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ABSTRACT

In our work, we use a Expert temporal conditional random field
based(ETMRF) on to model the spatio-temporal structure of
present an anticipatory temporal conditional random field
(ETCRF), where we model the past with the CRF discussed but
augmented with the tragjectories and with nodes/ edges
representing the object affordances, sub-activities, and trajectories
in the future. Since there are many possible futures, each ETCRF
represents only one of them. In order to find the most likely ones,
we consider each ETCRF as a particle and propagate them over
time, using the set of particles to represent the distribution over
the future possible activities. One challenge is to use the
discriminative power of the CRFs (where the observations are
continuous and labels are discrete) for also producing the
generative anticipation—Ilabels over sub-activities, affordances,
and spatial trajectories. We then show that for new ETCRP
training set improves an accuracy level of 89% with reduced time
interval in seconds respectively.

1. INTRODUCTION

There has been a significant amount of work in detecting human
activities from 2D RGB videos from inertial/ location sensors,
and more recently from RGB-D videos. The primary approach in
these works is to first convert the input sensor stream into a
spatio-temporal representation, and then to infer labels over the
inputs. These works use different types of information, such as
human pose, interaction with objects, object shape and
appearance features. However, these methods can be used only to
predict the labeling of an observed activity and cannot be used to
anticipate what can happen next and how.

Utilizing computers had always begged the question of
interfacing. The methods by which human has been interacting
with computers has travelled a long way. The journey still
continues and new designs of technologies and systems appear
more and more every day and the research in this area has been
growing very fast in the last few decades.

However, in the area of HCI, where a typical requirement is to
have prompt status of the speakers in the scene, on-line
processing is necessary (implying in access to only current and
past information). Considering the real-time challenge and also
the aforementioned common adversities of a realistic video
scenario, it is commonly beneficial to use information that is
complementary to the video modality.
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2. RELATED WORKS

A number of algorithms and designs have been proposed in
literature we shall discuss few of them here according to
Human computer Interaction systems.

In recent years, much effort has been made to detect human
activities from still images as well as videos . Many methods
have been proposed to model the temporal structure of [ow-
level features extracted from video, e.g., histograms of
spatiotemporal  filter responses[1]. This incudes both
discriminative and generative models. Another approach isto
represent activities as collections of semantic attributes.
These methods use an intermediate level of representation
such as the presence or absence of semantic concepts (e.g.,
scene types, actions, objects, etc.) in order to generalize to
unseen instances. There are also a few recent works which
address the task of early recognition . We refer the reader to
for a comprehensive survey of the field and discuss works
that are closely related to ourg[2-3].

Temporal segmentation[4] In activity detection from 2D
videos, much previous work has focussed on short video
clips, assuming that temporal segmentation has been done
apriori. It has been observed that temporal boundaries of
actions are not precisely defined in practice, whether they are
obtained automatically using weak-supervision [5] or by
hand [6]. These works represent the action clips by an
orderless bag-of-features and try to improve classification of
the action clips by refining their temporal boundaries.
However, they only model the temporal extent of actions, not
their tempora structure. Some recent effort in recognizing
actions from longer video sequences take an event detection
approach [6-9], where they evaluate a classifier function at
many different segments of the video and then predict event
presence. Similarly, change point detection methods [10-11],
perform a sequence of change-point analysis in a diding
window along the time dimension. However, these methods
only detect local boundaries and tend to over-segment
complex actions which often contain many changes in local
motion statistics.

Koppula, Gupta and Saxena (KGS, [12]) proposed a model to
jointly predict sub-activities and object affordances by taking
into account spatio-temporal interactions between human
poses and objects over longer time periods. However, KGS
found that not knowing the graph structure (i.e., the correct
temporal  segmentation) decreased the performance
significantly. This is because the boundary between two sub-
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activities is often not very clear. Previous work [13]-{15] only
considers interaction classes without close physical contact (e.g.,
handshaking, talking, and queueing) and uses a detector or tracker
to extract each interacting person. However, body part trackers
and human detectors perform poorly when there are diverse
categories of human motion that contain significant pose
variations, limiting the performance of their interaction
classifiers. Moreover, there are large variations in videos,
including changes in subject appearance, scale, viewpoint,
moving people and objects in the background, etc. These
variations make the motion patterns of human interactions much
noisier and thus a robust interaction recognition algorithm is
required.

Such class of approaches have the advantage of not requiring a
pre-trained model for the Video task, making the algorithm less
dependent on the characteristics of the external data, and more
robust to different acoustic scenarios. However, depending on the
nature of the system, bottom-up approaches may be
impracticable. This is mainly the case of real-time interfaces,
which mandatorily require on-line processing (that is, to solve
“who is speaking now?’ without the knowledge of future data).
When dedling with on-line SD, two important extra constraints
must be considered: short-time analysis of the input streams, and
no access to the upcoming data. The first is necessary so that a
low-latency system is presented to the users, and the later is a
natural limitation of any real-time system.

In [18], Noulas and Krose developed a multimodal system for
HCI purposes. Potential speakers are found using a face detector,
and then ther audio-visual behavior is modeled as states of a
dynamic Bayesian network. For the observations, Scale-invariant
feature transform (SIFT) is applied to the facial features extracted
from the images and the MFCC features are extracted from the
audio. The models of each speaker are updated through
hierarchical model selection [19] as more data arrive. The authors
claim satisfactory results, but the on-line processing is still dower
than real-time and it does not deal with overlapping speech.
Furthermore, experiments were limited to two short test scenarios.

3. PROPOSED METHODOLOGY OVERVIEW

Our goal is to anticipate what a human will do next given the
current observation of his pose and the surrounding environment.
These observations are from RGB-D videos

recorded with a Kinect sensor. From these videos, we obtain the
human pose using the Openni’s skeleton tracker and extract the
tracked object point clouds using SIFT feature

matching Algorithm. In our work, we infer the object affordances
based on its usage in the activity and do not require the object
category labels. We discuss the effect of knowing the object
categories on the anticipation performance. Since activities
happen over a long time horizon, with each activity being
composed of sub-activities involving different number of objects.
We model the activity using a spatio-temporal graph (a CRF), as
shown in Fig. 1. The extracted human pose and objects form the
nodes in this graph, and the edges between them represent their
interactions are described based on our proposed agorithm.
Anticipated temporal segments are generated based on the
available object affordances and the current configuration of the
3D scene. For example, if a person has picked up a coffee mug,
one possible outcome could be drinking from it. Therefore, for
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each object, we sample possible locations at the end of the
anticipated sub-activity and several trajectories based on the
selected affordance. The tempora segmentation determines
the structure of HCI. It is quite challenging to estimate this
structure because of two reasons. First, an activity comprises
several sub-activities of varying temporal length, with an
ambiguity in the temporal boundaries. Thus a single graph
structure may not explain the activity well. Second, there can
be severa possible graph structures when we are reasoning
about activities in the future (i.e, when the goal is to
anticipate future activities, different from just detecting the
past activities). Multiple spatio-temporal graphs are possible
in these cases and we need to reason over them in our
learning algorithm .

temporal segment ‘k”
1

future time ‘t"

past time ‘t’

Fig. 1. An ETCRF that models the human poses H, object
affordance labels O, object locations L, and sub-activity
labels A, over past time ‘t’, and future time ‘d’. Two
temporal segments are shown in thisfigure: kth for the recent
past, and ok p 1bth for the future. Each temporal segment has
three objects for illugtration in the figure.

4 . MOVING OBJECT CLASSIFICATION USING
ETCRF

The concept of affordances as all “action possibilities’
provided by the environment. Many recent works in
computer vision and robotics reason about object
functionality (e.g., sittable, drinkable, etc.) instead of object
identities (e.g., chairs, mugs, etc.). These works take a
recognition based approach to identify the semantic
affordance labels . Few recent works explore the physical
aspects of affordances based on human interactions . For
example, detect the functionality of the object (specifically,
chairs) with respect to possible human poses. In our work, we
consider semantic affordances with  spatio-tempora
grounding which help in anticipating the future activities.
Here, we describe how we model the spatio-temporal aspects
of affordances.

Given the observations of a scene containing a human and
objects for time t in the pad, and its goa is to anticipate
future possibilities for time d. However, for the future d
frames, we do not even know the structure of the graph—
there may be different number

of objects being interacted with depending on which
subactivity is performed in the future. Our goa is to
compute a digribution over the possible future states (i.e,
sub-activity, human poses and object locations). We will do
so by sampling severad possible graph structures by
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augmenting the graph in time, each of which we will call an
Expet tempora conditiona random field (ETCRF). We first
describe an ETCRF below.

4.1 Modeling Past with a CRF

MRFS/CRFs are a workhorse of machine learning and have been
applied to a variety of applications. Recently, with RGB-D data
they have been applied to scene labeling and activity detection .
Conditioned on a variety of features as input, the CRFs model
rich contextua relations. Learning and inference is tractable in
these methods when the label spaceis discrete and small.
Following , we discretize time to the frames of the video4 and
group the frames into temporal segments, where each temporal
segment spans a set of contiguous frames corresponding to a
single sub-activity. Therefore, at time ‘'t we have observed ‘t’
frames of the activity that are grouped into ‘k’ temporal segments.
For the past t frames, we know the nodes of the CRF but we do
not know the temporal segmentation, i.e., which frame level
nodes are connected to each of the segment level node. The node
labels are also unknown. For a given tempora segmentation, we
represent the graph until time t as. 9 = %€ where &
represents the edges, and V' represents the nodes
{H", O L5 A} human pose nodes H!, object affordance
nodes O', objectl ocation nodes Lt, and sub-activity nodes.

Our goal isto model the #7(7¢". ©. £7, A" |5, L) where Ft H
and Ft L are the observations for the human poses and object
locations until timet. Using the independencies expressed as
Pgi(H', O LF, A" @, @) =

P(O', A'|H' L") P(H', L'|®};, @ )

The second term #7(7¢". £f|Pi,.<PL)  modds the
distribution of true human pose and object locations (both are
continuous trajectories) given the observations from the RGB-3D
Kinect sensor. We model it using a Gaussian digribution. The
first term 20O A", L") predicts the object affordances
and the sub-activities that are discrete labels—this term further
factorizes following the graph structure as:
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4.2.Modeling one Possible Future with an Augmented
Temporal CRF (ETCRF)
We defined the anticipatory temporal conditional random field as

-t rf td otd
an augmented graph gr=V € J
time and d is the future

Vfrf {th Ofrf ﬁfrf Afr{}

, Wheret is observed
antici pation  time

represents the set of nodes
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i
in the past time t as well as in the future time d. &
represents the set of al edges in the graph see Fig. 1. The
observations (not shown in the figure) are represented as set

t
of features, [I]' and [I]L’?" extracted from the t observed
video frames. Note that we do not have observations for the

it d
future frames. In the augmented graph Y ‘, we have:

-I.Jl_;f.d (th.. O?.rf'.ﬁf_rf'. A?.rfpp? ‘ [-D::}
— IJ(@?JI‘Af.rfw_f?.rf‘ﬁf.ff]j)l:?_ff.rf‘ ﬁf.rf|¢];i‘[1:]::}

the weights using importance sampling as shown as
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Here, 0:(¥) isthe Kronecker delta function which takes the
wy
value 1 if x equalsy and O otherwise, istheweight of the
rf
sample s after observing t frames, and f}' | |sthe

proposal distribution.

5.Pseudocode for ETCRF

Data: RGB-D video frames
Result: Future sub-activity and affor dance anticipations

t=0,P={}

while new frame ft observed do
Generate frame features for frame ft
if temporal segmentation not given then
Find best segmentation using additive energy
E(y|®"(x); w)
Sampl e segmentations by split and merge moves

Compute segment featurmrp-'“ and ¢'f'

Compute }r, best labeling of the past-CRF ;
for each object do
Sample possible future affordance and sub-activity from the

1 o 1 £y
gisorete disribution (O A [P D)),
Sample future object location based on the affordance
heatmaps qisrrf;

Generate corresponding object trajectory and human poses
for d future frames;

end

Augment the past-CRF to generate an ETCRF particle
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tadtE) i}
P—PU {gr.d'ﬁ“f‘}

end

for each particle

for each augmented frame do
Generate frame features

end

if temporal segmentation not given then

Find best segmentation using additive energy
E(y|®"(x); w)

Sample segmentations by split and merge moves

end
Compute segment featur%rp-'“ and ¢'f'
Compute "y, best labeling for the ETCRF particle

PRt ]

Compute weight Y

end

P= top-k scored particlesin P,

At= future sub-activity and affordance labels of top-3
_ E(y|®(x):w);

particles based on

t=t+1;

end

6. RESULTSAND DISCUSSION

In this section we describe the detailed evaluation of our
Proposed approach on both offline data as well as HCI
experiments.

6.1 Data SET

We use CAD-120 dataset , which has 120 RGB-D videos of four
different subjects performing 10 high-level activities. The data is
annotated with object affordance and sub-activity labels and
includes ground-truth object categories, tracked object bounding
boxes and human skeletons. The set of high-level activities are:
{making cereal, taking medicine, stacking objects, unstacking
objects, microwaving food, picking objects, cleaning objects,
taking food, arranging objects, having a meal}, the set of sub-
activity labels are: {reaching, moving, pouring, eating, drinking,
opening, placing, closing, scrubbing, null} and the set of
affordance labels are: {reachable, movable, pourable, pourto,
containable, drinkable, openable, placeable, closable, scrubbable,
scrubber, stationary}. We use al sub-activity classes for
prediction of observed frames but do not anticipate null sub-
activity.

6.2 Detection Results

For comparison, we follow the same train-test split described in
KGS and tran our model on activities performed by three
subjects and test on activities of a new subject. We report the
results obtained by four-fold cross validation by averaging across
the folds. We consider the overall micro accuracy (P/R), macro
precison and macro recall of the detected sub-activities,
affordances and overall activity. Micro accuracy is the percentage
of correctly classified labels. Macro precision and recall are the
averages of precision and recall respectively for all classes.
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Table 1 shows the performance of our proposed approach on
object affordance, sub-activity and high-level activity
labeling for past activities. Rows 3-5 show the performance
for the case where ground-truth temporal segmentation is
provided and rows 6-9 show the performance for the different
methods when no tempora segmentation is provided. With
known graph structure, the model using the the full set of
features (row 4) outperforms the model which uses only the
additive features (row 5): macro precision and recall improve
by 5 and 10.1 percent for labeling object affordance
respectively and by 3.7 and 6.2 percent for labeling sub-
activities respectively.

TABLE 1
Results on CAD-120 Dataset for detection, Showing Average
Micro Precision/Recall, and Average Macro Precision and

Recall for Affordances, Sub-Activities and High-Level
Activities
With ground-truth seementation.
Object Affordance Sub-activity High-level Activity

micro Tmaco micro Tnacto micro Inacto
method P/R Prec.  Recall  P/R Prec.  Rewll PR Prec.  Reall
chance 8300 8300 8300 10000 10000 10000 10000 IU.U 0.0 10000
max class fﬁ/ (10 657(010) 8300 29202 292002 10000 10000 0000 0000
KGS[] 18004) 904025 7200 86009 842013 /6 9260 847024 Hﬁ 3(2 0 54 2 25
Out wiodel all fatures 93 9(04) 89203 8520 893009 879018 849(15) B5BOH  BORIY B3IGD
Our model: nly 20005 842022 2402 86506 S42(13) 7019 %W3IBH RN NOGY)

uddittve features
Without ground-truth negmentatinn.

Our DPseg 8611 503 Bow) 7504 7062 013D 806@D IR BOAD
OurDPgeg+moes 842009 726Q3) HAGY) 712011 70667 61543 83162 B0GH 8564
hewristicseg. (KGS)  839(15) 759 (46) 642(40) 682(03) 711(19) 622(41) 806(L1) 81822 8.0(.2)
OurDPgeg+moes 854007 77009 67403 70306 748(16) 662(34) 83100 0066 8761

+ haurisic seg

This shows that additive features bring us close, but not
quite, to the optimal graph structure. When the graph
structure is not known, the performance drops significantly.
Our graph sampling approach based on the additive energy
function (row 6) achieves 83.6 and 71.5 percent micro
precision for labeling object affordance and sub-activities,
respectively. This is improved by sampling additiona graph
structures based on the Split and Merge moves (row 7).

Anticipated Object Affordance

[14] r r T T T T .
Qurs-full - —
ETCRF ssgunn
0k ETCRFdiscrete mnmnn |
KGS with co-occurance il
nearest neighbor
io P chance
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Graph 1. Plots showing how object affor dance levels.

Graph 1 shows how the macro F1 score and the anticipation
metric changes with the anticipation time. The average
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duration of a sub-activity in the -120 dataset is around 3.6
seconds, therefore, an anticipation duration of 10 seconds is over
two to three subactivities. With the increase in anticipation
duration, performance of the others approach that of a random
chance basdline, the performance of our ETCRF declines. It till
outperforms other baselines for all anticipation times.

Comparision of Accuracy %

36
84

82

80
78
76
74
72
. E
68
66 -

ETCRF CRF

% of accuracy

STMRF KGS

Graph 2: Plots showing Accuracy levels.

7. CONCLUSION

In this work, we considered the problem of detecting the past
human activities as well as anticipating the future using object
affordances. We showed how the anticipation

of future activities can be used by a robot to perform lookahead
planning of its reactive responses. We modeled the human
activities and object affordances in the past using a

rich graphical model (CRF), and extended it to include future
possible scenarios. Each possibility was represented as a potential
graph dructure and labeling over the graph (which incudes
discrete labels as well as human and object trajectories), which
we called ETCRF. We used importance sampling techniques for
estimating and evaluating the most likely future scenarios. The
structure of the ETCRF was obtained by first considering the
potential graph structures that are close to the ground-truth ones
by approximating the graph with only additive features. We then
designed moves to explore the space of likely graph structures.
We showed that anticipation can improve performance of
detection of even past activities and affordances. We aso
extensively evaluated our algorithm, againg basglines, on the
tasks of anticipating activity and affordance labels as well as the
object trajectories.
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