
International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 24 (2015) pp 45559-45566

© Research India Publications. http://www.ripublication.com

45559

Implementation Patterns of Object Static Models for Database Applications:

Classical ORM-Patterns and Object-Attribute Approach

Pavel P. Oleynik

PhD, System Architect Software, Aston OJSC, Associate Professor,

Shakhty Institute (branch) of Platov South Russian State Polytechnic University (NPI), Russia, Rostov-on-Don

E-mail: xsl@list.ru

Sergey M. Salibekyan

PhD, Assistant professor, National Research University Higher School of Economics (HSE), Russia, Moscow

E-mail: ssalibekyan@hse.ru

Abstract

This article presents two different approaches to the

representation of static models in the implementation of

database applications. In order to compare solutions based on

selected criteria of optimality the unified model for testing of

tools development of object-oriented applications presented in

the form of a class diagram language UML is created. As one

of the implementations the classical object-relational mapping

patterns proposing static models in the environment of a
relational DBMS is concerned. An alternative solution widely

used by one of the authors is the object-attributive approach.

The paper presents the main components of this approach and

example of the unified testing model. This paper is the result

of years of research and is based on numerous articles

published in the Proceedings of the International Scientific

and Practical Conference "Object Systems"

(objectsystems.ru).

Keywords: Database, Object Models, UML, Object-

Relational Mapping Patterns, Object-Attribute Approach

Introduction

At the moment, there are many tools that provide object

approach to application development. This is due to the fact

that the object-oriented paradigm is dominant in the

development of new applications for any subject domains.

Object-oriented approach is increasingly used in the

implementation of database applications. It is the despite

about their strengths and weaknesses of that means. Their

main goal is to provide developers all the benefits of object-

oriented paradigm for implementation of database
applications.

This article presents two different approaches used by the

authors in the development of various database. This paper is

the result of years of research and is based on numerous

articles published in the Proceedings of the International

Scientific and Practical Conference "Object Systems"

(objectsystems.ru). The described approach is demonstrated

by the example of the implementation of unified model for

testing of the object-oriented application development tools. It

allows reader to draw conclusions about the differences in

implemented approaches.
The structure of the paper is as follows. Section 1 describes
the using of classical object-relational mapping patterns for

the implementation of the static object models. There is the

classic patterns of object-relational mapping is discussed in

detail in Section 1.1. The section highlights the advantages

and disadvantages of each pattern. Section 1.2 describes the

implementation of a unified testing model with using of

classical object-relational mapping patterns. Section 2 deals

with the application of object-attribute approach

implementing static object models. Section 2.1 describes the

basic elements of object-attribute approach. The section 2.2
highlights the implementation of the unified testing model

with object-attribute approach. In last section, it is the

conclusions of the work and suggestions for further

development is made.

The Use of Classical Object-Relational Mapping Patterns

in the Implementation of the Static Object Models

The Classical Object-Relational Mapping Patterns

The practical implementation of the model presented in this

section of the text is demonstrated by the using of classical

object-relational mapping patterns (ORM). Thus, the object
model is mapped into a relational database environment as a

set of related tables. This approach is most justified, because

the RDBMS is the most popular type of database management

systems. Unified environment of rapid development of

corporate information systems based on meta model described

in [1-2] is used to implement this model. This development

environment called SharpArchitect RAD Studio uses a

relational DBMS as a repository of information. Because

information system is designed in terms of object-oriented

paradigm and is implemented in a relational database

environment, there is a so-called "object-relational impedance
mismatch". ORM-patterns are used to overcome the

consequences of the mismatches. A patterns representing the

class hierarchy are used patterns are used very frequently.

SharpArchitect RAD Studio uses three classic patterns for

implementation of object-oriented inheritance relationships of

classes in a relational structure tables, presented in Fig. 1 [1].

Consider the basic patterns is presented in more detail. Single

Table Inheritance pattern physically represents an inheritance

hierarchy of classes in a single relational database table whose

columns corresponds to the attributes of all classes within the

hierarchy and allows one to display the structure of

inheritance and to minimize the number of joins that must be
performed to extract information. In this pattern each instance

file:///E:\43.%20????%20??????????%20??????????????%20????????????\xsl@list.ru
file:///e:\20.%20??????%20??????????%20?????????%20???????????%20???????\ssalibekyan@hse.ru
file:///C:\Users\???????\AppData\Local\Temp\WzE20EC.tmp\www.objectsystems.ru

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 24 (2015) pp 45559-45566

© Research India Publications. http://www.ripublication.com

45560

belonging to the class presents one row of the table. When

you create the object values are entered only to a table

columns that matches the attributes of the class, and all the

others are empty (have a null-value).

Figure 1. Classical Object-Relational Mapping Patterns which

is Used to Represent the Class Inheritance in the Form of a

Relational Structure (Relational Tables)

The pattern has advantages:

• The structure of the database contains only one table

which represents all classes of whole hierarchy.

• Selection of instances of classes hierarchy do not

require joining of tables.

• Moving of fields from a base class to a derived class

(as well from the derivative class to the base class)
does not require changing of tables structure.

The pattern has disadvantages:

• The structure of the database tables can cause

problems, because not all of the columns in the table

are intended to describe each domain class. It

complicates the process of the system refining in the

future.

• If you have a deep inheritance hierarchy with a large

number of attributes, many columns can have empty
values (null-values). It leads to inefficient use of the

available memory space in the database. However,

modern DBMS can compress strings containing a

large number of null-values.

• Table may be too large and contain a huge number of

columns. The main way to optimize the query (to

reduce the execution time) is creation of a covering

index. However, the index set and a large number of

queries to a single table can lead to frequent

blockages that causes a negative impact on the

performance of software applications.

An alternative pattern is the pattern called Class Table

Inheritance representing a hierarchy of classes for one table

for each class (as an abstract and concrete). Class attributes

are directly mapped to the columns of the corresponding table.

Joining of the respective rows of several database tables is

main task of the method.

The pattern has the following advantages:

• Each table contains fields corresponding to attribute

of a certain class. Therefore a tables are easy to

understand and take up little memory space on a hard

drive.
• The relationship between the object model and

relational database schema is simple and clear.

However, there are disadvantages:

• When you create an instance of a particular class you

must to upload data in several tables. It requires

natural joining of the tables or a plurality of database

calls with followed joining of results in memory.

• Moving of the fields in the derived class or base class

requires changing in the structure of several

relational tables.
• Superclass table can become weaknesses of

performance, since access to such tables will be

carried out too often, it will lead to a variety of locks.

• High degree of normalization can be an obstacle for

the implementation of unplanned advance queries.

Concrete Table Inheritance pattern presents an inheritance
hierarchy of classes using one table for each concrete (non-

abstract) class of the hierarchy. From a practical point of

view, this pattern assumes that each instance of the class

(object) locating in memory is located on a separate row in the
table. In addition, each table contains columns corresponding

to attributes as a particular class and all of its ancestors.

The advantages are:

• Each table do not contains unnecessary fields, so it is

convenient to use in other applications that do not

use object-relational mapping tools.

• In the case of creating of objects of a certain class in

the application memory and retrieving data from a

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 24 (2015) pp 45559-45566

© Research India Publications. http://www.ripublication.com

45561

relational database data it is selection from a single

table, i.e. it is not required to perform relational joins.

• Access to a table is carried out only in the case of

access to a particular class, it allow one to reduce the

number of locks inflicted on the table and to spread

the load on the system.

There are disadvantages:

• Primary keys can be inconvenient for controlling.

• There is no ability to simulate relationships between

abstract classes.

• If the class attributes are moved between base classes

and derived classes, changing of the structure of

several tables is needed. These changes are not as

often as in the case of Class Table Inheritance

pattern, but they can not be ignored (as opposed to

Single Table Inheritance pattern in which these

changes are absent).
• If in base class the definition of at least one attribute

is changed (for example, change the data type), it

requires changing of the structure of each table

representing a derived class because a superclass

fields are duplicated in all tables of its derived

classes.

• Implementation of the method of searching for data

in the abstract class require viewing all a tables

representing an instance of the derived classes. This

requires a large number of database calls.

Selection of a required ORM-pattern depends on the initial
logical model, i.e. from the class hierarchy of the domain. At
the same time can be used two or more ORM-patterns, as

optimization of the structure of a relational database and
reducing the number of tables is required. It increases the

speed of data retrieval.

After describing SharpArchitect RAD Studio object-relational

mapping patterns which are available to the developer we can

describe the implementation of the unified testing model.

Implementation of the Unified Testing Model Using

Classical Object-Relational Mapping Patterns
In order to simplify the implementation, the three existing

class hierarchies is separated in accordance with existing

ORM-patterns. The result is shown on Fig. 2.

Figure 2. The Use of the Classical ORM-patterns for the
Implementation of the Unified Model for Testing Object-

Oriented Applications Development Tools

The Single Table Inheritance is used for the class hierarchy

Post, ExperiencePost (ScientificPost). As a result, it is

assumed that in the RDB one single table (relational table),

which will be content instances of all listed non-abstract

classes, will be created. Class Table Inheritance pattern is

used for the class hierarchy with classes Contragent, Worker

(Company), Employee, Manager. I.e. in RDB a separate table

is created for abstract or concrete classes. Address class is
abstract and has no association with other classes in the

model, so a separate table will not be created in the RDB.

Two tables (one for each heir) will be created for child

classes. I.e. Concrete Table Inheritance was used to hierarchy

Address, CompanyAddress (EmployeeAddress). A separate

relation table will be created for other classes witch are

outside of the described hierarchy.

One of the main features of SharpArchitect RAD Studio is

support of multiple inheritance implementing by means of C#

language construction interfaces. Used C# language does not

support association syntax construction. To represent the

binary associations, regardless of the multiplicity, properties
(property construction), containing a single value or collection

of values is used.

Multiple n-ary association are represented by a separate class.

The attributes of these associations (as well as the attributes of

binary associations) are converted into property of classes. To

simplify data mining all associations are bidirectional, i.e.

there are properties both ends of the relevant classes whose

type corresponds to the opposite end of the class association.

All of the above arguments are presented graphically in Fig. 3.

Figure 3. Unified Model for Testing Object-Oriented

Application Development Tools, implemented in

SharpArchitect RAD Studio in C#

The interfaces language C# are used, so it is impossible to

mark abstract classes with italics. Bidirectional associations
are shown with corresponding arrows connecting classes. It is

used the following approach to implement association. From

the "one" side it is declared a property, which have a list type

(C# type IList<>) containing the elements, which have a class

type locating on the side "to-many". It is declared property in

the class of the "to-many" side, whose type is a class locating

on the side "one". Association of the "many-to-many"

(without attributes) can be represented by two lists declared in

opposite classes. The SharpArchitect RAD Studio

development environment has a number of base classes that

implement the most common functionality. For example, the
class IBaseRunTimeDomainClass is the root of all domain

classes. To implement the tree structure it is enough inheriting

from IBaseRunTimeTreeNodeDomainClass. At the time of

code generation it is automatically generating of additional

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 24 (2015) pp 45559-45566

© Research India Publications. http://www.ripublication.com

45562

attributes Nodes and Owner allowing one to save a reference

to the parent and subnodes respectively. It is a way to realize

recursive association. Syntax construction "enum" is used for

шmplementation of the enumerations and sets.

After applying of the classical ORM-patterns relational

database schema of the unified model is obtained. Fig. 4 is
depicts the result.

Figure 4. A relational Database Schema of the

Implementation of the Unified Model Testing in

SharpArchitect RAD Studio

Figure requires the explanation. one single table Post is

created for all posts presented by three classes Post,

ExperiencePost and ScientificPost. Each table has all
attributes of classes. Additionally, there is a column in the

table OID, representing an object identifier (primary key in a

relational model).

ObjectType column contains the identifier of the class whose

objects are stored in the form of table rows. This value is used

by the application to create a class of object-oriented

programming language and to load the attribute values.

Implementing of Class Table Inheritance pattern causes

creation of the table Contragent for abstract class and table

Worker, Company, Employee, Manager for the concrete

classes. Instances of classes are physically stored in multiple

database tables. A copy of the Manager class is stored in all
tables.

Implementation of the Concrete Table Inheritance pattern is

applicable for classes Address, CompanyAddress and

EmployeeAddress. It cause a creation of two tables:

CompanyAddress and EmployeeAddress, because

CompanyAddress class is abstract. All abstract class attributes

is physically stored in tables of specific classes. Association

Position have a separate table as well as for the binary

association linking the Employee and EmployeeAddress

classes. The table EmployeeEmployeeAddress containing

foreign keys is created for the binary association.
Note that separate table is not created for the Telephone-Kind

enumeration. It is used an approach allowing enumeration

values representations as a bit mask and its storing in the form

of an integer value, where appropriate attributes are used. So

the table has a column Telephone TelephoneKind, SQL-type

is Integer.

After analyzing of the above text we can argue that

implementation created in a development environment

SharpArchitect RAD Studio (Fig. 4) is fully consistent with

the unified model for testing object-oriented application

development tools.

Use of the object-attribute approach to realize the static

object-oriented models
1

Basic elements of the object-attribute approach

The relational databases (DB) have been used most widely

during the last 30 years [3]. Despite this fact, the relational

model ceased to satisfy the current requirements, because its
restricted abilities to describe the ontology do not allow one to

use this model in artificial intellectual systems and the scaling

difficulties make the realization of such DBMS in parallel and

distributed computational systems more complicated.

Numerous ways out of this DBMS crisis [4] were proposed,

namely, the object-oriented (OO) approach to DB, the tree-

structured DB, the network model, and NoSQL motion

(Amazon, Google). But none of them, except for the OO-

model which also has numerous drawbacks [5], could

sufficiently seriously compete with the relational model.

In this section, we present a new methodic for constructing

DB which is based on the object-attribute (OA) approach to
organization of the computational process and data structures

[6-7]. The OA-DBs belong to the class of network (graph)

DBs, i.e., DB is a graph (or an OA-graph) whose vertices are

descriptions of objects and semantic connections (relations)

and whose arcs are the associations connecting them. To

illustrate such a method for the DB organization, we show

how to realize the main types of connections between the

essences of the OO- and relational DB models and consider an

example of a small DB realization on the basis.

This analysis is based on the UML-diagram of classes [8]

which is used to define the main essences of the ОО-model:
class, class attribute, class operation, as well as the following

types of relationship: dependence, generalization, multiple

inheritance, association, aggregation, composition. The

notions of relation multiplicity and role should also be

remembered (Fig. 5). Now we describe the realization

methods for each type of relations in the OA-DB. We use an

OA-language, i.e., a special language for describing the OA-

graphs [6-7].

We first describe the class in the OA-DB. So the class (the

pattern used to create an object) is a set of fields and methods.

In an OA-system, an object is represented as an information

capsule (IC); each field of the object is associated with an
information pair (IP) contained in this IC. The names of

attributes (the attribute index is associated with a unique

mnemonics) are the IP attributes, and the class field value is

placed in the IP load. The methods in an object are references

to a subprogram. The program in an OA-system is a sequence

of IP (millicommands). This sequence can be transferred to

functional units (FU) which perform computations, data

transformations, and their input and output under the control

of a millicommands flow.

Let us describe the class in Fig. 6(a) in an OA-language:

Man{Sex=М DateOfBirth=07.02.1970
FamilyName=IvanovIvan OutAge=YieldAgeProg

SaveCurrentIncome=SaveCurrentIncomeProg

OutCommonIncome=OutCommonIncomeProg}, where the

1 Support from the Basic Research Program of the National

Research University Higher School of Economics is gratefully

acknowledged

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 24 (2015) pp 45559-45566

© Research India Publications. http://www.ripublication.com

45563

loads of the last three IP contain pointers to the IC of the

subprograms.

The generalization relationship (subclasses) are implemented

by adding an IP to the IC of the object description. The

attribute of the added IP identifies a subclass, and the load

contains a pointer of the OA-graph describing the subclass.
For example, the association in Fig. 6(b) is defined as follows:

ManFromUniversity{Student=StudentPointer{…}

Teacher=TeacherPointer{…}}, where the dots are replaced

by the description of the object corresponding to the Student

and Teacher subclasses; Student and Teacher are mnemonics

of the attributes. The StudentPointer and TeacherPointer

mnemonics are pointers to the capsules containing the

respective descriptions of the student and teacher.

The inheritance in the OA-DB is implemented by copying the

OA-graph of the parent-object description and adding one or

several IP describing the new fields and methods to the root

IC. For example, Fig. 6(b) presents the multiple inheritance as
follows: the Student-Teacher class inherits the properties of

the Student and Teacher classes. In an OA-language, this

inheritance is described as follows: StudentTeacher

{StudentPointer, TeacherPointer}. If the IC description in an

OA-language (but not the IP load) contains the mnemonics of

the IC pointer, then this IC (and the entire OA-graph where it

is contained) is copied into the formed IC. Thus, all IPs from

the Student and Teacher capsules will be copied into the IC,

and they will be named StudentTeacher.

Figure 5 – Basic types of connections in the OO-model of DB

The association relationship are determined by an IP added to

the IC of the object description as follows: the IP load

contains a pointer to the IC with the description of the

associated object, and the attribute contains the role

mnemonics. In the OA-approach, the relationship is uniquely

determined by two IPs referring to the ICs of the object
descriptions. For example, between objects of the class Man

and the class University (Fig. 6(c)), there is a relationship

where the Man plays the role of a Worker and the University

plays the role of an Employer. In an OA-language, the

University is described as follows: Man{ …

Student=University Worker=University… } University{ …

Employer=Man Teacher=Man … }

Man={Student=University Worker=University}. A man can

work at several universities, and a university can employ

several men (a relationship of n-th multiplicity). Then the OA-

graph looks as follows: Man1{… Worker=University1

Worker=University2 …} Man2{… Worker=University1

Worker=University2 …} University1{… Employs=Man1

Employs=Man2 …} University2{… Employs = Man1

Employs =Man2 …}. One can see that in this case, the role
name acts as the attribute name.

The composition (an integral part of an object) can, for

example, be implemented as follows: to compose a list of

attributes whose loads contain the object pointer inseparable

from its parent. In this case, if IPs with such attributes are

contained in the deleted IC, then the ICs whose pointers are

stored in the load are also deleted.

Complex relationship and relationship-classes can be

implemented by using IC. For example, it is required to

describe the «action» relationship (such a problem arises

when a DB is composed starting from meaning of a natural

language text) which contains sufficiently many objects:
subject (who acts), object (to whom the action is directed),

mediator (for example, a tool used to realize the action), etc.

Such a relation can look as follows: Action{Subject={...}

Object={...} Moderator={...} Addressee={...}

CourseOfAction={...}...}.

We note that the OA-approach to the DB construction

implements all types of connection which can exist in the OO-

and relational approaches, and therefore, it can be used to

realize applications in any application area.

Realization of a unified testing model by an object-attribute

approach

To illustrate the proposed principle, we realize the DB

structure of a unified testing model, which is described by

using the UML-notation (class diagrams) represented in

Section 1. In an OA-language (where // are the comment

delimiters), Fig. 6 presents a description of DB whose model

is Unified Testing Model. The OA-language complier is

contained in the OA-programming and simulation

environment, which allows one to simulate the computational

process in the OA-system.

NewFU={Mnemo="DB" FUType=FUGraph}

// Initialization of atrributes

Department Post

ExperiencePost MinExperMonth

ScientificRank AcademicRank

Position Rate Salary Date

Value Worker DateOfBirth

Company Contragent Employee

EID Manager Include Telephone

Number TelephoneKind

Home#1 Personal#2 Work#3

Name Adress Country

City Street Building

Office CompanyAdress

EmployeeAdress IsRegistred

DB.Set=

>Position1{ // Position1 – IC mark

Post={Name="Full professor"

ExperiencePost={MinExperMonth=12}}

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 24 (2015) pp 45559-45566

© Research India Publications. http://www.ripublication.com

45564

Department={

Name="Computer science"}

Department={

Name="Applied mathematics"}

Salary={Date="1.10.2014"

Value=4000}

Worker={

DateOfBirth="13.04.1968"

Telephone={Number=1234567

TelephoneKind=Personal}

Telephone={Number=7654321

TelephoneKind=Home}

}

Employee=Employee1{// Mark

EID=12876 Manager=null

EmployeeAdress=

{IsRegistred=true

Adress={Country="USA"

City="New York" Street="Street 20"

Building=10 Office=1}}

Company=

>{Name="IBM"

Telephone={Number=1111111

TelephoneKind=Personal}

Telephone={Number=2222222

TelephoneKind=Work}

CompanyAdress={Country="USA"

City="New York" Street="Street 10"

Building=10 Office=1}

}}}

>Position2{…// Second DB record

Figure 6: Listing of the OA-DB whose Unified Testing

model.

An OA-program of OA-DB initialization is shown in the

listing in Fig. 6. Let us consider it in more detail. A functional

unit (FU) processing the OA-graph is constructed in the first

line of the OA-program. Further, the attribute and constant

mnemonics are initialized (the symbol «#» denotes

initialization of a constant, and an isolated mnemonics denotes

the attribute initialization). The millicommand (an IP
addressed to the FU) with mnemonics «DB.Set» determines

the operation «put the pointer to the OA-graph» for the FU

«DB», and the description of the OA-graph in an OA-

language follows the symbol «=». The symbol «>» denotes

the beginning of a new record in the list (the list is organized

from the essences «Position», and this list «sews» all records

together in a unified DB). After the initialization by the FU

«DB», one can modify the OA-graph and seek the information

in it. The OA-graph created in the OA-programming and

simulation invironment is illustrated in Fig. 8 (a special

program component was realized to derive an OA-graph in the
OA-programming and simulation environment). The indices

of the information capsules (IC) are given in curly brackets in

Fig. 7, i.e., since the OA-graph is a graph of any arbitrary

topology but the screen shows only its frame, the indices

allows one to trace all connections between the vertices which

do not enter the frame; in this case, after the symbol «=»

(notation of the IP load), the index of the IP referring to the

load is placed (for example, «ID_14»).

Figure 7: DB representation as an OA-graph

The OA-approach ensures the DB key properties such as

description of any ontology, computational scalability, DB

integrity, ergonomicity (DB queries are entered with the

natural language) [9], and a high speed of search in DB (a

special search technique based on the use of the IC indexation

was developed for the OA-DB).

The OA-DBs belong to the class of network (graph) DB,

where the ontology description is a set of vertices denoting

objects and arcs which determine relationship between the

objects. The network DB has no restrictions on the topology,

and therefore it can potentially describe any ontology. This is

its qualitative distinction from the relational and OO-models:
in the first case, it is practically impossible to describe the

ontology with a large number of connection types (it is

necessary to create its own relation (table) for each type,

which is very cumbersome), and in the second case, there is a

restriction on the topology (a «tree»-type graph).

The OA-DB scalability is attained because the computations

are controlled by using the dataflow [10]. The dataflow allows

one to «untie» the data addressing from the computer common

memory. Namely, the data are accessed through functional

units (FU) which are virtual, i.e., they are not rigidly

depended with the hardware of computational nodes. The set
of FUs forms the so-called OA-image, i.e., a virtual

computational system. Then the OA-image is «imposed» on a

specific computational system (CS) by distributing the FUs

over the CS computational nodes and by adjusting the FUs

themselves and the routers responsible for the transfer of IPs

between the computational nodes. To change the CS

configuration, it is only necessary to redistribute the FUs

between the computational nodes and to introduce new

adjustments of the routers [6].

The OA-DB wholeness is ensured by the format and technic

of the OA-graph processing. So the OA-DB modification

consists in addition or removal of several IP from the IC
composing the OA-graph. We assume (Fig. 8) that there is an

IP with attribute «1» in the IC, and then we add an IP with

attribute «2» to the same IC. Now we can seek the data

according to either attribute «1» or attribute «2»

independently, i.e., if we seek the data with attribute «1», then

we ignore attribute «2», and conversely. Thus, we can

distinguish several subgraphs by analyzing the IP attributes

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 24 (2015) pp 45559-45566

© Research India Publications. http://www.ripublication.com

45565

only in one OA-graph… Namely, we can change the DB

structure without fear for its wholeness, and therefore we need

not perform a very laborious refactoring, which cannot

practically be avoided in any serious modification of big OO-

DB.

Figure 8: Assurance of OA-DB integrity in its modification

The ergonomicity is ensured because the queries to the OA-

DB are in the natural language, i.e., an query is transformed in

its OA-graph, and then it is determined whether the query is a
subgraph of the OA-graph of DB. The technic of

transformation of a natural language text into an OA-graph is

discussed in [9]. The answers to the queries can also be given

in the natural language.

Similarly to the OO-approach, the OA-DB gives wide

opportunities for the data abstraction. For example, an OA-

graph can be constructed according to the «tree» topology. In

this case, an IC of a higher level encapsulates the information

structure of the lower level (the IC contains the basic

characteristics of the lower level). If the OA-graph is of any

arbitrary topology, then we can distinguish subgraphs in it (for

example, according to the principle of description of any
object, set, or phenomenon) and include the IC describing the

main characteristics of such subgraphs into the OA-graph.

Now, if necessary, the user can operate with this IC without

referring to a detailed description of the object.

Because of IC indexation, the search of information in OA-

DB is sufficiently fast. As previously noted, the search in the

OA-DB is the search of a subgraph (subgraphs) in the OA-

graph of DB which coincides with the enquiry-graph [9]. The

search process becomes simpler because the OA-graph

vertices are, so to say, marked by the IP contained in the IC.

Therefore, we can propose the following methodic for seeking
subgraphs, which consists of several stages. The first step is to

index all vertices of the OA-graph of DB and the enquiry. The

second step is to compose the following two lists of the IP

attributes: the first list of attributes encountered in the OA-

graph of DB and the second list of attributes of the enquiry

OA-graph. If some enquiry attributes are not contained in DB,

then the search is complete and the user receives the negative

result message. Otherwise, all IC containing attributes from

the enquiry-graph are distinguished in the DB graph. The third

step is to group the IP obtained in the OA-graph according to

capsules: if the obtained IP have the same IC index (i.e., if
they belong to the same capsule), then these IP are united in a

group. The fourth step is to match the groups: if a group does

not coincide with any other group in the enquiry-graph, then it

is removed. As a result, if all groups are removed or the

number of groups becomes less than that in the enquiry-graph,

then the search is complete with a negative result. The fifth

step is to match the remaining groups with the enquiry-graph

IC. The search of the required attributes can be enhanced by

using the hasting, which significantly increases the speed of

computation. Such an algorithm has time complexity of the
order of N*M, where N is the number of IP in DB and M is the

number of IP in the enquiry-graph.

It should be noted that, theoretically, the OA-DBMS has

sufficiently good perspectives, because it preserves many

positive properties of DBMS, but it also has the following

drawbacks: first, the main memory consumption is excessive

(in OA-DB, two IPs are distinguished for each connection,

because the OA-graph arcs must be bidirectional); second,

because the addition of new data structures does not violate

the old data structures, OA-DB may contain unnecessary data

structures which are already forgotten by the designers but

which occupy the memory and hinder the search of the
required information.

Сonclusions

The article presents two modern approach to the

implementation of the static models, designed in the

implementation of object-oriented applications. As an

example, for a unified model represented the language class

diagram UML. The described solutions are the result of years

of work of the authors and tested in applications, many users

actually used. The further development of these approaches
the authors see the implementation of the principles of

formation of the graphical user interface. Also proposed to

develop formal methods of description of the presented

solutions.

References

[1] Oleynik P.P. The Elements of Development
Environment for Information Systems Based on

Metamodel of Object System // Business Informatics.

2013. №4(26). – pp. 69-76. (In Russian),

http://bijournal.hse.ru/data/2014/01/16/1326593606/

1BI%204(26)%202013.pdf

[2] Oleynik P.P., Computer program "The Unified

Environment of Rapid Development of Corporate

Information Systems SharpArchitect RAD Studio",

the certificate on the state registration №
2013618212/ 04 september 2013. (In Russian).

[3] C.J. Date Introduction to Database Systems (8th

edition) 2003

[4] Why Programmers Don’t Like Relational Databases

2007. URL:

http://typicalprogrammer.com/programmers-vs-
rdbms/

[5] Gabriel, R. Objects Have Failed: Notes for a Debate.

(retrieved 17 May 2009).

http://www.dreamsongs.com/Files/ObjectsHaveFaile

d.pdf

[6] S.M. Salibekyan, P.B. Panfilow Object-attribute

http://bijournal.hse.ru/data/2014/01/16/1326593606/1BI%204(26)%202013.pdf
http://bijournal.hse.ru/data/2014/01/16/1326593606/1BI%204(26)%202013.pdf
http://www.dreamsongs.com/Files/ObjectsHaveFailed.pdf
http://www.dreamsongs.com/Files/ObjectsHaveFailed.pdf

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 24 (2015) pp 45559-45566

© Research India Publications. http://www.ripublication.com

45566

architecture for design and modeling of distribute

automation system. // Automation and remote

control. Volume 73, 2012, Number 3, 587-595, DOI:

10.1134/S0005117912030174

[7] Salibekyan S. M., Panfilov P. B. Dataflow
Computing and Its Impact on Automation

Applications // Procedia Engineering. 2014. No. 69.

P. 1286-1295. URL:

http://www.hse.ru/pubs/share/direct/document/12633

8249

[8] Martin Fowler, Kendall Scott, (2003). UML

Distilled: A Brief Guide to the Standard Object

Modeling Language, Third Edition, Addison-Wesley.

[9] Salibekyan S.M., Khal'kina S.B., Tinovitskiy K.D.

Object-attribute Approach for Natural Language

Processing // Object Systems – 2014: Proceedings of

the Eighth International Theoretical and Practical

Conference (Rostov-on-Don, 10-12 May, 2014) /

Edited by Pavel P. Oleynik. – Russia, Rostov-onDon:

SI (b) SRSPU (NPI), 2014 pp. 80-86 (In

Russian), http://objectsystems.ru/files/Object_System

s_2014_Proceedings.pdf

[10] Jurij Silk, Borut Robic and Theo Ungerer

«Asynchrony in parallel computing: From dataflow

to multithreading» Institut Jozef Stefan, Technical

Report CDS-97-4, September 1997.

[11] Pavel P. Oleynik, Nikolay V. Kuznetsov, Edward G.

Galiaskarov, Ksenia O. Kozlova. Domain-Driven
Design of Information System for Queuing System in

Terms of Unified Metamodel of Object System.

International Journal of Applied Engineering

Research, ISSN 0973-4562, Volume 10, Number 15

(2015), pp. 35229-35238.

[12] Pavel P. Oleynik, Nikolay V. Kuznetsov, Edward G.

Galiaskarov, Natalia E. Borodina. Model-Driven

Design and Implementation of Scientific Data

Management Information System. International
Journal of Applied Engineering Research, ISSN

0973-4562, Volume 10, Number 15 (2015), pp.

35239-35246.

http://publications.hse.ru/view/126338254
http://publications.hse.ru/view/126338254
http://publications.hse.ru/view/126338254
http://publications.hse.ru/view/126338254
http://objectsystems.ru/files/Object_Systems_2014_Proceedings.pdf
http://objectsystems.ru/files/Object_Systems_2014_Proceedings.pdf
http://objectsystems.ru/files/Object_Systems_2014_Proceedings.pdf

