = 1 X, S5, £(6) do (36)
f©) =< I f0) do (37)
At equilibrium, £(8) = 0, equation (37) therefore becomes:
0=J" f(6)de, (38)

Therefore at equilibrium when angular velocity 6 = 0, the
motion of the pendulum clock can be approximated as
equation (11).

Generally at any state (nm, L) equation (11) becomes

—1 (nm)? + KL+ = CL2 = Of FO-1)*" +

( nH™(0)]de |6 = L (39)
Since Cos (nm) = (-1)™ and Sin(nm) = 0

~ 1 (nm)? + KL+ 7 CI2 = = T2, [, £(6)d6 (40)

1 L

S L[21(nm)?* + 2LK + CL?)] = J_, f(©)d6 (41)
For this work n is always taken to be an integer.

4. Further Analysis

4.1 Converting the 2" order ODE to 1% order system
Equation (7) governing the motion of pendulum clock can be
written as
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6 =1f(8) — (K/DB —(Cl) 6 (42)
Equation (42) can then be converted to a first order system as
follows: Let X; = 6 (the angular displacement of the pendulum
clock) and X, =6 (the angular velocity of the pendulum clock)
then

X1=6=X, (43)
X, =6 = f(6) - (K/)6 — (C/) 0 (44)
This implies

X’l = X2 (45)
X, = f(X1) — (K/DX2 — (C/) Xy (46)

Without solving these equations, we will examine the
behaviour of their solutions. The equilibrium points and
stability of these points can be shown also.

4.2 The Equilibrium Solution

The system considered above is autonomous. Equations (45)

and (46) possess equilibrium point @ That is

X’]_ =0 (47)
f(Xy) — (K/DX2 - (C/l) X, =0 (48)
Equation (70) implies

(X)) =0 (49)

which implies X(t) = X; is an equilibrium solutioninitial
condition; X(0) = X; implies solution X(t) = X; for all time t.
Now If initial condition is X(0) = X, is close to X; (X, not
equal to X;), then there are different possibilities: Unstable
equilibrium: X(t) moves away from X; as time t increases.
Stable equilibrium: X(t) moves toward the equilibrium
solution X; (or at least does not get further away). Substituting
equation () into equation (), we have:

—(K/DX2-(C/) X, =0 (50)
XZ =-(C/K)X1 (51)
Differentiating both sides of equation (51) we have X’, =
KX’ for some constant K; (52)
This implies

X’z = KlXZ (53)

For equilibrium X’, = 0, which implies X, = 0 Point (0, 0) is
the equilibrium solution..

4.3 Using Eigenvalues and eigenvector

The above linear system of linear equations usually has
exactly one solution, located at the origin, if determinant of A
is not equal to zero. Here, A is the matrix formed from the
system of equations shown below. There are usually infinitely
many solutions if the determinant of A is zero. Now writing
equations (51) and (52) in matrix form we have

0x, + X
d 2
2% =—C k (54)
dx \ X, Tx1+f(xl)—Tx2
d(% 0 1 X,
—( ]= —C —k[ ],f(x1)=0 (55)
W) \T )
X'=AX (56)

The above system usually has exactly one solution, located at
the origin, if determinant of A is not equal to zero. If the
determinant of A is zero, then there are many solutions. Now
we chose values of C, | and K that will make the determinant
of A non-zero: C=2, I1=1, K=-3.

-2 3

I I
detA =2 (58)
Finding eigenvalue (1) of A: det(A—AU) =0, where U
is a unit matrix

0 1) /4
A=l ¢ —k|= (57)

0 1 A 0
A-U = - (59)
5o )
-2 1
A-JU = (60)
(—2 3—1]
-2 1
det(A-AU) = 61
et(A-2U) ‘_2 3_1‘ a
0=1%-31+2 (62)
A=2orl (63)

Finding the eigenvector by using Gaussian elimination: For
each eigenvalue we have (A—AU)x =0, where x is the

eigenvector associated with eigenvalue (A4)

Case 1: When A =1 We find vector x which satisfies
(A-1U)x=0

[0 1) [1 oj

A-U = - (64)

-2 3 0 1

B -1 1 5

o o (65)
B -1 1)(x B

(A—U)X_L_2 ZJ(XZJ_O (66)

Implies = (67)
X, 0

Case 2: When A =2, We find x such that

(A-2U)x =0 (68)
{0 2] [1 Oj

A-2U = - (69)
-2 6 0 1

(T2 70

=l s (70)

-1 2)\(x
(A—2U)x—(_2 5][)(2}_0 (71)

“[%)(o)
Implies = (72)
X, 0

We can see that in both cases we have the same zero
eigenvector. Which indicates exactly one solution, located at
the origin. This is the equilibrium solution
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4.4 Stability of the Equilibrium Solution

The equilibrium points reduce to the only point (0, 0). Let us
find the nuliclines and the direction of the velocity vectors
along them. The x;-nullcline is given by

d

@ _ X, =0 (73)
dt

Hence the x;-nullcline is the x-axis. The xp.nullcline is given

by

o%0 K. C
—=f@)-—60-—6=0 74
pe 0) | | (74)
Which implies

0°X,

e f(x)-3x,-2x =0 (75)
f(x)—-3x,-2x =0 (76)

LX= %[—2& + f(x,)] for K=3,C=2and I=1  (77)

Hence the xp-nullcline is the curve.
Note that for some value of f(X,), the arrangement of the

curves will show that the solutions ’’circles" around the
origin. But it is not clear whether the solutions circle and dye
at the origin, circle away from the origin, or keep on circling
periodically. A very rough approach to this problem suggests

2
that when f (X,) is close to 0, the curve approaches —Exi.

Hence a close system to the original nonlinear system is

dx,

1 x 78
dt 2 (7%)
it 3"

which happens to be a linear system.

d (% 0 1 X,

- =l 2 (80)
dt x, 3 0 [\ X,

The eigenvalues are

A=+ /—% (81)

and the eigenvector is zero:

%)-(o

So we suggest that the solutions of nonlinear system circle
and dye at the origin.

5.Conclusion

Analysis of equilibrium solution for non-linear equation
governing pendulum clock was carried out using quantitative
study approach. This autonomous physical system was studied
using Eigenvalue and Eigenvector to analyse its equilibrium

solution after converting the governing second order
differential equation to a set of first order differential
equations. The stability of the equilibrium solution was
analysed. From the analysis we suggest that the solutions to
linear system close to the original nonlinear system ‘circle and
die’ at the origin.
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