International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 24 (2015) pp 45559-45566
© Research India Publications. http://www.ripublication.com

Implementation Patterns of Object Static Models for Database Applications:
Classical ORM-Patterns and Object-Attribute Approach

Pavel P. Oleynik
PhD, System Architect Software, Aston OJSC, Associate Professor,
Shakhty Institute (branch) of Platov South Russian State Polytechnic University (NPI), Russia, Rostov-on-Don
E-mail: xsl@list.ru

Sergey M. Salibekyan
PhD, Assistant professor, National Research University Higher School of Economics (HSE), Russia, Moscow
E-mail: ssalibekyan@hse.ru

Abstract

This article presents two different approaches to the
representation of static models in the implementation of
database applications. In order to compare solutions based on
selected criteria of optimality the unified model for testing of
tools development of object-oriented applications presented in
the form of a class diagram language UML is created. As one
of the implementations the classical object-relational mapping
patterns proposing static models in the environment of a
relational DBMS is concerned. An alternative solution widely
used by one of the authors is the object-attributive approach.
The paper presents the main components of this approach and
example of the unified testing model. This paper is the result
of years of research and is based on numerous articles
published in the Proceedings of the International Scientific

and Practical Conference "Object Systems"
(objectsystems.ru).
Keywords: Database, Object Models, UML, Obiject-

Relational Mapping Patterns, Object-Attribute Approach

Introduction

At the moment, there are many tools that provide object
approach to application development. This is due to the fact
that the object-oriented paradigm is dominant in the
development of new applications for any subject domains.
Object-oriented approach is increasingly used in the
implementation of database applications. It is the despite
about their strengths and weaknesses of that means. Their
main goal is to provide developers all the benefits of object-
oriented paradigm for implementation of database
applications.

This article presents two different approaches used by the
authors in the development of various database. This paper is
the result of years of research and is based on numerous
articles published in the Proceedings of the International
Scientific and Practical Conference "Object Systems"
(objectsystems.ru). The described approach is demonstrated
by the example of the implementation of unified model for
testing of the object-oriented application development tools. It
allows reader to draw conclusions about the differences in
implemented approaches.

The structure of the paper is as follows. Section 1 describes
the using of classical object-relational mapping patterns for

the implementation of the static object models. There is the
classic patterns of object-relational mapping is discussed in
detail in Section 1.1. The section highlights the advantages
and disadvantages of each pattern. Section 1.2 describes the
implementation of a unified testing model with using of
classical object-relational mapping patterns. Section 2 deals
with the application of object-attribute approach
implementing static object models. Section 2.1 describes the
basic elements of object-attribute approach. The section 2.2
highlights the implementation of the unified testing model
with object-attribute approach. In last section, it is the
conclusions of the work and suggestions for further
development is made.

The Use of Classical Object-Relational Mapping Patterns
in the Implementation of the Static Object Models

The Classical Object-Relational Mapping Patterns

The practical implementation of the model presented in this
section of the text is demonstrated by the using of classical
object-relational mapping patterns (ORM). Thus, the object
model is mapped into a relational database environment as a
set of related tables. This approach is most justified, because
the RDBMS is the most popular type of database management
systems. Unified environment of rapid development of
corporate information systems based on meta model described
in [1-2] is used to implement this model. This development
environment called SharpArchitect RAD Studio uses a
relational DBMS as a repository of information. Because
information system is designed in terms of object-oriented
paradigm and is implemented in a relational database
environment, there is a so-called "object-relational impedance
mismatch”. ORM-patterns are used to overcome the
consequences of the mismatches. A patterns representing the
class hierarchy are used patterns are used very frequently.
SharpArchitect RAD Studio uses three classic patterns for
implementation of object-oriented inheritance relationships of
classes in a relational structure tables, presented in Fig. 1 [1].
Consider the basic patterns is presented in more detail. Single
Table Inheritance pattern physically represents an inheritance
hierarchy of classes in a single relational database table whose
columns corresponds to the attributes of all classes within the
hierarchy and allows one to display the structure of
inheritance and to minimize the number of joins that must be
performed to extract information. In this pattern each instance

45559

file:///E:\43.%20????%20??????????%20??????????????%20????????????\xsl@list.ru
file:///e:\20.%20??????%20??????????%20?????????%20???????????%20???????\ssalibekyan@hse.ru
file:///C:\Users\???????\AppData\Local\Temp\WzE20EC.tmp\www.objectsystems.ru

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 24 (2015) pp 45559-45566
© Research India Publications. http://www.ripublication.com

belonging to the class presents one row of the table. When
you create the object values are entered only to a table
columns that matches the attributes of the class, and all the
others are empty (have a null-value).

BaseClass
(abstract class)
Aftributet e ' TableClass
{?‘ ________________ ' (table)

I '] « === | BaseField1
ChildClass1 ChildClass2| "= - == %] ChildiField2
(concrate class) : {concrata class) I’ - "'__ ': g:g?:?l‘ﬁl:ﬂdi ialdd
Atiribute? fa---- - - * | Attribute3 fa-t L

)

SubChildClass21

(concrete class)

Attributed -

Single Table Inheritance pattern

BaseClass TableBase
(abstract class) (tabbe)
Attribute R R s Fiedd1
? e , TableChild1
2 ' (tabla)
! . | : -
ChildClass1 ¢ | ChildClass2 o
(concrate class) (concrate class)
. TableChild2
Attribute2 pif====e= Attributed = = ==, (tabba)
'
? L Field
SubChildClass21 TableSubChild21
(concrete class) (table)
Attributed P - = = | Fieldd

Class Table Inheritance

BaseClass TableChild1
(abstract class) (table)
Attribute 1 - - - e-p{ Field1
: t] Field2
[? T] . TableChild2
- ' - . (table)
ChildClass1 | ChildClass2 , -
(concrete class) (concrete class) . 1 Field1
' e - P Field3
Aftribute2 = = - - - = Attribute3 - - - -1t
? i [TablesubChild21
Sube G > v (table)
ubChildClass21 e -
(concrete class) + =% Field1
L - 3| Field3
Attributed ¢ - - »| Fields

Figure 1. Classical Object-Relational Mapping Patterns which
is Used to Represent the Class Inheritance in the Form of a
Relational Structure (Relational Tables)

The pattern has advantages:

. The structure of the database contains only one table
which represents all classes of whole hierarchy.

. Selection of instances of classes hierarchy do not
require joining of tables.

. Moving of fields from a base class to a derived class

(as well from the derivative class to the base class)
does not require changing of tables structure.

The pattern has disadvantages:
. The structure of the database tables can cause

problems, because not all of the columns in the table
are intended to describe each domain class. It
complicates the process of the system refining in the
future.

. If you have a deep inheritance hierarchy with a large
number of attributes, many columns can have empty
values (null-values). It leads to inefficient use of the
available memory space in the database. However,
modern DBMS can compress strings containing a
large number of null-values.

. Table may be too large and contain a huge number of
columns. The main way to optimize the query (to
reduce the execution time) is creation of a covering
index. However, the index set and a large number of
queries to a single table can lead to frequent
blockages that causes a negative impact on the
performance of software applications.

An alternative pattern is the pattern called Class Table

Inheritance representing a hierarchy of classes for one table

for each class (as an abstract and concrete). Class attributes

are directly mapped to the columns of the corresponding table.

Joining of the respective rows of several database tables is

main task of the method.

The pattern has the following advantages:

. Each table contains fields corresponding to attribute
of a certain class. Therefore a tables are easy to
understand and take up little memory space on a hard
drive.

. The relationship between the object model and
relational database schema is simple and clear.

However, there are disadvantages:

. When you create an instance of a particular class you
must to upload data in several tables. It requires
natural joining of the tables or a plurality of database
calls with followed joining of results in memory.

. Moving of the fields in the derived class or base class
requires changing in the structure of several
relational tables.

. Superclass table can become weaknesses of

performance, since access to such tables will be

carried out too often, it will lead to a variety of locks.

High degree of normalization can be an obstacle for

the implementation of unplanned advance queries.

Concrete Table Inheritance pattern presents an inheritance
hierarchy of classes using one table for each concrete (non-
abstract) class of the hierarchy. From a practical point of
view, this pattern assumes that each instance of the class
(object) locating in memory is located on a separate row in the
table. In addition, each table contains columns corresponding
to attributes as a particular class and all of its ancestors.

The advantages are:

. Each table do not contains unnecessary fields, so it is
convenient to use in other applications that do not
use object-relational mapping tools.

. In the case of creating of objects of a certain class in
the application memory and retrieving data from a

45560

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 24 (2015) pp 45559-45566
© Research India Publications. http://www.ripublication.com

relational database data it is selection from a single
table, i.e. it is not required to perform relational joins.

. Access to a table is carried out only in the case of
access to a particular class, it allow one to reduce the
number of locks inflicted on the table and to spread
the load on the system.

There are disadvantages:

. Primary keys can be inconvenient for controlling.

. There is no ability to simulate relationships between
abstract classes.

. If the class attributes are moved between base classes

and derived classes, changing of the structure of
several tables is needed. These changes are not as
often as in the case of Class Table Inheritance
pattern, but they can not be ignored (as opposed to
Single Table Inheritance pattern in which these
changes are absent).

. If in base class the definition of at least one attribute
is changed (for example, change the data type), it
requires changing of the structure of each table
representing a derived class because a superclass
fields are duplicated in all tables of its derived
classes.

. Implementation of the method of searching for data
in the abstract class require viewing all a tables
representing an instance of the derived classes. This
requires a large number of database calls.

Selection of a required ORM-pattern depends on the initial
logical model, i.e. from the class hierarchy of the domain. At
the same time can be used two or more ORM-patterns, as
optimization of the structure of a relational database and
reducing the number of tables is required. It increases the
speed of data retrieval.

After describing SharpArchitect RAD Studio object-relational
mapping patterns which are available to the developer we can
describe the implementation of the unified testing model.

Implementation of the Unified Testing Model Using
Classical Object-Relational Mapping Patterns

In order to simplify the implementation, the three existing
class hierarchies is separated in accordance with existing
ORM-patterns. The result is shown on Fig. 2.

Post Department] Contragent jo———— Telephone Address |

E—<Posito>—21"Worker | neKind

ExperiencePost —— L

[MinExperMonth [Rate -

r " 1

~:_|CompanyAddress
—

——1EmployeeAddress

[‘ScientificPost | |

Figure 2. The Use of the Classical ORM-patterns for the
Implementation of the Unified Model for Testing Object-
Oriented Applications Development Tools

The Single Table Inheritance is used for the class hierarchy
Post, ExperiencePost (ScientificPost). As a result, it is

assumed that in the RDB one single table (relational table),
which will be content instances of all listed non-abstract
classes, will be created. Class Table Inheritance pattern is
used for the class hierarchy with classes Contragent, Worker
(Company), Employee, Manager. l.e. in RDB a separate table
is created for abstract or concrete classes. Address class is
abstract and has no association with other classes in the
model, so a separate table will not be created in the RDB.
Two tables (one for each heir) will be created for child
classes. l.e. Concrete Table Inheritance was used to hierarchy
Address, CompanyAddress (EmployeeAddress). A separate
relation table will be created for other classes witch are
outside of the described hierarchy.

One of the main features of SharpArchitect RAD Studio is
support of multiple inheritance implementing by means of C#
language construction interfaces. Used C# language does not
support association syntax construction. To represent the
binary associations, regardless of the multiplicity, properties
(property construction), containing a single value or collection
of values is used.

Multiple n-ary association are represented by a separate class.
The attributes of these associations (as well as the attributes of
binary associations) are converted into property of classes. To
simplify data mining all associations are bidirectional, i.e.
there are properties both ends of the relevant classes whose
type corresponds to the opposite end of the class association.
All of the above arguments are presented graphically in Fig. 3.

Figure 3. Unified Model for Testing Object-Oriented
Application ~ Development Tools, implemented in
SharpArchitect RAD Studio in C#

The interfaces language C# are used, so it is impossible to
mark abstract classes with italics. Bidirectional associations
are shown with corresponding arrows connecting classes. It is
used the following approach to implement association. From
the "one" side it is declared a property, which have a list type
(C# type IList<>) containing the elements, which have a class
type locating on the side "to-many". It is declared property in
the class of the "to-many" side, whose type is a class locating
on the side "one". Association of the "many-to-many"
(without attributes) can be represented by two lists declared in
opposite classes. The SharpArchitect RAD Studio
development environment has a number of base classes that
implement the most common functionality. For example, the
class IBaseRunTimeDomainClass is the root of all domain
classes. To implement the tree structure it is enough inheriting
from IBaseRunTimeTreeNodeDomainClass. At the time of
code generation it is automatically generating of additional

45561

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 24 (2015) pp 45559-45566
© Research India Publications. http://www.ripublication.com

attributes Nodes and Owner allowing one to save a reference
to the parent and subnodes respectively. It is a way to realize
recursive association. Syntax construction "enum™ is used for
mmplementation of the enumerations and sets.

After applying of the classical ORM-patterns relational
database schema of the unified model is obtained. Fig. 4 is
depicts the result.

g i From e
i 1 1 [r——
—] | I_J
| [T
o — = - 1
] wen . | T
J Fram e | p—
EE [! —a i
i] i i =
W |
Figure 4. A relational Database Schema of the
Implementation of the Unified Model Testing in

SharpArchitect RAD Studio

Figure requires the explanation. one single table Post is
created for all posts presented by three classes Post,
ExperiencePost and ScientificPost. Each table has all
attributes of classes. Additionally, there is a column in the
table OID, representing an object identifier (primary key in a
relational model).

ObjectType column contains the identifier of the class whose
objects are stored in the form of table rows. This value is used
by the application to create a class of object-oriented
programming language and to load the attribute values.
Implementing of Class Table Inheritance pattern causes
creation of the table Contragent for abstract class and table
Worker, Company, Employee, Manager for the concrete
classes. Instances of classes are physically stored in multiple
database tables. A copy of the Manager class is stored in all
tables.

Implementation of the Concrete Table Inheritance pattern is
applicable for classes Address, CompanyAddress and
EmployeeAddress. It cause a creation of two tables:
CompanyAddress and EmployeeAddress, because
CompanyAddress class is abstract. All abstract class attributes
is physically stored in tables of specific classes. Association
Position have a separate table as well as for the binary
association linking the Employee and EmployeeAddress
classes. The table EmployeeEmployeeAddress containing
foreign keys is created for the binary association.

Note that separate table is not created for the Telephone-Kind
enumeration. It is used an approach allowing enumeration
values representations as a bit mask and its storing in the form
of an integer value, where appropriate attributes are used. So
the table has a column Telephone TelephoneKind, SQL-type
is Integer.

After analyzing of the above text we can argue that
implementation created in a development environment
SharpArchitect RAD Studio (Fig. 4) is fully consistent with
the unified model for testing object-oriented application
development tools.

Use of the object-attribute approach to realize the static
object-oriented models*

Basic elements of the object-attribute approach

The relational databases (DB) have been used most widely
during the last 30 years [3]. Despite this fact, the relational
model ceased to satisfy the current requirements, because its
restricted abilities to describe the ontology do not allow one to
use this model in artificial intellectual systems and the scaling
difficulties make the realization of such DBMS in parallel and
distributed computational systems more complicated.
Numerous ways out of this DBMS crisis [4] were proposed,
namely, the object-oriented (OO) approach to DB, the tree-
structured DB, the network model, and NoSQL motion
(Amazon, Google). But none of them, except for the OO-
model which also has numerous drawbacks [5], could
sufficiently seriously compete with the relational model.

In this section, we present a new methodic for constructing
DB which is based on the object-attribute (OA) approach to
organization of the computational process and data structures
[6-7]. The OA-DBs bhelong to the class of network (graph)
DBs, i.e., DB is a graph (or an OA-graph) whose vertices are
descriptions of objects and semantic connections (relations)
and whose arcs are the associations connecting them. To
illustrate such a method for the DB organization, we show
how to realize the main types of connections between the
essences of the OO- and relational DB models and consider an
example of a small DB realization on the basis.

This analysis is based on the UML-diagram of classes [8]
which is used to define the main essences of the OO-model:
class, class attribute, class operation, as well as the following
types of relationship: dependence, generalization, multiple
inheritance, association, aggregation, composition. The
notions of relation multiplicity and role should also be
remembered (Fig. 5). Now we describe the realization
methods for each type of relations in the OA-DB. We use an
OA-language, i.e., a special language for describing the OA-
graphs [6-7].

We first describe the class in the OA-DB. So the class (the
pattern used to create an object) is a set of fields and methods.
In an OA-system, an object is represented as an information
capsule (IC); each field of the object is associated with an
information pair (IP) contained in this IC. The names of
attributes (the attribute index is associated with a unique
mnemonics) are the IP attributes, and the class field value is
placed in the IP load. The methods in an object are references
to a subprogram. The program in an OA-system is a sequence
of IP (millicommands). This sequence can be transferred to
functional units (FU) which perform computations, data
transformations, and their input and output under the control
of a millicommands flow.

Let us describe the class in Fig. 6(a) in an OA-language:
Man{Sex=M DateOfBirth=07.02.1970
FamilyName=Ilvanovlvan OutAge=YieldAgeProg
SaveCurrentlncome=SaveCurrentincomeProg
OutCommonlncome=0OutCommonincomeProg}, where the

! Support from the Basic Research Program of the National
Research University Higher School of Economics is gratefully
acknowledged

45562

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 24 (2015) pp 45559-45566
© Research India Publications. http://www.ripublication.com

loads of the last three IP contain pointers to the IC of the
subprograms.

The generalization relationship (subclasses) are implemented
by adding an IP to the IC of the object description. The
attribute of the added IP identifies a subclass, and the load
contains a pointer of the OA-graph describing the subclass.
For example, the association in Fig. 6(b) is defined as follows:
ManFromUniversity{Student=StudentPointer{...}
Teacher=TeacherPointer{...}}, where the dots are replaced
by the description of the object corresponding to the Student
and Teacher subclasses; Student and Teacher are mnemonics
of the attributes. The StudentPointer and TeacherPointer
mnemonics are pointers to the capsules containing the
respective descriptions of the student and teacher.

The inheritance in the OA-DB is implemented by copying the
OA-graph of the parent-object description and adding one or
several IP describing the new fields and methods to the root
IC. For example, Fig. 6(b) presents the multiple inheritance as
follows: the Student-Teacher class inherits the properties of
the Student and Teacher classes. In an OA-language, this
inheritance is described as follows: StudentTeacher
{StudentPointer, TeacherPointer}. If the IC description in an
OA-language (but not the IP load) contains the mnemonics of
the IC pointer, then this IC (and the entire OA-graph where it
is contained) is copied into the formed IC. Thus, all IPs from
the Student and Teacher capsules will be copied into the IC,
and they will be named StudentTeacher.

0.* 0.*
Human
sex Universit

DateOfBirth
SecondNameFirstName
AgeOut()
SaveCurrentincome()
QutSummarylncome()

: |‘
T
H “

c) Association

0.*
a) Fields and methods [Lectureroom K> 1
1 I
I I

I
1 d) Aggregation
AN

1 L
| Student | | Professor | | University
|] I] [| I
L | L | [] |

A A

e) Composition

UniversityHuman
I

b) Inheriting

Figure 5 — Basic types of connections in the OO-model of DB

The association relationship are determined by an IP added to
the IC of the object description as follows: the IP load
contains a pointer to the IC with the description of the
associated object, and the attribute contains the role
mnemonics. In the OA-approach, the relationship is uniquely
determined by two IPs referring to the ICs of the object
descriptions. For example, between objects of the class Man
and the class University (Fig. 6(c)), there is a relationship
where the Man plays the role of a Worker and the University
plays the role of an Employer. In an OA-language, the
University is described as follows: Man{
Student=University Worker=University... } University{ ...
Employer=Man Teacher=Man
Man={Student=University Worker=University}. A man can
work at several universities, and a university can employ

several men (a relationship of n-th multiplicity). Then the OA-
graph looks as follows: Manl{... Worker=Universityl
Worker=University2 ...} Man2{... Worker=Universityl
Worker=University2 ...} Universityl{... Employs=Manl
Employs=Man2 ...} University2{... Employs = Manl
Employs =Man2 ...}. One can see that in this case, the role
name acts as the attribute name.

The composition (an integral part of an object) can, for
example, be implemented as follows: to compose a list of
attributes whose loads contain the object pointer inseparable
from its parent. In this case, if IPs with such attributes are
contained in the deleted IC, then the ICs whose pointers are
stored in the load are also deleted.

Complex relationship and relationship-classes can be
implemented by using IC. For example, it is required to
describe the «action» relationship (such a problem arises
when a DB is composed starting from meaning of a natural
language text) which contains sufficiently many objects:
subject (who acts), object (to whom the action is directed),
mediator (for example, a tool used to realize the action), etc.
Such a relation can look as follows: Action{Subject={...}
Object={...} Moderator={...} Addressee={...}
CourseOfAction={...}...}.

We note that the OA-approach to the DB construction
implements all types of connection which can exist in the OO-
and relational approaches, and therefore, it can be used to
realize applications in any application area.

Realization of a unified testing model by an object-attribute
approach

To illustrate the proposed principle, we realize the DB
structure of a unified testing model, which is described by
using the UML-notation (class diagrams) represented in
Section 1. In an OA-language (where // are the comment
delimiters), Fig. 6 presents a description of DB whose model
is Unified Testing Model. The OA-language complier is
contained in the OA-programming and simulation
environment, which allows one to simulate the computational
process in the OA-system.

NewFU={Mnemo="DB" FUType=FUGraph}
// Initialization of atrributes
Department Post

ExperiencePost MinExperMonth
ScientificRank AcademicRank
Position Rate Salary Date

Value Worker DateOfBirth
Company Contragent Employee

EID Manager Include Telephone
Number TelephoneKind

Home#1 Personal#2 Work#3

Name Adress Country

City Street Building

Office CompanyAdress
EmployeeAdress IsRegistred

DB.Set=

>Positionl{ // Positionl - IC mark
Post={Name="Full professor"
ExperiencePost={MinExperMonth=12}}

45563

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 24 (2015) pp 45559-45566
© Research India Publications. http://www.ripublication.com

Department={

Name="Computer science"}
Department={

Name="Applied mathematics"}
Salary={Date="1.10.2014"
Value=4000}

Worker={
DateOfBirth="13.04.1968"
Telephone={Number=1234567
TelephoneKind=Personal}
Telephone={Number=7654321
TelephoneKind=Home}

}

Employee=Employeel{// Mark
EID=12876 Manager=null
EmployeeAdress=
{IsRegistred=true
Adress={Country="USA"
City="New York" Street="Street 20"
Building=10 Office=1}}
Company=

>{Name="IBM"
Telephone={Number=1111111
TelephoneKind=Personal}
Telephone={Number=2222222
TelephoneKind=Work}
CompanyAdress={Country="USA"

City="New York" Street="Street 0"
Building=10 Office=1}
11}

>Position2{..// Second DB record

Figure 6: Listing of the OA-DB whose Unified Testing
model.

An OA-program of OA-DB initialization is shown in the
listing in Fig. 6. Let us consider it in more detail. A functional
unit (FU) processing the OA-graph is constructed in the first
line of the OA-program. Further, the attribute and constant
mnemonics are initialized (the symbol «#» denotes
initialization of a constant, and an isolated mnemonics denotes
the attribute initialization). The millicommand (an IP
addressed to the FU) with mnemonics «DB.Set» determines
the operation «put the pointer to the OA-graph» for the FU
«DB», and the description of the OA-graph in an OA-
language follows the symbol «=». The symbol «>» denotes
the beginning of a new record in the list (the list is organized
from the essences «Position», and this list «sews» all records
together in a unified DB). After the initialization by the FU
«DB», one can modify the OA-graph and seek the information
in it. The OA-graph created in the OA-programming and
simulation invironment is illustrated in Fig. 8 (a special
program component was realized to derive an OA-graph in the
OA-programming and simulation environment). The indices
of the information capsules (IC) are given in curly brackets in
Fig. 7, i.e., since the OA-graph is a graph of any arbitrary
topology but the screen shows only its frame, the indices
allows one to trace all connections between the vertices which
do not enter the frame; in this case, after the symbol «=»
(notation of the IP load), the index of the IP referring to the

load is placed (for example, «ID_14»).

5 0bj
& Employee {0} =-Post {21}
EID = 12876 {14} Name = assodate professor {22}
Manager = nil t
E-EmployeeAdress
IsRegistred = True {15}
) Adress & Rate (21}
Name = Computer science {6} Country =USA {16} Rate = 3000 {25}
() Department {0} City = New York - Salary
Name = Applied mathematics {7} Street = Street 20 Date = 10.09.2014 {26}
E)-Rate {0} Buiding = 10
Rate = 5000 {8} Office = 1
- Salary (=) Company
Date = 1.10.2014 {9} Name = 123 {17}

&-Obj
E)-Post {0}
Name = Full professor {4}
- ExperiencePost
MinExperMonth = 12 {5}
& Department {0}

ost
MinExperMonth = 12 {23}
5 Department {21

Value = 2000
& Worker {21}
DateOfBirth = 21.08.1977 {27}
£} Telephone
Number = 1212121 {28}

Value = 4000 () Telephone Telephonekind = 2

- Salary Number = 1111111 {18} B Employee {21}
Date = 1.10.2014 {10} Telephonekind = 2 EID = 13004 {29}
Value = 4000 £ Telephone £ Manager

) Worker {0} Number = 2222222 {1} Employee = >>1D_14
DateOfBirth = 13.04.1968 {11} Telephonelic =3 Qi 0

= Telephone B CompanyAdress ity
Number = 1234567 {12} Country =USA {20} Name = Intel {31}
Telephonekind = 2 City = New York = Indude

(= Telephone Street = Street 10 Company = >>ID_17
Number = 7654321 {13} Buiding = 10 & Telephone
Telephonekind = 1 Office = 1 - CompanyAdress

Figure 7: DB representation as an OA-graph

The OA-approach ensures the DB key properties such as
description of any ontology, computational scalability, DB
integrity, ergonomicity (DB queries are entered with the
natural language) [9], and a high speed of search in DB (a
special search technique based on the use of the IC indexation
was developed for the OA-DB).

The OA-DBs bhelong to the class of network (graph) DB,
where the ontology description is a set of vertices denoting
objects and arcs which determine relationship between the
objects. The network DB has no restrictions on the topology,
and therefore it can potentially describe any ontology. This is
its qualitative distinction from the relational and OO-models:
in the first case, it is practically impossible to describe the
ontology with a large number of connection types (it is
necessary to create its own relation (table) for each type,
which is very cumbersome), and in the second case, there is a
restriction on the topology (a «tree»-type graph).

The OA-DB scalability is attained because the computations
are controlled by using the dataflow [10]. The dataflow allows
one to «untie» the data addressing from the computer common
memory. Namely, the data are accessed through functional
units (FU) which are virtual, i.e.,, they are not rigidly
depended with the hardware of computational nodes. The set
of FUs forms the so-called OA-image, i.e, a virtual
computational system. Then the OA-image is «imposed» on a
specific computational system (CS) by distributing the FUs
over the CS computational nodes and by adjusting the FUs
themselves and the routers responsible for the transfer of IPs
between the computational nodes. To change the CS
configuration, it is only necessary to redistribute the FUs
between the computational nodes and to introduce new
adjustments of the routers [6].

The OA-DB wholeness is ensured by the format and technic
of the OA-graph processing. So the OA-DB modification
consists in addition or removal of several IP from the IC
composing the OA-graph. We assume (Fig. 8) that there is an
IP with attribute «1» in the IC, and then we add an IP with
attribute «2» to the same IC. Now we can seek the data
according to either attribute «1» or attribute «2»
independently, i.e., if we seek the data with attribute «1», then
we ignore attribute «2», and conversely. Thus, we can
distinguish several subgraphs by analyzing the IP attributes

45564

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 24 (2015) pp 45559-45566
© Research India Publications. http://www.ripublication.com

only in one OA-graph... Namely, we can change the DB
structure without fear for its wholeness, and therefore we need
not perform a very laborious refactoring, which cannot
practically be avoided in any serious modification of big OO-

@868)

Figure 8: Assurance of OA-DB integrity in its modification

The ergonomicity is ensured because the queries to the OA-
DB are in the natural language, i.e., an query is transformed in
its OA-graph, and then it is determined whether the query is a
subgraph of the OA-graph of DB. The technic of
transformation of a natural language text into an OA-graph is
discussed in [9]. The answers to the queries can also be given
in the natural language.

Similarly to the OO-approach, the OA-DB gives wide
opportunities for the data abstraction. For example, an OA-
graph can be constructed according to the «tree» topology. In
this case, an IC of a higher level encapsulates the information
structure of the lower level (the IC contains the basic
characteristics of the lower level). If the OA-graph is of any
arbitrary topology, then we can distinguish subgraphs in it (for
example, according to the principle of description of any
object, set, or phenomenon) and include the IC describing the
main characteristics of such subgraphs into the OA-graph.
Now, if necessary, the user can operate with this IC without
referring to a detailed description of the object.

Because of IC indexation, the search of information in OA-
DB is sufficiently fast. As previously noted, the search in the
OA-DB is the search of a subgraph (subgraphs) in the OA-
graph of DB which coincides with the enquiry-graph [9]. The
search process becomes simpler because the OA-graph
vertices are, so to say, marked by the IP contained in the IC.
Therefore, we can propose the following methodic for seeking
subgraphs, which consists of several stages. The first step is to
index all vertices of the OA-graph of DB and the enquiry. The
second step is to compose the following two lists of the IP
attributes: the first list of attributes encountered in the OA-
graph of DB and the second list of attributes of the enquiry
OA-graph. If some enquiry attributes are not contained in DB,
then the search is complete and the user receives the negative
result message. Otherwise, all IC containing attributes from
the enquiry-graph are distinguished in the DB graph. The third
step is to group the IP obtained in the OA-graph according to
capsules: if the obtained IP have the same IC index (i.e., if
they belong to the same capsule), then these IP are united in a
group. The fourth step is to match the groups: if a group does
not coincide with any other group in the enquiry-graph, then it
is removed. As a result, if all groups are removed or the

number of groups becomes less than that in the enquiry-graph,
then the search is complete with a negative result. The fifth
step is to match the remaining groups with the enquiry-graph
IC. The search of the required attributes can be enhanced by
using the hasting, which significantly increases the speed of
computation. Such an algorithm has time complexity of the
order of N*M, where N is the number of IP in DB and M is the
number of IP in the enquiry-graph.

It should be noted that, theoretically, the OA-DBMS has
sufficiently good perspectives, because it preserves many
positive properties of DBMS, but it also has the following
drawbacks: first, the main memory consumption is excessive
(in OA-DB, two IPs are distinguished for each connection,
because the OA-graph arcs must be bidirectional); second,
because the addition of new data structures does not violate
the old data structures, OA-DB may contain unnecessary data
structures which are already forgotten by the designers but
which occupy the memory and hinder the search of the
required information.

Conclusions

The article presents two modern approach to the
implementation of the static models, designed in the
implementation of object-oriented applications. As an
example, for a unified model represented the language class
diagram UML. The described solutions are the result of years
of work of the authors and tested in applications, many users
actually used. The further development of these approaches
the authors see the implementation of the principles of
formation of the graphical user interface. Also proposed to
develop formal methods of description of the presented
solutions.

References

[1] Oleynik P.P. The Elements of Development
Environment for Information Systems Based on
Metamodel of Object System // Business Informatics.
2013. Ne4(26). — pp. 69-76. (In Russian),
http://bijournal.hse.ru/data/2014/01/16/1326593606/
1B1%204(26)%202013.pdf

[2] Oleynik P.P., Computer program "The Unified
Environment of Rapid Development of Corporate
Information Systems SharpArchitect RAD Studio”,
the certificate on the state registration No
2013618212/ 04 september 2013. (In Russian).

[3] C.J. Date Introduction to Database Systems (8th
edition) 2003

[4] Why Programmers Don’t Like Relational Databases

2007. URL:
http://typicalprogrammer.com/programmers-vs-
rdbms/

[5] Gabriel, R. Objects Have Failed: Notes for a Debate.
(retrieved 17 May 2009).
http://mww.dreamsongs.com/Files/ObjectsHaveFaile
d.pdf

[6] S.M. Salibekyan, P.B. Panfilow Object-attribute

45565

http://bijournal.hse.ru/data/2014/01/16/1326593606/1BI%204(26)%202013.pdf
http://bijournal.hse.ru/data/2014/01/16/1326593606/1BI%204(26)%202013.pdf
http://www.dreamsongs.com/Files/ObjectsHaveFailed.pdf
http://www.dreamsongs.com/Files/ObjectsHaveFailed.pdf

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 24 (2015) pp 45559-45566
© Research India Publications. http://www.ripublication.com

architecture for design and modeling of distribute
automation system. // Automation and remote
control. Volume 73, 2012, Number 3, 587-595, DOI:
10.1134/S0005117912030174

[7] Salibekyan S. M., Panfilov P. B. Dataflow
Computing and Its Impact on Automation
Applications // Procedia Engineering. 2014. No. 69.

P. 1286-1295. URL:
http://www.hse.ru/pubs/share/direct/document/12633
8249

[8] Martin Fowler, Kendall Scott, (2003). UML
Distilled: A Brief Guide to the Standard Object
Modeling Language, Third Edition, Addison-Wesley.

[9] Salibekyan S.M., Khal'kina S.B., Tinovitskiy K.D.
Object-attribute Approach for Natural Language
Processing // Object Systems — 2014: Proceedings of
the Eighth International Theoretical and Practical
Conference (Rostov-on-Don, 10-12 May, 2014) /
Edited by Pavel P. Oleynik. — Russia, Rostov-onDon:
SI (b) SRSPU (NPI), 2014 pp. 80-86(In
Russian), http://objectsystems.ru/files/Object_System
s 2014 _Proceedings.pdf

[10] Jurij Silk, Borut Robic and Theo Ungerer
«Asynchrony in parallel computing: From dataflow
to multithreading» Institut Jozef Stefan, Technical
Report CDS-97-4, September 1997.

[11] Pavel P. Oleynik, Nikolay V. Kuznetsov, Edward G.
Galiaskarov, Ksenia O. Kozlova. Domain-Driven
Design of Information System for Queuing System in
Terms of Unified Metamodel of Object System.
International Journal of Applied Engineering
Research, ISSN 0973-4562, Volume 10, Number 15
(2015), pp. 35229-35238.

[12] Pavel P. Oleynik, Nikolay V. Kuznetsov, Edward G.
Galiaskarov, Natalia E. Borodina. Model-Driven
Design and Implementation of Scientific Data
Management Information System. International
Journal of Applied Engineering Research, ISSN
0973-4562, Volume 10, Number 15 (2015), pp.
35239-35246.

45566

http://publications.hse.ru/view/126338254
http://publications.hse.ru/view/126338254
http://publications.hse.ru/view/126338254
http://publications.hse.ru/view/126338254
http://objectsystems.ru/files/Object_Systems_2014_Proceedings.pdf
http://objectsystems.ru/files/Object_Systems_2014_Proceedings.pdf
http://objectsystems.ru/files/Object_Systems_2014_Proceedings.pdf

