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Abstract 

The problem of existence of equilibrium solution and stability 

for certain non-linear differential equations is one of the most 

fundamental areas of research in dynamical systems, usually 

governed by the non-linear differential equations. In this paper 

we implore Quantitative study approach with the use of 

eigenvalue and eigenvector, to obtain differential equation 

properties such as equilibrium and stability. Also, important 
characteristics of the solutions of the differential equations are 

deduced without actually solving them. Mathematical model 

for pendulum clock are considered in analysing the 

equilibrium points and the stability of an equilibrium point, 

The analysis show that the equilibrium points reduce to the 

only point at the origin and suggests that the solutions of the 

nonlinear system circle and dye at the origin. 
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Introduction 

The quantitative study of different equations is concerned 

with how to deduce important characteristic of the solutions of 

differential equations without actually solving them [17, 18]. 

In this study we implored this quantitative study approach; 

which is used extremely for obtaining, from the differential 

equation, such properties as equilibrium and stability. We 

have seen how a lot of information about the solutions of a 

differential equation is available without solving it explicitly. 

In particular, there are oftentimes constant solutions which we 

called equilibrium solutions or fixed points of the differential 
equation [17, 19, 20]. These are important because they 

represent behaviour which persists in time. The classical 

pendulum problem shows how this approach may be used to 

reveal all the main features of the solutions of a particular 

differential equation [12, 18, 20]. Here is an analogy for 

stability and equilibrium: consider a rigid rod which is firmly 

attached to the wall on one end and allowed to pivot as a 

pendulum. If we work very hard, we could balance it so that it 

points straight up. However, just the slightest touch will cause 

it to move and eventually point downwards. This is an 

unstable equilibrium. Another equilibrium is when the 

pendulum points downwards. If we move it to some nearby 
place, it will swing until it eventually returns to the downward 

position. This is a stable equilibrium [3, 20]. In practice, a 

stable equilibrium is important because it represents behaviour 

which cannot easily be changed, it represents a fundamental 

feature of the system. For example, stable equilibria can be 

useful for making predictions because lots of solutions 

eventually settle down near the stable equilibria (like in the 

pendulum clock)[8, 10, 11, 15]. A pendulum clock is a simple 

non-linear system. Figure 1 shows the main features of the 
pendulum clock. The “escape wheel” is a toothed wheel, 

which drives the hand of the clock through a succession of 

gears. It has a spindle around which is around a wire with 

weight at its free end. The escape wheel is arrested by the 

“anchor” which has two teeth. The anchor is attached to the 

shaft of the pendulum and rocks with it, controlling the 

rotation of the escape wheel. Its teeth are so designed that as 

the pendulum reaches its maximum amplitude on one side one 

teeth of the escape wheel is released, and the escape wheel is 

then stopped again by the other tooth on the anchor.[16] Every 

time this happens the anchor receives a small impulse or 

pressure. It is this impulse that maintains the oscillation of the 
pendulum, which would otherwise die away.[5, 6] The loss of 

potential energy due to the weight‟s descent is therefore fed 

periodically into the pendulum via the anchor mechanism. It 

can be shown that the system will settle into steady oscillation 

of fixed amplitude independently of sporadic disturbance and 

of initial condition.[10, ] If the pendulum is swinging with 

two great amplitude its loss of energy per cycle due to friction 

is large, and the impulse supplied by the escapement is 

insufficient to offset this.[1, 4, 13] The amplitude 

consequently decreases, if the amplitude is too small, and the 

frictional loss is small, the impulse will over compensate and 
the amplitude will build up. A balanced state is therefore 

approached, which appears in the θ,  plane.[18] The motion 

of nonlinear pendulum is determined by Newton‟s law. 

Nonlinear dynamics has profoundly changed how scientist 

view the world generally. 
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Figure 1. Weight driven clock mechanism 

 

 

2. Preliminaries 

2.1 Basic Definitions 
With reference to the articles [17, 18, 20] we introduce in this 

section the following basic definitions and theorems: 

2.1.1Definition 1 

A physical system is said to be autonomous if its differential 

equation does not contain the independent variable (time t, 

say) explicitly. Hence if this differential equation is of second 

order, it is of the form 

(y, y', y'') 0F  (1) 

where 

'
dy

y v
dt

, is the velocity (2) 

By chain rule 

' .
dv dv dy dv

v v
dt dy dt dy

 (3) 

 

2.1.2.Definition 2 

An equilibrium solution of the system 

'y Ay  (4) 

is a point 1 2(y , y )  where 

' 0y   (5) 

that is 

1 2' 0 'y y  (6) 

An equilibrium solution is a constant solution of the system, 

and is usually called a critical point. 

 

2.1.3.Definition 3 

A plane autonomous system is a pair of simultaneous first-

order differential equations ' (x, y), y' (x, y)x f g . This 

system has an equilibrium point (or fixed point or critical 

point or singular point) 0 0(x , y )  when 

0 0 0 0(x , y ) g(x , y ) 0f  

 

2.1.4.Definition 4 

The equilibrium point q is said to be stable if given 0  

there is a 0  such that (t,p) q   for all 0t  

and for all p such that p q   if  can be chosen not 

only so that the solution q is stable but also so that 

(t, p) q  as t , then q is said to be asymptotically 

stable. If q is not stable it is said to be unstable. 

 

2.2.Basic Theorem 

2.2.1. Stability theorem: 

Let  = f(θ) be an autonomous differential equation. Suppose 
θ(t ) = θe is an equilibrium, that is, f „(θe) = 0, then if f „(θe) < 

0, the equilibrium θ(t ) = θe is stable and if f „(θe) > 0, then 

equilibrium θ(t ) = θe is unstable. 

 

 

3. Governing Equation and Analysis 

3. Governing Equation and Analysis 
The equation that governs the motion of a pendulum clock can 

be approximated as follows [7, 17, 18] 

I  + K  + C θ = f(θ) (7) 
Which can be written as 

I  + K  + C θ = f(θ) (8) 

where, 

I is the moment of the inertia of the pendulum, K is a small 

damping constant, C is another constant determined by 
gravity, θ is the angular displacement, and f(θ) is the moment 

Equation (8) relates  and θ instead of θ and t. It is an 

autonomous system. By integrating it with respect to θ; 

I  (9) 

which becomes 

 I  + K θ +  C  =  (10) 

A given pair of values (  is called a state of the dynamical 
system. A state evolves as time progresses; we know that a 

given state determines all subsequent states since it serves as 

initial conditions for the subsequent motion.[2, 9, 18] 

Equation (10) is a differential equation for θ in terms of t, but 

it cannot be solved in terms of elementary functions. It is 

therefore not easy to obtain a useful representation of θ as a 
function of time. We shall show how it is possible by working 

directly with equation (10) to reveal the main characteristics 

of the solution. Note that when the pendulum hangs without 

swinging, θ = 0, . The corresponding function θ(t) = 0. 

This is a perfectly legitimate constant solution of equation 
(10). If the suspension consists of light rod there is a second 

position of equilibrium, where it is balanced vertically on end. 

This is the state θ = π,  another constant solution of 

equation (10). Substituting three particular states into equation 

(10) we obtain the value of I, K and C by solving the resulting 
system of equations. 
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Taking  which its value is at (0, 0) and 

considering the following states of the system: 

i) (θ,  

ii) (θ,  

iii) (  
 

By substituting these states into the following equation 

 I  C  (11) 

we have respectively: 

 I (  (12) 

 I (  (13) 

 I (  (14) 

Equation (12), (13) and (14) become respectively: 

K π +  (15) 

-K π +  (16) 

2Kπ +  (17) 
Subtracting equation (16) from (15) we have 

2Kπ = 0  (18) 

Substitute equation (18) into equation (17) we have 

 (19) 
Equations (18) and (19) give K = 0 and C = 0 Also 

substituting K = 0, C = 0 into equation (11), we have I =0. 

Therefore, for any state of the system of the form (nπ, 0), n = 

1, 2, 3, …, the constants I, K and C in equation (9) are always 

zero if  is taking to be zero. 

 

Now for θ, 

Fourier series of f(θ) on –L ≤ θ ≤ L is given as [21, 22] 

f(θ) = ) 

+ ) (20) 

Determining formulae for the coefficients of An and Bn, we 

take advantage of the fact that [Cos (  and [Sin 

(  are naturally orthogonal on-L ≤ θ ≤ L. 

Let us consider the following formula 

 2L if n = m = 0 

L if n = m ≠ 0 

0 if n ≠ m (21) 

 L if n = m 

0 if n ≠ m (22) 

 (23) 

Now, multiplying both sides of equation (20) by 

Cos ( integrating from –L to L, we have 

 (24) 

Interchange the integral and the summation we have 

 (25) 

Taking advantage of the fact that the trigonometric ratios, sine 

and cosine are naturally orthogonal; the integral in equation 

(25) will always be zero and in the first series the integral will 

be zero if n ≠ m and so this reduces to, 

 Am (2L) if n = m = 0 

Am (L) if n = m ≠ 0 (26) 

Solving for Am gives 

Ao = , m = 0 (27) 

Am = , m = 1, 2, 3 … (28) 

Similarly, multiply both side of equation (20) by Sin( and 

integrating both side from –L to L and interchanging the 

integral and summation gives 

 (29) 

In this case the integral in the first series will always be zero 

and the second will be zero if n ≠ m and so we have 

 (for n = m) (30) 

Finally, solving for Bn gives 

Bn =  m = 1, 2, 3 … (31) 

Now from equation (28), for n = m ≠ 0 

An =  m = 1, 2, 3 … (32) 

So equation (20) becomes 

=

 (33) 

For our problem n = m, therefore 

 (34) 

Generally, equation (34) can be written as 

 (35) 

 (36) 

 (37) 

At equilibrium, , equation (37) therefore becomes:  

0 =  (38) 

Therefore at equilibrium when angular velocity θ = 0, the 

motion of the pendulum clock can be approximated as 

equation (11). 

Generally at any state (nπ, L) equation (11) becomes 

 (39) 

Since Cos (nπ) = (-1  

 (40) 

 (41) 

For this work n is always taken to be an integer. 

 

4. Further Analysis 

4.1 Converting the 2
nd

 order ODE to 1
st
 order system 

Equation (7) governing the motion of pendulum clock can be 

written as 
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 = f(θ) – (K  – (C/I) θ (42) 
Equation (42) can then be converted to a first order system as 

follows: Let X1 = θ (the angular displacement of the pendulum 

clock) and X2 =  (the angular velocity of the pendulum clock) 
then 

X‟1 =  = X2 (43) 

X‟2 =  = f(θ) – (K  – (C/I) θ (44) 
This implies 

X‟1 = X2  (45) 

X‟2 = f(X1) – (K – (C/I) X1 (46) 

Without solving these equations, we will examine the 

behaviour of their solutions. The equilibrium points and 

stability of these points can be shown also. 

4.2 The Equilibrium Solution 

The system considered above is autonomous. Equations (45) 

and (46) possess equilibrium point 
*

 That is 

X‟1 = 0  (47) 

f(X1) – (K – (C/I) X1 = 0 (48) 

Equation (70) implies 
f(X1) = 0 (49) 

which implies X(t) = X1 is an equilibrium solutionInitial 

condition; X(0) = X1 implies solution X(t) = X1 for all time t. 

Now If initial condition is X(0) = X0, is close to X1 (X0 not 

equal to X1), then there are different possibilities: Unstable 

equilibrium: X(t) moves away from X1 as time t increases. 

Stable equilibrium: X(t) moves toward the equilibrium 

solution X1 (or at least does not get further away). Substituting 

equation () into equation (), we have: 

– (K – (C/I) X1 = 0 (50) 

X2 =-(C/K)X1 (51) 
Differentiating both sides of equation (51) we have X‟2 = 

K1X‟1 for some constant K1 (52) 

This implies 

X‟2 = K1X2 (53) 

For equilibrium X‟2 = 0, which implies X2 = 0 Point (0, 0) is 

the equilibrium solution.. 

 

4.3 Using Eigenvalues and eigenvector 
The above linear system of linear equations usually has 

exactly one solution, located at the origin, if determinant of A 

is not equal to zero. Here, A is the matrix formed from the 

system of equations shown below. There are usually infinitely 
many solutions if the determinant of A is zero. Now writing 

equations (51) and (52) in matrix form we have 

1 2
1

2 1 1 2

0

(x )

x x
xd

c k
xdx x f x

I I

 (54) 

1 1

1

2 2

0 1

, (x ) 0
x xd

fc k
x xdt

I I

 (55) 

X AX  (56) 
The above system usually has exactly one solution, located at 

the origin, if determinant of A is not equal to zero. If the 

determinant of A is zero, then there are many solutions. Now 

we chose values of C, I and K that will make the determinant 

of A non-zero: C=2, I=1, K=-3. 

A = 

0 1
0 1

2 3
c k

I I

 (57) 

detA = 2  (58) 

Finding eigenvalue ( )  of A: det(A ) 0,U  where U
is a unit matrix 

0 1 0

2 3 0
A U  (59) 

1

2 3
A U  (60) 

1
det(A U)

2 3
 (61) 

20 3 2  (62) 

 2 or 1 (63) 

Finding the eigenvector by using Gaussian elimination: For 

each eigenvalue we have (A ) x 0U , where x is the 

eigenvector associated with eigenvalue ( )  

 

Case 1: When 1  We find vector x which satisfies 

(A 1 ) x 0U  

0 1 1 0

2 3 0 1
A U  (64) 

1 1

2 2
 (65) 

1

2

1 1
(A U) x 0

2 2

x

x
 (66) 

Implies 
1

2

x

x
 = 

0

0
 (67) 

 

Case 2: When 2 , We find x such that 

(A 2 ) x 0U  (68) 

0 2 1 0
2

2 6 0 1
A U  (69) 

1 2

2 5
 (70) 

1

2

1 2
(A 2 U) x 0

2 5

x

x
 (71) 

Implies 
1

2

x

x
 = 

0

0
 (72) 

 

We can see that in both cases we have the same zero 

eigenvector. Which indicates exactly one solution, located at 

the origin. This is the equilibrium solution 
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4.4 Stability of the Equilibrium Solution 

The equilibrium points reduce to the only point (0, 0). Let us 

find the nullclines and the direction of the velocity vectors 

along them. The x1-nullcline is given by 

1
2 0

dx
x

dt
 (73) 

Hence the x1-nullcline is the x-axis. The x2-nullcline is given 

by 
2

2
( ) 0

K C
f

t I I


  (74) 

 

Which implies 
2

2
1 2 12

( ) 3 2 0
x

f x x x
t

 (75) 

1 2 1( ) 3 2 0f x x x  (76) 

 
2 1 1

1
[ 2 (x )]

3
x x f , for K=3, C=2 and I=1 (77) 

 

Hence the x2-nullcline is the curve. 

Note that for some value of 1( )f x , the arrangement of the 

curves will show that the solutions ‟‟circles'' around the 

origin. But it is not clear whether the solutions circle and dye 

at the origin, circle away from the origin, or keep on circling 

periodically. A very rough approach to this problem suggests 

that when 1(x )f  is close to 0, the curve approaches 
1

2

3
x . 

Hence a close system to the original nonlinear system is 

1
2

dx
x

dt
 (78) 

2
1

2

3

dx
x

dt
 (79) 

which happens to be a linear system. 

1 1

2 2

0 1

2
0

3

x xd

x xdt
 (80) 

The eigenvalues are 

2

3
 (81) 

and the eigenvector is zero: 

1

2

0

0

x

x
 

So we suggest that the solutions of nonlinear system circle 

and dye at the origin. 

 

 

5.Conclusion 

Analysis of equilibrium solution for non-linear equation 

governing pendulum clock was carried out using quantitative 

study approach. This autonomous physical system was studied 

using Eigenvalue and Eigenvector to analyse its equilibrium 

solution after converting the governing second order 

differential equation to a set of first order differential 

equations. The stability of the equilibrium solution was 

analysed. From the analysis we suggest that the solutions to 

linear system close to the original nonlinear system „circle and 

die‟ at the origin. 
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