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ABSTRACT 
In our work, we use a Expert temporal conditional random field 
based(ETMRF) on  to model the spatio-temporal structure of 
present an anticipatory temporal conditional random field 
(ETCRF), where we model the past with the CRF discussed but 
augmented with the trajectories and with nodes/ edges 
representing the object affordances, sub-activities, and trajectories 
in the future. Since there are many possible futures, each ETCRF 
represents only one of them. In order to find the most likely ones, 
we consider each ETCRF as a particle and propagate them over 
time, using the set of particles to represent the distribution over 
the future possible activities. One challenge is to use the 
discriminative power of the CRFs (where the observations are 
continuous and labels are discrete) for also producing the 
generative anticipation—labels over sub-activities, affordances, 
and spatial trajectories. We then show that for new ETCRP 
training set improves an accuracy  level of 89% with reduced time 
interval in seconds respectively.  
 
 
1. INTRODUCTION 
There has been a significant amount of work in detecting human 
activities from 2D RGB videos  from inertial/ location sensors, 
and more recently from RGB-D videos. The primary approach in 
these works is to first convert the input sensor stream into a 
spatio-temporal representation, and then to infer labels over the 
inputs. These works use different types of information, such as 
human pose, interaction with objects, object shape and 
appearance features. However, these methods can be used only to 
predict the labeling of an observed activity and cannot be used to 
anticipate what can happen next and how. 
Utilizing computers had always begged the question of 
interfacing. The methods by which human has been interacting 
with computers has travelled a long way. The journey still 
continues and new designs of technologies and systems appear 
more and more every day and the research in this area has been 
growing very fast in the last few decades. 
However, in the area of HCI, where a typical requirement is to 
have prompt status of the speakers in the scene, on-line 
processing is necessary (implying in access to only current and 
past information). Considering the real-time challenge and also 
the aforementioned common adversities of a realistic video 
scenario, it is commonly beneficial to use information that is 
complementary to the video modality.  
 

2. RELATED WORKS 
A number of algorithms and designs have been proposed in 
literature we shall discuss few of them here according to 
Human computer Interaction systems. 
In recent years, much effort has been made to detect human 
activities from still images as well as videos . Many methods 
have been proposed to model the temporal structure of low-
level features extracted from video, e.g., histograms of 
spatiotemporal filter responses[1]. This includes both 
discriminative and generative models. Another approach is to 
represent activities as collections of semantic attributes. 
These methods use an intermediate level of representation 
such as the presence or absence of semantic concepts (e.g., 
scene types, actions, objects, etc.) in order to generalize to 
unseen instances. There are also a few recent works which 
address the task of early recognition . We refer the reader to 
for a comprehensive survey of the field and discuss works 
that are closely related to ours[2-3]. 
Temporal segmentation[4] In activity detection from 2D 
videos, much previous work has focussed on short video 
clips, assuming that temporal segmentation has been done 
apriori. It has been observed that temporal boundaries of 
actions are not precisely defined in practice, whether they are 
obtained automatically using weak-supervision [5] or by 
hand [6]. These works represent the action clips by an 
orderless bag-of-features and try to improve classification of 
the action clips by refining their temporal boundaries. 
However, they only model the temporal extent of actions, not 
their temporal structure. Some recent effort in recognizing 
actions from longer video sequences take an event detection 
approach [6-9], where they evaluate a classifier function at 
many different segments of the video and then predict event 
presence. Similarly, change point detection methods [10-11], 
perform a sequence of change-point analysis in a sliding 
window along the time dimension. However, these methods 
only detect local boundaries and tend to over-segment 
complex actions which often contain many changes in local 
motion statistics. 
Koppula, Gupta and Saxena (KGS, [12]) proposed a model to 
jointly predict sub-activities and object affordances by taking 
into account spatio-temporal interactions between human 
poses and objects over longer time periods. However, KGS 
found that not knowing the graph structure (i.e., the correct 
temporal segmentation) decreased the performance 
significantly. This is because the boundary between two sub-
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activities is often not very clear. Previous work [13]–[15] only 
considers interaction classes without close physical contact (e.g., 
handshaking, talking, and queueing) and uses a detector or tracker 
to extract each interacting person. However, body part trackers 
and human detectors perform poorly when there are diverse 
categories of human motion that contain significant pose 
variations, limiting the performance of their interaction 
classifiers. Moreover, there are large variations in videos, 
including changes in subject appearance, scale, viewpoint, 
moving people and objects in the background, etc. These 
variations make the motion patterns of human interactions much 
noisier and thus a robust interaction recognition algorithm is 
required. 
Such class of approaches have the advantage of not requiring a 
pre-trained model for the Video task, making the algorithm less 
dependent on the characteristics of the external data, and more 
robust to different acoustic scenarios. However, depending on the 
nature of the system, bottom-up approaches may be 
impracticable. This is mainly the case of real-time interfaces, 
which mandatorily require on-line processing (that is, to solve 
“who is speaking now?” without the knowledge of future data). 
When dealing with on-line SD, two important extra constraints 
must be considered: short-time analysis of the input streams, and 
no access to the upcoming data. The first is necessary so that a 
low-latency system is presented to the users, and the later is a 
natural limitation of any real-time system.  
In [18], Noulas and Krose developed a multimodal system for 
HCI purposes. Potential speakers are found using a face detector, 
and then their audio-visual behavior is modeled as states of a 
dynamic Bayesian network. For the observations, Scale-invariant 
feature transform (SIFT) is applied to the facial features extracted 
from the images and the MFCC features are extracted from the 
audio. The models of each speaker are updated through 
hierarchical model selection [19] as more data arrive. The authors 
claim satisfactory results, but the on-line processing is still slower 
than real-time and it does not deal with overlapping speech. 
Furthermore, experiments were limited to two short test scenarios. 
 
 
3. PROPOSED METHODOLOGY OVERVIEW 
Our goal is to anticipate what a human will do next given the 
current observation of his pose and the surrounding environment. 
These observations are from RGB-D videos 
recorded with a Kinect sensor. From these videos, we obtain the 
human pose using the Openni’s skeleton tracker and extract the 
tracked object point clouds using SIFT feature 
matching Algorithm. In our work, we infer the object affordances 
based on its usage in the activity and do not require the object 
category labels. We discuss the effect of knowing the object 
categories on the anticipation performance. Since activities 
happen over a long time horizon, with each activity being 
composed of sub-activities involving different number of objects. 
We model the activity using a spatio-temporal graph (a CRF), as 
shown in Fig. 1. The extracted human pose and objects form the 
nodes in this graph, and the edges between them represent their 
interactions are described based on our proposed algorithm. 
Anticipated temporal segments are generated based on the 
available object affordances and the current configuration of the 
3D scene. For example, if a person has picked up a coffee mug, 
one possible outcome could be drinking from it. Therefore, for 

each object, we sample possible locations at the end of the 
anticipated sub-activity and several trajectories based on the 
selected affordance. The temporal segmentation  determines 
the structure of HCI. It is quite challenging to estimate this 
structure because of two reasons. First, an activity comprises 
several sub-activities of varying temporal length, with an 
ambiguity in the temporal boundaries. Thus a single graph 
structure may not explain the activity well. Second, there can 
be several possible graph structures when we are reasoning 
about activities in the future (i.e., when the goal is to 
anticipate future activities, different from just detecting the 
past  activities). Multiple spatio-temporal graphs are possible 
in these cases and we need to reason over them in our 
learning algorithm . 
 

 
 
Fig. 1. An ETCRF that models the human poses H, object 
affordance labels O, object locations L, and sub-activity 
labels A, over past time ‘t’, and future time ‘d’. Two 
temporal segments are shown in this figure: kth for the recent 
past, and ðk þ 1Þth for the future. Each temporal segment has 
three objects for illustration in the figure. 
 
 
4 . MOVING OBJECT CLASSIFICATION USING 
ETCRF 
The concept of affordances as all “action possibilities” 
provided by the environment. Many recent works in 
computer vision and robotics reason about object 
functionality (e.g., sittable, drinkable, etc.) instead of object 
identities (e.g., chairs, mugs, etc.). These works take a 
recognition based approach to identify the semantic 
affordance labels . Few recent works explore the physical 
aspects of affordances based on human interactions . For 
example, detect the functionality of the object (specifically, 
chairs) with respect to possible human poses. In our work, we 
consider semantic affordances with spatio-temporal 
grounding which help in anticipating the future activities. 
Here, we describe how we model the spatio-temporal aspects 
of affordances. 
Given the observations of a scene containing a human and 
objects for time t in the past, and its goal is to anticipate 
future possibilities for time d. However, for the future d 
frames, we do not even know the structure of the graph—
there may be different number 
of objects being interacted with depending on which 
subactivity is performed in the  future. Our goal is to 
compute a distribution over the possible future states (i.e., 
sub-activity, human poses and object locations). We will do 
so by sampling several possible graph structures by 
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augmenting the graph in time, each of which we will call an  
Expet temporal  conditional random field (ETCRF). We first 
describe an ETCRF below. 
 
4.1 Modeling Past with a CRF 
MRFs/CRFs are a workhorse of machine learning and have been 
applied to a variety of applications. Recently, with RGB-D data 
they have been applied to scene labeling  and activity detection . 
Conditioned on a variety of features as input, the CRFs model 
rich contextual relations. Learning and inference is tractable in 
these methods when the label space is discrete and small. 
Following , we discretize time to the frames of the video4 and 
group the frames into temporal segments, where each temporal 
segment spans a set of contiguous frames corresponding to a 
single sub-activity. Therefore, at time ‘t’ we have observed ‘t’ 
frames of the activity that are grouped into ‘k’ temporal segments. 
For the past t frames, we know the nodes of the CRF but we do 
not know the temporal segmentation, i.e., which frame level 
nodes are connected to each of the segment level node. The node 
labels are also unknown. For a given temporal segmentation, we 
represent the graph until time t as: , where  
represents the edges, and Vt represents the nodes 

: human pose nodes Ht, object affordance 
nodes Ot, objectlocation nodes Lt, and sub-activity nodes. 
Our goal is to model the , where Ft H 
and Ft L are the observations for the human poses and object 
locations until time t. Using the independencies expressed as: 

 
The second term  models the 
distribution of true human pose and object locations (both are 
continuous trajectories) given the observations from the RGB-3D 
Kinect sensor. We model it using a Gaussian distribution. The 
first term   predicts the object affordances 
and the sub-activities that are discrete labels—this term further 
factorizes following the graph structure as: 
 

 
The energy function expressed as 

 

 
 
4.2.Modeling one Possible Future with an Augmented 
Temporal CRF (ETCRF) 
We defined the anticipatory temporal conditional random field as 

an augmented graph , where t is observed 
time and d is the future anticipation time. 

 represents the set of nodes 

in the past time t as well as in the future time  
represents the set of all edges in the graph see Fig. 1. The 
observations (not shown in the figure) are represented as set 

of features,   extracted from the t observed 
video frames. Note that we do not have observations for the 

future frames. In the augmented graph , we have: 
 

 
the weights using importance sampling as shown as 

 

 

Here,  is the Kronecker delta function which takes the 

value 1 if x equals y and 0 otherwise,  is the weight of the 

sample s after observing t frames, and   is the 
proposal distribution. 
 
 
5.Pseudocode for ETCRF 
 

Data: RGB-D video frames 
Result: Future sub-activity and affordance anticipations 

. 
 
            while new frame ft observed do 
      Generate frame features for frame ft  
        if temporal segmentation not given then 
          Find best segmentation using additive energy 

             
           Sample segmentations by split and merge moves 
end 

Compute segment features   

Compute , best labeling of the past-CRF ; 
for each object do  
Sample possible future affordance and sub-activity from the 

discrete distribution  
Sample future object location based on the affordance 

heatmaps ; 
Generate corresponding object trajectory and human poses 
for d future frames; 
Augment the past-CRF to generate an ETCRF particle 
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end 

for each particle  do 
for each augmented frame do  
Generate frame features  
end 
if temporal segmentation not given then 
Find best segmentation using additive energy 

 
Sample segmentations by split and merge moves 
end 

Compute segment features  
Compute ^y, best labeling for the ETCRF particle 

Compute weight  
 
end 
P= top-k scored particles in P; 
At= future sub-activity and affordance labels of top-3 

particles based on  
t =t + 1; 
end 

 
 
6. RESULTS AND DISCUSSION 
In this section we describe the detailed evaluation of our  
Proposed approach on both offline data as well as HCI 
experiments.  
6.1 Data SET 
We use CAD-120 dataset , which has 120 RGB-D videos of four 
different subjects performing 10 high-level activities. The data is 
annotated with object affordance and sub-activity labels and 
includes ground-truth object categories, tracked object bounding 
boxes and human skeletons. The set of high-level activities are: 
{making cereal, taking  medicine, stacking objects, unstacking 
objects, microwaving food, picking objects, cleaning objects, 
taking food, arranging objects, having a meal}, the set of sub-
activity labels are: {reaching, moving, pouring, eating, drinking, 
opening, placing, closing, scrubbing, null} and the set of 
affordance labels are: {reachable, movable, pourable, pourto, 
containable, drinkable, openable, placeable, closable, scrubbable, 
scrubber, stationary}. We use all sub-activity classes for 
prediction of observed frames but do not anticipate null sub-
activity. 
 
6.2 Detection Results 
For comparison, we follow the same train-test split described in 
KGS  and train our model on activities performed by three 
subjects and test on activities of a new subject. We report the 
results obtained by four-fold cross validation by averaging across 
the folds. We consider the overall micro accuracy (P/R), macro 
precision and macro recall of the detected sub-activities, 
affordances and overall activity. Micro accuracy is the percentage 
of correctly classified labels. Macro precision and recall are the 
averages of precision and recall respectively for all classes. 

Table 1 shows the performance of our proposed approach on 
object affordance, sub-activity and high-level activity 
labeling for past activities. Rows 3-5 show the performance 
for the case where ground-truth temporal segmentation is 
provided and rows 6-9 show the performance for the different 
methods when no temporal segmentation is provided. With 
known graph structure, the model using the the full set of 
features (row 4) outperforms the model which uses only the 
additive features (row 5): macro precision and recall improve 
by 5 and 10.1 percent for labeling object affordance 
respectively and by 3.7 and 6.2 percent  for labeling sub-
activities respectively.  
 
TABLE 1 
Results on CAD-120 Dataset for detection, Showing Average 
Micro Precision/Recall, and Average Macro Precision and 
Recall for Affordances, Sub-Activities and High-Level 
Activities 

 
 
This shows that additive features bring us close, but not 
quite, to the optimal graph structure. When the graph 
structure is not known, the performance drops significantly. 
Our graph sampling approach based on the additive energy 
function (row 6) achieves 83.6 and 71.5 percent micro 
precision for labeling object affordance and sub-activities, 
respectively. This is improved by sampling additional graph 
structures based on the Split and Merge moves (row 7).  

 
Graph 1. Plots showing how object affordance levels. 

 
Graph 1 shows how the macro F1 score and the anticipation 
metric changes with the anticipation time. The average 
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duration of a sub-activity in the -120 dataset is around 3.6 
seconds, therefore, an anticipation duration of 10 seconds is over 
two to three subactivities. With the increase in anticipation 
duration, performance of the others approach that of a random 
chance baseline, the performance of our ETCRF declines. It still 
outperforms other baselines for all anticipation times. 

 
 

Graph 2: Plots showing Accuracy levels. 
 
7. CONCLUSION 
In this work, we considered the problem of detecting the past 
human activities as well as anticipating the future using object 
affordances. We showed how the anticipation 
of future activities can be used by a robot to perform lookahead 
planning of its reactive responses. We modeled the human 
activities and object affordances in the past using a 
rich graphical model (CRF), and extended it to include future 
possible scenarios. Each possibility was represented as a potential 
graph structure and labeling over the graph (which includes 
discrete labels as well as human and object trajectories), which 
we called ETCRF. We used importance sampling techniques for 
estimating and evaluating the most likely future scenarios. The 
structure of the ETCRF was obtained by first considering the 
potential graph structures that are close to the ground-truth ones 
by approximating the graph with only additive features. We then 
designed moves to explore the space of likely graph structures. 
We showed that anticipation can improve performance of 
detection of even past activities and affordances. We also 
extensively evaluated our algorithm, against baselines, on the 
tasks of anticipating activity and affordance labels as well as the 
object trajectories. 
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