Real Flow Dynamic Queue(RFDQ) performance evaluation with real flows in MANET

Sourabh Singh Verma

CSE Department, FET, Mody University of Science and Technology, Lachmangarh, 332311, India.

Dr. R. B. Patel

CSE Dept., G. B. Pant Engineering College, Paudi Garhwal, Uttarakhand, India.

Dr. A. K. Dahiya

CSE Department, FET, Mody University of Science and Technology, Lachmangarh, 332311, India.

Abstract

Due to its wireless and multi-hop routing constraints Mobile Ad-hoc NETworks (MANET) has limited resources due to which providing QoS constraints is a challenge to any flow within network. In this paper on one side we have studied the performance of real flows in basic priority queue environment of AODV while on other side real flows performance are evaluated with AODV added with "Real Flow Dynamic Oueue (RFDO)[1]".

Our result shows that RFDQ performance is better than priority queue on different parameters. RFDQ can be a replacement for priority queue as it works better for real flows or high priority flows by evaluating priorities in better way.

I. Introduction

MANET's are temporary networks, consist of mobile nodes with limited resources like bandwidth, battery life etc. It is de-centralized collections of nodes so it does not rely on any fixed infrastructure[2][3](blackhole).RFDQ is already examined in[1] for flooding attacks on MANET[4].This paper will evaluate the performance of RFDQ on MANET, with one or more than one real-flows on the network. While Real flows needs better Quality of Service than best-effort traffic.For this purpose AODV[5] is used for the evaluation purpose under two kinds of queue one is RFDQ while other is priority queue. A short description of RFDQ is given section 1.1

Various buffer management schemes are available to manage traffic and to offer better service to real-time data flows. We discuss here some of them like EERV[6] does reservation on end to end basis for any required flow. IntServ [7] and Differv [8] can be identified as fundamental QoS provisioning model but unfortunately both of them are not appropriate for MANET .IntServ is not scalabile while DiffServ classified traffic using boundary nodes, while as per nature of MANET their cannot be any such nodes.

Urgency-specific Packet Scheduling And Routing

Algorithms[9] will transmit urgent data without any delay. Real traffic Queue model such as [10], uses application types and Time To Live(TTL) to manage priority, For real Packets Scheduling in MANET Priority embedding is assigned to multi-class packets[11].

In our paper we had presented

1.1 Introduction to RFDQ

RFDQ procedure is referred from [1] and can be summarize as follows.

RFDQ provides high priority to data packets which belongs to real flows set(RF). The main idea is if queue is filled than real flow packet is dropped only in rarest case. Here it is considered that transport mark flow id with unique code like "999" using it any node's buffer can understand packet type.(using αP_i)

Terms used in RFDO are as follows:

 $\alpha P_{i:\, Header\,\, of\, packets}$

P_i: Packet receive by RFDQ

¬RP_{i:} Pi is not routing packet but data packet

FP_{i:} Flow id of packet received

aMax: Maximum size of queue

The RFDQ process can be explained as:

- a. Whenever any packet that belongs to RF set is received, it is placed at the top i.e *bufferHead(Pi)*
- b. After inserting it at top RFDQ checks if queue size>max limit,if its true then it lookup the buffer for a pkt does not belong to RF set. If no such pkt is available then it will drop the last pkt else step 'c' is executed

 $If(buffer >= \alpha Max)$ {

bufferHead(Pi): set packet to the head

For each buffer(k) where k = 0 to β length

If $(Pk \in RF \text{ set }) \{ Flag=1; \text{ quit loop} \} End \text{ for }$

```
If(flag==0){:all packet in buffer are \in RF //drop the last packet in queue Drop: buffer(\betalength) }
```

a. It will take care to drop the non-real pkt which are recently arrived, by look-up queue in reverse order and droping the first pkt that does not belong to RF set. The process will be terminated, upon receiving next pkt go to step (a)

```
For each buffer(l) where l = \beta length to 1 P_c = buffer(l)
If P_c \notin RF set P_c \in RF i.e is not a pkt from real flow
```

2 Performance Comparisons of RFDQ with priority queue under Real Flows

For evaluation we purpose various numbers of real flows $\{1,3,5\}$ are used

Performance Consideration Bases:

- a. Packet Delivery Fraction (PDF): PDF in RFDQ is Vs. priority queue
- b. Average Delay: average Delay of Relay packets in RFDQ is compared with delay in priority queue
- c. Number of Packet Drop: Real packet dropped using RFDQ is compared with priority queue environment

2.1 Simulation setup:

Table 1. Simulation setup for various evaluations (NS2 is used for simulation environment.)

Simulation Parameter	Value	
Simulation time	100s	
No. of nodes	50	
Area	500x500 m	
Traffic	CBR	
CBR Rate	0.12	
Motion	Random	
Routing protocol	AODV	
No. of Real Flows	1,3,5	
Transport Layer	UDP	
Node max. speed	10 m/s	
Max. Connection	40	
Pause time	2	

2.2 Simulation Results

a) Packet Delivery Fraction (PDF): PDF in RFDQ is Vs. priority queue

Fig 1 shows how RFDQ is better from priority queue, packet delivery ratio is better in RFDQ in one, two or three numbers of real flow environents.

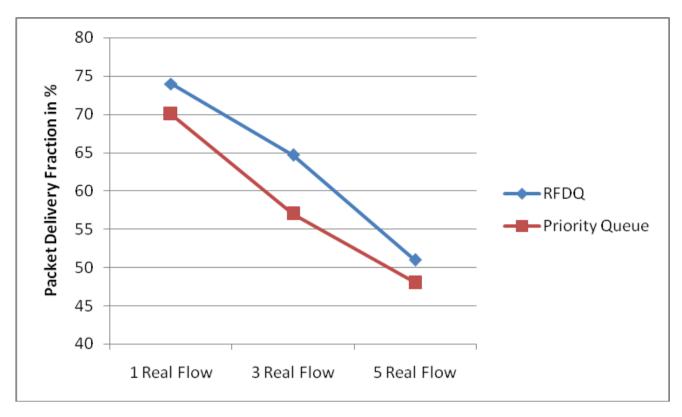
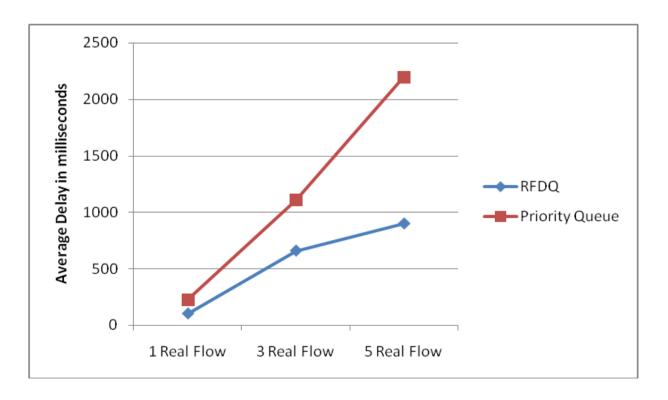



Fig.1: PDF in RFDQ is Vs. priority queue

a) Average Delay: average Delay of Relay packets in RFDQ is compared with delay in priority queue Fig.2 show RFDQ takes less time to deliver real packet from source to destination while priority queue takes more time this is because RFDQ gave high priority to real packets

Fig.2 Average delay of Real packets in RFDQ Vs. priority queue

b) Number of Packet Drop: Real packet dropped using RFDQ is compared with priority queue environment AS RFDQ takes care to drop the real packet in only very rarest case, that's why packet drop in RFDQ is much lesser in RFDQ comparing to priority queue.

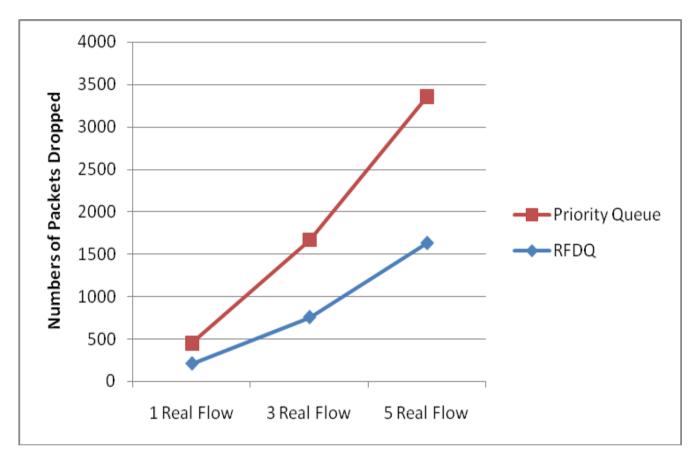


Fig3. Real packet dropped using RFDQ Vs. priority queue environment

Conclusion

We have evaluated RFDQ with different numbers of real flows in network, as RFDQ keeps high priority for real time packets and also it rarely drop the real packet even the queue is maximum filled, these two property makes it better then priority queue as evaluated for packet delivery fraction, average delay and packet drop. In future we will implement RFDQ with other routing protocol like DSR etc.

References

 Sourabh Singh VErma, R.B.Patel, S. k. Lenka(in press)," Analyzing varying rate flood attack on real flow in MANET and solution proposal "Real Flow Dynamic Queue (RFDQ)" International Journal of Information and Communication Technology, Inderscience, vol.7,2015

- 2. S. Corson and J. Macker, "Mobile Ad Hoc Networking (MANET): Routing Protocol Performance Issues and Evaluation Considerations," RFC 2501, Jan. 1999.
- 3. Basangi, S., Conti, M., Giordano, S. and Stojmenovic, I. 2004. Mobile ad hoc networking. IEEE Press. Wiley-Interscience. P-282.
- 4. P. Yi, Z. Dai, Y. Zhong, S. Zhang, "Resisting Flooding Attacks in Ad Hoc Networks", Proceedings of the International Conference on Information Technology: Coding and Computing (ITCC'05), April 2005, pp. 657-662.
- 5. C. Perkins and E.M. Royer(1998), 'ad hoc on demand distance vector (AODV) routing', (Internet draft).
- 6. Ghalem Boudour ,Zoubir Mammeri ,CédricTeyssié (2010) 'End-to-end bandwidth allocation scheme for

- voice traffic support over MANETs', Springer science+Business Media, LLC.
- 7. R. Braden, D. Clark, and S. Shenker(1994). 'Integrated services in the Internet architecture:an overview.' Technical Report 1633.
- 8. D. Black(2000). 'Differentiated services', RFC2475.
- 9. Hyunchul Joo, Ki Jin An, and Hwangjun Song(2011). Urgency-Based Packet Scheduling And Routing Algorithms For Video Transmission Over Manets, CCWMC.
- Sotirios-Angelos Lenas, Stylianos Dimitriou, FaniTsapeli, Vassilis Tsaoussidis(2011). 'Queue Management Architecture for Delay Tolerant Networking', Wired/Wireless InternetCommunications, Volume 6649, 2011, pp. 470-482.
- 11. Youssef DEHBI, Noufissa MIKOU(2008). 'Priority Assignment for Multimedia Packets Scheduling in MANET', SITIS '08, IEEE International Conference, Bali